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Introduction: Reverse Mathematics



RM

Reverse mathematics is a program founded by Harvey Fried-
man and developed by, among others, Stephen Simpson. The
program is motivated by the foundational question:

What are appropriate axioms for mathematics?



RM

One of the main themes of reverse mathematics2 is that a large
number of theorems from the mathematics literature are either
provable in RCA0 or equivalent to one of only four logical prin-
ciples: WKL0, ACA0, ATR0 and Π1

1-CA.

In this talk, unless specified otherwise, the base theory will al-
ways be RCA0.

2Subsystems of Second Order Arithmetic, Stephen G. Simpson



RM

We will examine principles which have the logical strength of
the well-foundedness of some ordinals below ε0.

Note that this falls outside of the ‘Big Five’, hence the principles
can be considered to be part of the Reverse Mathematics Zoo.
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Introduction: weak concrete mathematical
incompleteness



Introduction: weak CMI

Thanks to Gödel’s incompleteness the-
orems we know that for every ‘reason-
able’ theory T of arithmetic there exist
statements in the language of T which
are independent of T .

Kurt Gödel (1906-1978)



Introduction: weak CMI

We will call such statements incompleteness phenomena or un-
provable statements. The unprovable statements in this talk will
be Π2 (concrete) and independent of fragments of PA (weak).

We are interested in natural unprovability, in the sense that our
statements should closely resemble theorems from the mathe-
matics literature.
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Introduction: PA

Giuseppe

Peano

(1858-1932)

Peano Arithmetic is a first order theory which
consists of defining axioms for

0, 1,+,×, <

and the scheme of arithmetic induction:

[ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x + 1)]→ ∀xϕ(x),



Introduction: fragments of PA

Formulas of the form:

∃x1∀x2 . . .Qxnϕ

are called Σn-formulas.

When we restrict the scheme of induction to Σn formulas, we
call the theory:

IΣn.



Introduction: Why weak CMI?

IΣ1 has the same strength of primitive recursive arithmetic, as
such it is considered to be important in a partial realisation of
Hilbert’s program.

IΣ2 has the strength of ‘multiply recursive arithmetic’.

PA is a canonical first order theory of arithmetic. It is mutually
interpretable with ZFC−infinity+¬infinity.



Introduction: Why weak CMI?

Already for IΣ1, examples of concrete incompleteness are un-
likely to occur during conventional mathematical practice. This
was expressed by Harvey Friedman’s Grand Conjecture3:

Every theorem published in the Annals of Mathemat-
ics whose statement involves only finite mathematical
objects (...) can be proved in EFA.

It took until the late 70’s before natural examples for PA showed
themselves, and they remain few in number.

3FOM: grand conjectures, Fri Apr 16 15:18:28 EDT 1999



Introduction: Why weak CMI when

interested in RM?

The proof theoretic ordinals of fragments of PA are all below
ε0.

It may be possible to convert weak CMI results into principles
equivalent to the well-foundedness of the corresponding ordinal!
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Introduction: Phase transitions in unprovability



Phase transitions

The phase transitions programme was started by Andreas Weier-
mann to better understand unprovability.

Parameter functions f : N→ N are introduced into the unprov-
able statements ψ to obtain ψf .

ψx 7→c is provable, but ψid is independent.

Question:

Where between constant functions and identity does ψf

change from provable to independent?
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This ends the first part of the talk.



Mixing: Dickson’s lemma



Dickson’s lemma

We order d-tuples of natural numbers coordinatewise:

(a1, . . . ad) ≤ (b1, . . . , bd) :⇔ a1 ≤ b1 ∧ · · · ∧ ad ≤ bd .

Definition (Dickson’s lemma)

Any Nd , ordered coordinatewise, is a well partial order.

Dickson’s lemma is known to be equivalent to the well-foundedness
of ωω (Simpson).
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Dickson’s lemma

A sequence m̄0, . . . m̄D of d-tuples of natural numbers is l-
bounded if:

max m̄i ≤ l + i .

Definition (Miniaturised Dickson’s Lemma)

For every d , l there exists D such that for every l -bounded
sequence m̄0, . . . , m̄D of d-tuples there are i < j ≤ D with
m̄i ≤ m̄j .

Miniaturised Dickson’s Lemma is known to be independent of
IΣ1 (Friedman?).
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Dickson’s lemma

A sequence m̄0, . . . m̄D of d-tuples of natural numbers is (f , l)-
bounded if:

max m̄i ≤ l + f (i).

Definition (MDLf )

For every d , l there exists D such that for every (f , l)-bounded
sequence m̄0, . . . , m̄D of d-tuples there are i < j ≤ D with
m̄i ≤ m̄j .

It is known that (Weiermann):

1 IΣ1 ` MDLlog, but

2 IΣ1 0 MDL c
√, for every c .
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Dickson’s lemma

Question:

What about the RM status of ∀f .MDLf ?

In general, given a Weiermann-style parametrised CMI-result
ψf :
Question:

What is the RM status of ∀f .ψf ?
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Mixing: Paris–Harrington and adjacent Ramsey



Paris–Harrington

The following is independent of PA (Paris, Harrington 1977):

Definition (Paris–Harrington principle)

For all a, d , k there exists R such that every C : [a,R]d → k
has a large homogeneous set.

Additionally, if one fixes d + 1, the resulting variant becomes
independent of IΣd .



Paris–Harrington

A set X is called f -large if |X | > f (min X ).

Definition (PHd
f )

For all a, k there exists R such that every C : [a,R]d → k has
an f -large homogeneous set.

A variant of ∀f .PH2
f is known to be equivalent to the well-

foundedness of ωω (Kreuzer, Yokoyama).

Theorem (P.)

∀f .PHd
f is equivalent to the well-foundedness of ωd .
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adjacent Ramsey

We order r -tuples of natural numbers coordinatewise.

Definition (adjacent Ramsey)

For all C : Nd → Nr there are x1 < · · · < xd+1 with:

C (x1, . . . , xd) ≤ C (x2, . . . , xd+1).

Adjacent Ramsey is known to be equivalent to the well-foundedness
of ε0.



adjacent Ramsey

We order r -tuples of natural numbers coordinatewise.

Definition (adjacent Ramsey)

For all C : Nd → Nr there are x1 < · · · < xd+1 with:

C (x1, . . . , xd) ≤ C (x2, . . . , xd+1).

Adjacent Ramsey is known to be equivalent to the well-foundedness
of ε0.



adjacent Ramsey

We order r -tuples of natural numbers coordinatewise.

Definition (adjacent Ramsey)

For all C : Nd → Nr there are x1 < · · · < xd+1 with:

C (x1, . . . , xd) ≤ C (x2, . . . , xd+1).

Adjacent Ramsey is known to be equivalent to the well-foundedness
of ε0.



adjacent Ramsey

A colouring C : {0, . . . ,R}d → Nr is f -limited if

max C (x) ≤ f (max x).

Definition (FARd
f )

For every r there exists R such that for every f -limited function
C : {0, . . . ,R}d → Nr there are x1 < · · · < xd+1 ≤ R with:

C (x1, . . . , xd) ≤ C (x2, . . . , xd+1).
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adjacent Ramsey

Friedman’s proof of the upper bound for adjacent Ramsey is
specific to ε0 and does not work for fixed dimensions.

It is already known that PHd+1
id is equivalent to FARd

id (Fried-
man, P.).

The proof needs only minor modifications to convert this result
to PHd+1

f is equivalent to FARd
f
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adjacent Ramsey

Hence, we can use the status of ∀f .FARf , with fixed dimension,
to determine that:

Theorem (Friedman, P.)

Adjacent Ramsey with fixed dimension d is equivalent to the
well-foundedness of ωd+1.



Final remark

There is a rich interplay between proof theory for CMI and
RM of well-foundedness of ordinals!



�

Thank you for listening.
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