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Abstract. When a topological space X can be embedded into the space
XY » of nl-sequences of X, then we can define the corresponding compu-
tational notion over X because a machine with n+ 1 heads on each tape
can input/output sequences in X7 , . This means that the least number n
such that X can be topologically embedded into X'{ ,, serves as a degree
of complexity of the space. We prove that this number, which we call the
computational dimension of the space, is equal to the topological dimen-
sion for separable metric spaces. First, we show that the weak inductive
dimension of X' ,, is n, and thus the computational dimension is at least
as large as the weak inductive dimension for all spaces. Then, we show
that the Nobeling’s universal n-dimensional space can be embedded into
Y9 . and thus the computational dimension is at most as large as the
weak inductive dimension for separable metric spaces. As a corollary,
the 2-dimensional Euclidean space IR can be embedded in {0, 1}% , but
not in XY , for any character set X, and infinite dimensional spaces like
the set of closed/open/compact subsets of IR™ and the set of continuous
functions from IR! to IR™ can be embedded in X% but not in X1, for
any n.

1 Introduction

In order to perform computation over the set of reals, we need to represent them
as (infinite) sequences of characters. However, it is known that there is no one-
to-one representation, or equivalently, no embedding of real numbers into X¢
which induces reasonable notion of computation over reals, and thus redundant
representations are commonly used [Wei00][BH00]. In a previous paper [Tsu01b],
the author used, instead of X', the set X ; of 1.L-sequences of X. Here, an n_L-
sequence of X' is an infinite sequence of X' in which at most n cells are allowed to
be left undefined (denoted by L ). He proposed a machine, called an IM2-machine,
which input/output 1.1-sequences with two heads on each input/output tape,
composed a topological embedding of the set of real numbers into X7 1, and thus
induced a notion of computation over reals, which is shown to be equivalent to
the standard notion of computation over reals.

It is easy to extend this input/output mechanism of an IM2-machine to the
set X'7 of n_L-sequences of X by putting n+1 heads on each input/output tape,
and therefore, we can obtain a computational notion over a topological space X
when X can be embedded into X | . Thus, we define the least number n such



that a space X can be embedded into XY , as the computational dimension
of X. The computational dimension is a degree of computational complexity of
the space in that it is equal to the number of extra heads required to define
computation over the space by an IM2-machine.

The main theorem of this paper is that the computational dimension and
the usual topological dimension coincide for separable metric spaces. First, we
show that the weak inductive dimension of XY is n, and therefore the compu-
tational dimension is at least as large as the weak inductive dimension for all
spaces. Then, we show that the Nobeling’s universal n-dimensional space can be
embedded into X'} , and thus the computational dimension is at most as large
as the weak inductive dimension for separable metric spaces.

From this theorem, the 2-dimensional Euclidean space can be embedded into
Y7 5, but not in 'Y | for any character set X', and infinite dimensional spaces

like the spaces of closed/open/compact subsets of IR! and the space of continuous
functions from R to IR™ cannot be embedded in X'y, for any n.

In the next section, we review the notion of Gray code embedding and IM2-
machines following [Tsu01b]. Then, we introduce the computational dimension
in Section 3. In Section 4, we show that the weak inductive dimension of XY |
is n. In Section 5, we study the embedding of the 2-dimensional Euclidean space
to XY o, and in Section 6, we prove that the computational dimension and the
weak inductive dimension coincide for separable metric spaces. In Section 7, we
study the embeddings of infinite dimensional spaces in X% .

2 Gray Code Embedding and Computability by
IM2-machines

We write XY for the set of infinite sequences of X' in which undefined cells (L)
are allowed to exist. That is, X' is the set of infinite sequences of X' U {L}. We
write XY  for the set of 1nﬁn1te sequences of X in which at most n undefined
cells are allowed to exist, Gray code embedding G (Definition 1 below) is an
embedding of the unit open interval Z = (0,1) (or the whole real line IR) to the
set {0, 1}‘11. It is based on the Gray code expansion, which is another expansion
of real numbers.

Figure 1 shows the usual binary expansion and the Gray code expansion of
the unit open interval. Here, a horizontal line means that the corresponding bit
has value 1 on the line and value 0 otherwise. In this way, Gray code expansion
of (0,1) is composed from that of (0,1/2) by taking the mirroring image on
(1/2, 1) with the first bit on. As is the case for the usual binary expansion,
we have two expansions to dyadic numbers. Here, a dyadic number is a rational
number of the form m x2™" for integers m and n. For example, we have two Gray
code expansions 111000... and 101000... for 3/4, corresponding to the two binary
expansions 11000... and 10111.... However, the two expansions are different only
at one digit (in this case the second). This means that the second digit does not
contribute to the fact that this number is 3/4. Therefore, by defining the value
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Fig. 1. Binary Expansion and Gray code Expansion of real numbers

of such a digit as L, we define the Gray code embedding G of Z to {0, 1}1’)1 as
follows.

Definition 1. The Gray code embedding G is a function from 7 to {0,1}¢ ;
defined coinductively as follows. Let G(x) = apay . ... The first character ag is
1,1, or 0, according as z is bigger than, equal to, or less than 1/5. The rest
ajas ... is defined to be G(f(z)) where

[ 2 (x <1f)

f@) = {2(1 —z) (z >1h)

G can be extended to a function from (—1,1) to {0,1}¥ ; by adding the sign
bit as the first bit, and to the whole real line by composing it with some com-
putable embedding of IR into (—1, 1) such as the function f(z) = 2xarctan(z)/=.

Note that G comes to be an injective function to {0, 1}11. Moreover, we
can show that G maps Z homeomorphically into {0, 1}‘11, and therefore, G is
actually a topological embedding. Here, the topology on XY ; is the subspace
topology of the Scott topology on the cpo X4 (see Section 4).



Now, we define a machine which inputs/outputs sequences in XY ,. First, we
consider outputs. We consider that our machine calculates a real number x (0 <
xz < 1) by producing shrinking intervals (ai,b1), (az,b2),... infinitely so that
their intersection is {z}, and output G(z) on a tape based on this approximation
information. We consider that the tape is filled with L at the beginning. When
we know that x <1/ or & > 1/, we can write 0 or 1 as the first digit, respectively.
However, when z = 1/5, neither will happen and therefore we cannot fill the first
cell. However, if we know that /4 < & < 3/4, we can fill the second cell with 1.
After that, we can fill the first cell with 0 or 1 when we know that 1/4 < x <1/
or lfp < x < 3[4, respectively, and the third cell with 0 when we know that
3/g < x < 5/3. In particular, when = =1/, the first cell is unfilled eternally, and
the sequence 1000 ... is output from the second cell. This kind of output can be
expressed naturally if we consider two heads H;(O) and H2(O) on the output
tape O. They are placed at the first and the second cell at the beginning, and
move automatically when a character is output: after an output from H;(O),
H;(0) is moved to the place of Hy(O) and Hy(O) is moved to the next cell,
and after an output from Hy(O), Ha(O) is moved to the next cell. In this way,
H;(0O) and H(O) are always located at the first and the second unfilled cells,
respectively.

Next, we consider an input of a sequence in X% 7.1- When we have only one
head on an input tape, the machine stucks when the head comes to the L cell
because it will never be filled. Therefore, our machine has two heads H; (I;) and
H>(I;) on each input tape I;, which move the same way as the heads of an out-
put tape, and the machine proceeds depending on an input from one of them.
This means that when both cells under H;(I;) and Hs(I;) are filled, we have
two applicable rules. Thus, our machine has many computational paths to an
input and all the paths should produce valid results. This property is called in-
determinism. In this way, we define an IM2-machine (Indeterministic Multihead
Type-2 machine), which inputs/outputs sequences in XY ;. See [Tsu01b] for the
detailed definition of the machine.

This notion of an IM2-machine can easily be generalized to a machine with
n+1 heads on each input/output tape. The heads Hy(T), Hy(T), ..., Hp+1(T) of
a tape T' move as follows: when H;(T') (1 <i <n+1)isused, H;j(T) (i <j <n)
move to the position of H;1(T') and Hy4+1 moves to the next position. Note that
an n + 1-head machine can manipulate sequences in DI Therefore, we define
an IM2-machine of type (XY , ,...,X{ , X% ) as a machine which has k
input tapes with n; + 1 heads (i = 1,...,k) and one output tape with ng + 1
heads.

Since an IM2-machine has indeterministic behavior, it defines a partial multi-
valued function F:C ¢ =~ x...x XY X3¢ which is a subset of XY | x

XY X DY considered as a partial function from DY gy X x XY

(the power set of X% ) — 0.

Definition 2. An IM2-machine M With k inputs realizes a partial multi-valued
function F :C XY = x...x Xy XY Cif all the computational paths M
have with the input tapes filled with (pl, ...,pr) € dom(F) produce infinite



outputs, and the set of outputs forms a subset of F(py,...,pr). We say that F'
is IM2-computable when it is realized by an IM2-machine.

Definition 3. Let H; be embeddings of X; to X9 = (i =0,1,...,k). A multi-
valued function F :C X; x ... x X :;Xo is realized by an IM2-machine M
if HyoF o (Hl_l,...,Hk_l) is realized by M. In this case, we say that F' is
(Hy,H,,...,Hy, Hy) ) -computable.

When H; are the Gray code embedding G of R in {0,1} |, we say that

F:CRF S5 Ris Gray code computable. In this definition, we add the suffix |
to the type of the computability to distinguish it from the usual representation-
based computability notion by a Type-2 machine [Wei00].

Definition 4. A partial function is (Hy, Hs,..., Hy, Hy)-computable if it is
(Hy,H,,...,Hy, Hy) -computable as a multi-valued function.

By generalizing the proofs in [Tsu01b], one has the followings:

Theorem 1. If a partial function is (Hy, Hs, ..., Hy, Hy), -computable, then it
18 continuous.

Theorem 2. A multi-valued function F :C IF — T is Gray-code-computable
iff it is ((p)*, p)-computable in the sense of [Wei00]. Here, p is the signed digit
representation or some equivalent ones.

In [TsuO1b], the author gave some basic algorithms by IM2-machines like
addition with respect to the Gray code embedding. In [Tsu0la], he showed that
the behavior of an IM2-machine can be naturally expressed in a parallel logic
programming language GHC.

3 The Computational Dimension of a Topological Space

Now, we study whether topological spaces other than IR have similar embeddings
in XY . As we have shown, if a space X can be embedded into 29 then we
can define computational notion on X based on n+ 1-head IM2-machines. Thus,
the least number n such that X can be embedded into X'}, for some X has a
meaning as a computational complexity of the space.

Definition 5. The computational dimension of a space X is the least number
n such that X can be embedded into X'7 . If X can be embedded into 'Y and
X cannot be embedded into 'Y |, for every n, then we define the computational
dimension of X as oc.

We show that this computational dimension coincides with the usual topo-
logical dimension for separable metric spaces. There are several definitions of
the topological dimension of a space: the covering dimension, the strong induc-
tive dimension, and the weak inductive dimension [HW48,Nag65]. It is known
that these three dimensions are equivalent and have many good properties for a



separable metric space. However, we need to develop dimension theory also to
T, spaces and only the weak inductive dimension has the properties we need for
such a general space.

We write Bp(O) for the boundary of O in a topological space P, or B(O)
when it is not ambiguous.

Definition 6. The weak inductive dimension ind of a topological space X is
defined to be

i)ind X = —-1if X = {J,

ii) ind X < n if for every neighborhood U of a point p € X there exists an open
set V such that « € V C U and ind B(V) <n —1.

Ifind X <n and ind X £ n — 1, then we define ind X = n. If ind X £ n for
every n, then ind X = oo.

The following proposition is straightforward and we use this in calculating the
dimension.

Proposition 1. If X has an open base O such that every element U € O sat-
isfies ind B(U) <n —1, then ind X < n.

Lemma 1. Let P be a subspace of a topological space X and O C X. Then,
Bp(ONP)C Bx(O)N P.

For a counter example to Bp(O N P) = Bx(O) N P, consider the Scott
topology of three point poset a < b > ¢ for X, {a,c} for P, and {b, c} for O.

Proposition 2 (heredity of ind ). If ind X < n and P is a subspace of X,
then ind P < n.

Proof. By induction on n. It is trivial for the case n = —1. Assume it for n — 1.
Since ind X < m, for all x € P and O > z, there exists x € O’ C O such that
ind B(O") < n—1. Since Bp(O'NP) C B(O'), by induction hypothesis, we have
ind Bp(O'NP)<n-—1.

This heredity property does not hold for 7 spaces when we consider the
covering dimension and the strong inductive dimension. See Appendix of [HW48]
for the detail. Since this heredity holds and that dimension is preserved by
homeomorphisms, we have the following:

Proposition 3. Ifind X > ind Y, then there is no topological embedding of X
mY.

4 The Weak Inductive Dimension of n_-sequence Spaces
We write Ej’_’n’m for the subspace Ein - Ej)_,mq of ¥ (n >m), and Eﬁmm
for the subspace X'¢ — X¢ | of ¥{. When a € X, we write a[j] for the j-th
component of a, and we write a|; for the compact element of ¥4 such that
alg[n] = a[n] for n < k and a[n] = L for n > k.



The Scott topology of a complete partial order (cpo) P is defined so that a
subset O is open iff it is upward closed and for each directed subset S of P with
US € O, s € O for some s € S. We say that an element x of P is compact if
for each directed subset S of P with z < LS, z < s for some s € S. In the cpo
XY, d is a compact element iff d[k] # L for finitely many k. X4 has the base
{d? | d € P is compact}. Here, we write d1 for the subset {z € P|d < z} of P.

Definition 7. The length of a poset P is the maximal length n of a strictly
increasing chain ap < a; < ... < ay in P. If there is an arbitrary long chain in
P, then we define that the length of P is infinite.

Proposition 4. 1) The length of X is 0.
2) The length of X¢ ,, is n.
3) The length of X¢ is infinite.

It is easy to prove that the dimension of a cpo @ with the Scott topology is
equal to the length of @; it is a finite number n only when @ consists only of
compact elements. However, when we consider the Scott topology on a cpo @,
and consider its subspace topology on a subposet P, then the length of P and
the dimension of P do not coincide. For example, one can consider the image
im(G@) C X% of the Gray code embedding G. It has length 0 because there is no
order relation among elements of im(G), whereas it has dimension 1 because it
is homeomorphic to Z.

It does not hold generally that the closure of an open set O is {z | z <
y for y € O}. As a counter example, consider the case X = {0,1}¥, O = U{d?t
| d=0"11% for some n}. Since O includes 0"10* for all n, CI(O) includes the
increasing sequence 0L < 00L¥ < 000L“ < ..., and therefore includes its limit
0“. However, this property holds when O is a base element d 1. We prove the
following stronger statement:

Lemma 2. Suppose that P is a closed subspace of X9 and d is a compact ele-
ment of P. Then, Bp(dT NP) 3 a iff dU « exists in P and d £ «.

Proof. The if part is trivial. Bp(d T NP) 5> « means that all the open sets
containing « intersect with d 1 in P. Therefore, | 1 intersects with d 1, and
thus d U a| is a member of P for all k. In this way, we have an increasing
sequence d U af; < dUaly < ... whose limit d LUl a exists because XY is a cpo.
From the closedness of P, d U « is in P.

Proposition 5. If P C X7 _ | is a closed subset of X and d is a compact
element of P, then Bp(dt NP) C Y ot

Proof. If all the elements of Bp(d1 NP) have infinite number of bottom compo-
nents, then we have nothing to prove. Suppose that a € Bp(dt NP) has finite
number of bottom components. Then, from Lemma 2, d £ a and d U « exists in
P. Since dU« is strictly greater than «, dU« has fewer bottom components than
a has. At the same time, d L a has at least m bottom components. This means
that o has at least m + 1 bottom components and therefore « € XY _ ;.



Lemma 3. Suppose that P is a closed subset of X% . Bpaxs (dr ﬂPﬁZin) =
Bp(dtnP)Nn XY .

Proof. Use Lemma 1 for C and Lemma 2 for D.

Proposition 6. Let P C X _ . be a closed subset of XY and n > m. Then,
ind (PNXY ) <n—-m.

Proof. By induction on n — m. First, consider the case that n = m. We have
Bpage (dt NP N XY ) = Bp(dt NP)N XY by Lemma 3 and Bp(d 1
NP)N XY, = 0 since Bp(dt NP) C XY _ ., by Proposition 5. Therefore,
ind Bpmgi‘n (dtnPn Zjn) = —1 for all compact element d. By Proposition 1,
we have ind (PN XY ) <n—m.

Next, consider the case n > m. We need to show ind Bpmzi n(d TNPN
X¢,) =Bp(dtnNP)NXY  <n-—m-—1for all compact element d. We have
Bp(dt nP) C X¢ _ .., by Proposition 5. Since Bp(d1 NP) is closed, we have
ind Bp(dt NP) < n— (m + 1) by the induction hypothesis.

Theorem 3. ind Ej’_’n =n.

Proof. ind XY < n by applying Proposition 6 to the case P = X{ and m =
0. For ind X¢ | > n, when |X| > 2, we use the embedding of R" in XY
constructed in Section 5. It is well known that ind R"™ = n ([Eng78]). Therefore,
by Proposition 2, we haveind X | > n. When |X| = 1, we prove it in proposition
7.

When X' = {1}, £¥ is isomorphicto P, = {a|a C N} for N = {0,1,2,3,...}
by identifying o € X with a € P, when a[k] = 1 iff k¥ € a. With this correspon-
dence, XY , corresponds to P = {a € B, | |N — a|] < n}. Since there is the
top element N in P,, every non-empty open set U includes IV, and therefore,
its closure is the whole space P,. This means that the boundary B(U) is the
complement P,, —U. This is also the case for P™. That is, Bx(U) = X = U for
x=rpr".

Proposition 7. ind Pu(,n) =n.

Proof. Since we have already shown ind P\ < n, we need to prove ind P\ £
n — 1. We prove it by induction on 7.

It is meediate when n = 0. When n > 0, let X = Pu(,n) and show that there
exists an open set U C X such that ind B(U) £ n—1. Then, for each non-empty
open subset V' C U, we have B(V) D B(U) because B(V) = X —V, and by
heredity (Proposition 2), ind B(V) £ n — 1.

Take U = {0} + NX. Then, B{U) = X —U = {a € X | 0 ¢ a}. This
set is isomorphic to {a | @ C N',|N' —a] < n — 1} for N' = {1,2,3,...}.
Therefore, B(U) is isomorphic to Pu(,n_l), and thus ind B(U) £ n—1. Note that

the topological structure of B(U) as a subspace of X and that of P are the
same.



From Theorem 3 and Proposition 3, we have the followings.

Corollary 1. The computational dimension of a space is at least as large as its
weak inductive dimension.

Corollary 2. There are no embeddings of R" and " in XY n—1 for any char-
acter set Y.

Proof. ind R™ = ind Z" = n ([Eng78]).

5 Embeddings of Finite Dimensional Spaces

In this section, we construct an embedding of IR? in Xy, for ¥ = {0,1}, namely,
interleaving G(z) and G(y) to define the name of (z,y) € IR®. Thus, the com-
putational dimension of IR? is 2.

Let F' be the function from X9 | xX¢ | to X' , which maps (a1az...,bib2...)
to a1biasbs . ... Then, F' is a topological homeomorphism from Eil X Eil into
X7 5 Since IR can be embedded in X' | by the Gray code embedding G, we can
topologically embed IR? into X¢, by Fo (G,G). In the same way, IR" can be
embedded into X . Combining this fact with Corollary 1, we have

Theorem 4. IR" has the computational dimension n.

In order to show that the computability notion induced on R? by F o (G, Q)
in Definition 3 and 4 is the standard one, we show that the encoding F' and the
decoding F~! can be expressed by an IM2-machine.

First, we consider encoding. That is, we construct an IM2-machine of type
(X4 1, X241, %9 ,) which inputs two sequences in XY ; and outputs its interleav-
ingin XY, ’

The machine has two input tapes I; (i = 1,2) with two heads H;(I;) and
H>(I;) on each I; (i = 1,2), and one output tape O with three heads Hy (O), H2(0),
and H3(O). It has 4 states (¢, s) for ¢ € {1,2} and s € {1, 2} with (1,1) the initial
state. ¢ indicates the tape to input the next character from, and s indicates the
pair of heads used to output the next character: s = 1 means to output from
H;(O) and H3(0O), s = 2 means to output from H(0) and H3(O). We need 16
rules corresponding to the combination of 4 states, 2 heads and 2 input char-
acters. We abbreviate them into two rules with variables by allowing pattern
matching on the left hand side of a rule, and using the not function defined as
not 1 = 2 and not 2 = 1 on the right hand side.

(¢,s) Hi(I.)(z) = (not ¢,1) Hg(O)(x)
(C, S) H2(Ic)(m) = (nOt ¢, not 5) HB(O)(x)

The first rule is read as when the state is (¢, s) and it inputs the character = from
the first head, then it changes its state to (not ¢, 1) and output the character x



from the s-th head. For the decoding function to the first component, we consider
a machine of type (XY ,, X |) with the following rules:

(1,1) Hi(D)(z) = (2,1) Hi(O)(=)
(1,2) Ho(I)(z) = (2,1) Hi(O)(2)
(1,s) H3(I)(z) = (2,mno0t s) H2(O)(x)
(2,1) Hi(I)(z) = (1,1)

(2,2) Hy(D)(z) = (1,1)

(2,s) H3(I)(x) = (1,not s)

Thus, f : IR* = R is (Fo(G,G),G) 1 -computable iff it is (G, G, G) L -computable
as a function in two arguments, and thus it is (p, p, p)-computable, where p is a
representation equivalent to the Cauchy representation by Theorem 2.

For other finite dimensional spaces, it is immediate to show that S! (=
[0,1]/ ~ with ~ defined as 0 ~ 1) can be embedded into XY ;. From Figure
1, one can find that G can be modified to a function from S! by assigning
1000000 as G(0) = G(1). Since ind S* = 1, we have the following.

Proposition 8. The computational dimension of S' is 1.

More generally, we show in the next section that the computational dimension
and the topological dimension coincide for all the separable metric spaces.

6 The Coincidence of the Computational Dimension and
the Topological Dimension

Definition 8. Let 7 be the unit open interval (0,1) and Q¥ be the subspace of
I™ with © dyadic coordinates, where a dyadic number is a rational number of the
form m x 2=™ for integers m and n. We define

NP =Qru...Qp.

That is, N} is the subspace of I™ consisting of all points which have at most k
dyadic coordinates.

It is known that N}* has dimension k ([Eng78]). The space N2"! is essen-
tially the same as the N&beling’s universal n-dimensional space, and it is uni-
versal for the class of all n-dimensional separable metric spaces in the following
sense.

Proposition 9. For any n-dimensional separable metric space X, there is a
topological embedding of X in N2"T1,

Proof. See [Eng78], for example.

Thus, if we can embed N2**! in X9 it means that we can embed any
n-dimensional topological space in X7 . and therefore the computational di-
mension and the weak inductive dimension coincide for all the separable metric
spaces.
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Fig. 2. The coding of N?.

Theorem 5. There is an embedding from Ny* to XY . for m > n and X' =
{0,1}.

Proof. We start with the embedding G™ of ™ in 'Y | we constructed in Theo-
rem 4. Since it is an interleaving of the Gray code, the number of 1 which appear
in G™(z) is equal to the number of dyadic coordinates of € Z™. Therefore,
when we restrict it to N}, then the image has at most n dyadic coordinates.
That is, G™(N,') C X¥ . Thus, this restriction of G™ to N} is a homeomorphic
embedding to XY .

Corollary 3. The computational dimension and the weak inductive dimension
coincide for all the separable metric spaces.

Proof. Tt is immediate from Theorem 5 when ind X is finite. When ind X is
infinite, separable metric spaces are second countable T spaces and as we note
in the next section, every second countable Ty spaces can be embedded into X¢.
Therefore, the computational dimension of X is also infinite.

Corollary 4. If a separable metric space can be embedded in Y7 for some
alphabet X, then it can be embedded in {0, l}in

Figure 2 depicts how the code G? of N is composed. We split N2 into four
sub-areas, and assign the first two bits of G?(x) as 00, 01, 10, and 11 in each
sub-areas. Note that N7 is the unit square Z2 minus points whose coordinates
are both dyadic numbers. On the boundaries, we assign 10 or L1 on z = 1/2,
and 0L or 1L on y = 1/2. Note that the center point (1/2,1/2) is not included
in N2. The rest of the bits are coded coinductively; we have the 1/2 reduction
of the code of N? on the right lower subsquare, which is flipped horizontally and
vertically to fill all the subsquares so that they agree on the boundaries z = 1/2
and y = 1/2.

7 Embedding of Infinite Dimensional Objects

We consider infinite dimensional spaces which appear in computable analysis,
like the set A(™ of the closed subsets of R™, @™ of the open subsets of IR®,



K™ of the compact subsets of IR, and C'(A,IR") of the continuous functions
from a subset A C IR™ to IR". As for the topological structures on them, we
have some possibilities. In this section, we consider A" with the following three
topological structures and discuss how they are embedded into X'%.

Let Cb™ be the set of all open rational cubes of R™. T<‘A is the topology
of A which has {4 C IR" | AN J # 0} as a subbase element for J € Cb(™.
In the same way, 72 is the topology which has {4 C R" | ANJ = 0} as a
subbase element for J € Cb™ and 74 is the topology with the union of these
two as the subbase. These three topologies are the final topologies of the three
representations ¢ <, 1 and ¢ in [Wei00].

Let M be a homeomorphism from IR to (0,1). Then, since IR includes in-
finite number of disjoint open intervals (0, 1), (1,2),(2,3),..., we can assign to
(ag,a1,...) € IR¥ the closed set {M(ag), M(a1) + 1, M(az) + 2,...}. It is easy
to show that this map from IR¥ to A is a topological embedding with respect
to Té‘, 7';4, and 74 on A, In the same way, we can construct embeddings from
R“ to A™ for every n. Therefore, (A, 72), (A™ 74), and (A™,74) are
infinite dimensional spaces, and they have the computational dimension oo if
they have embedding in X¢.

On the other hand, these spaces have natural embeddings into P, = {1}¥.
More generally, one can define an embedding of a second countable Ty-space
X into P, by fixing a subbase O = {O; | i € N} with numbering, assigning
i-th cell to O;, and defining the embedding E of X as E(z)[i] = 1 iff z € O;
[Eng68]. This corresponds, in the standard representation theory, to considering
the standard representation of S restricted to complete names where S is an
effective topological space S = (X, 0, u) with u(i) = O;, or when {(i,5) | O; =
O,} is r.e., considering the standard representation in a computable topological
space S = (X,0,u) [Wei00]. Applying this to the above-mentioned subbase,
we define embeddings E<, Es, and E of (A4,72), (4,72), and (A4,74) to P,
respectively. Thus, these spaces have the computational dimension oo.

When we use {0, 1} instead of {1}, we can not only express positive prop-
erties like n € O; but also negative properties like n ¢ Cl1(O;). Therefore, we
can define a new embbeding E of (A™,74) to {0,1} which is based on the
subbase of (A", 74). For the embedding F, it is obvious that E(z) includes
infinite number of L-cells for each z € A . Our result that the computational
dimension of (A, 74) is infinite shows that F(z) also includes infinite number
of L-cells for some € A™, and also says that one cannot think of an embbed-
ing with finite number of L-cells for each element, even if we use bigger alphabet
as Y.

8 Conclusion

We have proposed a way of defining computation over a topological space X by
considering an embedding of X in the sets Y (n=0,1,...) of sequences of X'
in which bottoms are allowed to exist. We have shown that the computational



dimension, which is the number of bottoms required in the name space, and the
usual topological dimension coincide for separable metric spaces.

Since our theory is based on an embedding of a space into the domain X¢, it
can be considered as a variant of domain theoretic approaches ([ES98], [Gia99],
[SHT99],[Blag7]). On the other hand, each element of X'¢ | has a unique textual
representation as an nl-sequence and we have the notion of a machine which
operates on such extended sequences. In this sense, it can also be considered as
a variant of more concrete representation-based approaches [Wei00].

One of the benefits of our embedding-based approach is that, since we con-
sider embeddings in name spaces, we can study properties of computable func-
tions over XY | to study properties of computable functions over topological
spaces in general. For example, multi-valued functions over X play an impor-
tant role in computable analysis. They are represented by multi-valued functions
over name spaces in our approach, whereas they are represented by single-valued
functions over X* which are given multi-valued meaning through redundant rep-
resentations in the standard representation theory. Our result relating the di-
mension of a space and the number of heads required to perform computation
over the space is another example.
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