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Choice sequences

The theory of choice sequences CS was introduced by Troelstra
(1968) and extensively studied by Kreisel and Troelstra (1970).

Formal systems for some branches of intuitionistic analysis.
Annals of Mathematical Logic, 1(3):229–387, 1970.

I A sequence f : N→ N is lawlike if we know a law (finite
information) to generate it, e.g. recursive functions.

I Choice sequences are sequences of natural numbers which
are more general than lawlike sequences.

I Operations on choice sequences are continuous in a strong
sense: the continuous choice and bar induction are theorems
of CS.

I CS can be considered as a formal system for Brouwer’s
intuitionism.
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Elimination choice sequences

I Kreisel and Troelstra (1970) showed that CS is conservative
extension of its lawlike part IDB using the elimination
translation.

I Fourman (1982) observed that forcing over the site whose
underlying category is a monoid of continuous functions
CONT(NN,NN) on Baire space with open cover topology
corresponds to the elimination translation by Kreisel and
Troelstra.

I The correspondence between forcing and elimination
translation was shown explicitly by van der Hoeven and
Moerdijk (1982) by formalizing a fragment of sheaf semantics
in IDB.
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Outline

1. Theory of binary choice sequences BCS

2. Sheaf semantics of BCS

3. Formalization of sheaf semantics in EL

4. Elimination of choice sequences
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Uniformly continuous functions on 2N

f : 2N → N is uniformly continuous

⇐⇒ ∃n ∈ N∀a, b ∈ 2N
[
an = bn→ f (a) = f (b)

]
⇐⇒ ∃n ∈ N∀a ∈ 2N [ f (a) = f (an ∗ 0ω)]

where an ∗ 0ω ≡ an ∗ 〈0, 0, 0, · · · .

I f can be coded as a finite binary tree with a finite hight where
each leaf node is labeled by a natural number.

I Such a tree can be coded as a natural numbers.
I A uniformly continuous function f : 2N → NN can be coded as

a sequence of natural numbers.
I All these notions as well as composition of uniformly

continuous function on 2N and applications of uniformly
continuous functions to binary sequences can be definable in
EL.
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EL: Elementary analysis

Elementary analysis EL is an (conservative) extension of HA
based on two sorted intuitionistic predicate logic:

Language

I N,NN : sorts for natural numbers and lawlike sequences;
I x, y, z, · · · : numerical variables;
I a, b, c, · · · : lawlike variables;
I Symbols for all primitive recursive functions including 0 and S;
I App, λx, Rec, =N.

Terms

(N -Term) t, s ::= x | 0 | St | f (t0, . . . , tn−1) | App(ϕ, t) | Rec(t, ϕ, s)

(NN-Term) ϕ ::= a | λx.t

Formulas

A,B ::= t =N s | A ∧ B | A→ B | ∀xA | ∃xA | ∀aA | ∃aA
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EL: Theory of elementary analysis

Axioms
EL has the axioms and rules of intuitionistic predicate logic with
equality (on N) and the following axioms:

(CON) (λx.t)(x) = t

(REC) Rec(x, a, 0) = x, Rec(x, a, Sy) = a(Rec(x, a, y), y)

(PRIM) Defining equations for all primitive recursive functions.

(S) 0 6= S0, Sx = Sy→ x = y

(IND) A(0) ∧ ∀x [A(x)→A(Sx)]→∀xA(x)

(AC00!) ∀x∃!yA(x, y)→∃a∀xA(x, a(x))
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BCS: Theory of binary choice sequences

BCS is an extension of EL with an additional sort Ch:

Language

I The sort Ch for choice sequences;
I α, β, γ, . . . : choice sequence variables;
I Constants AppC, RecC, λCx.

Terms

(N) t, s ::= x | 0 | St | f (t0, . . . , tn−1) | App(ϕ, t) | Rec(t, ϕ, s) |
AppC(σ, t) | RecC(t, σ, s)

(NN) ϕ ::= a | ϕ[x/t] | λx.t (t does not contain choice variables)

(Ch) σ ::= α | λCx.t

Formulas
Formulas of BCS are built up as in EL but extended with
quantifiers ∀α and ∃α.
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BCS: Theory of binary choice sequences

Axioms

I Logical axioms are those of EL and axioms of quantifiers for
choice sequences.

I Non-logical axioms include those of EL with respect to the
language of BCS except AC00!, which is restricted to formulas
without free choice sequence variables, and the following:

(CONC) (λx.t)(x) = t

(RECC) RecC(x, α, 0) = x, RecC(x, α, Sy) = α(RecC(x, α, y), y)

(ANL) A(α)→∃a
[
∃β ∈ 2Nα = a|β ∧

(
∀β ∈ 2N)A(a|β)

]
where α ∈ 2N ≡ ∀x [αx = 0 ∨ αx = 1].

(FC-C) ∀α ∈ 2N∃β A(α, β)→∃a∀α ∈ 2NA(α, a|α)

(FC-F) ∀α ∈ 2N∃b A(α, b)→∃n∀i < 2n∃b∀α ∈ 2NA(cons(n,i) |α, b).
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Consequences of axioms of BCS

Proposition
Quantifications over choice sequences can be reduced to
quantifications over binary choice sequences.

BCS ` ∀αA(α)↔ ∀a∀α ∈ 2NA(a|α).

Proposition
Fan continuity is derivable from FC-F.

BCS ` ∀α ∈ 2N∃x A(α, x)→∃n∀α ∈ 2N∃y∀β ∈ 2Nβ ∈ αn→A(β, y).

Proposition

BCS ` ¬
[
∀α ∈ 2N∃aα = a

]
& ∀α ∈ 2N¬¬∃aα = a.

where (α = a) ≡ ∀x [αx = ax].
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Open cover topology over the monoid UCONT(2N, 2N)

The class UCONT(2N, 2N) of uniformly continuous functions on

Cantor space 2N is a monoid with unit 1 def
= id2N and composition ◦

as operation. We regard M def
= UCONT(2N, 2N) as a single object

category {∗}.

Definition
Open cover topology on M is generated by a coverage base J
defined by

J (∗) def
=
{

Sn ⊆ UCONT(2N, 2N) | n ∈ N
}
,

Sn
def
= {consu | u ∈ 2∗ & |u| = n} ,

consu : a 7→ u ∗ a.

N.B. We work in the coverage base J instead of the Grothendieck
topology it generates.
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Sheaves over the site (M,J ) (where M = UCONT(2N, 2N))

I A presheaf on M is an M-set, i.e. a pair (X, �) of set X and
action �: X ×M→ X so that

x � 1 = x,
(x � f ) � g = x � (f ◦ g).

A morphism of M-sets (X, �) and (Y, �′) is function α : X → Y
which preserves action: α(x � f ) = α(x) �′ f .

I Given an M-set (X, �), a compatible family is just a family
(xa)a∈S of elements of X indexed by some S ∈ J .

I Given a compatible family (xa)a∈S (S ∈ J ), an amalgamation
of the family is an element x ∈ X such that x � a = xa for all
a ∈ S.

I An M-set is separated if every compatible family has at most
one amalgamation; it is a sheaf if every compatible family has
a unique amalgamation.

13 / 30



Sheaves over the site (M,J ) (where M = UCONT(2N, 2N))

Given a separated M-set (X, �), we can associate a sheaf L(X, �),
the sheafification of (X, �). The elements of L(X, �) are
equivalence classes of compatible families (xa)a∈S (S ∈ J ), where
the equivalence is defined by

(xa)a∈S ∼ (yb)b∈T
def⇐⇒ ∃U ∈ J∀c ∈ U∃a ∈ S∃b ∈ T∃f , g ∈M

c = a ◦ f = b ◦ g & xa � f = yb � g.

Proposition
Let X be a set, and let (X, �C) be a constant M-set with trivial
action x �C f = x. Then, (X, �C) is separated. Moreover

1. The sheafification L(X, �C) is (isomorphic to) the set
UCONT(2N,Xdisc) of uniformly continuous functions with
respect to the discrete topology on X with function
composition as action.

2. For any two sets X,Y, there is a bijective correspondence
between functions f : X → Y and morphisms
α : L(X, �C)→ L(Y, �C).
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Interpretation of BCS in Sh(UCONT(2N, 2N),J )

Let N,NN,Ch denote the sorts for natural numbers, lawlike
sequences and choice sequences resp. Those sorts are
interpreted as following sheaves:
I JNK : sheafification of the constant M-set (N, �C).
I JNNK : sheafification of the constant M-set (NN, �C).
I JChK : the exponential JNKJNK in Sh(M,J ).

Lemma

1. JNK is the set UCONT(2N,Ndisc) of uniformly continuous
functions with composition as action.

2. JNNK is the set UCONT(2N,NN
disc) of uniformly continuous

functions with composition as action.

3. JChK is the set UCONT(2N,NN) of uniformly continuous
functions with composition as action.
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Interpretation of BCS in Sh(UCONT(2N, 2N),J )

A term in context Γ ` t : S (where Γ ≡ x1 : S1, · · · , xn : Sn and
S, S1, · · · , Sn are sorts of BCS) is interpreted as a morphism
JΓ ` t : SK : JΓK→ JSK, where JΓK ≡ JS1K× JSnK:

JΓ ` xi : SiK
def
= πi : JΓK→ JSiK,

JΓ ` f (t0, · · · , tn−1)K def
= f ◦ 〈Jt0K, · · · , Jtn−1K〉,

JΓ ` App(ϕ, t)K def
= evSets ◦ 〈JϕK, JtK〉,

JΓ ` AppC(ϕ, t)K def
= ev ◦ 〈JϕK, JtK〉,

JΓ ` Rec(t, ϕ, s)K def
= ISets ◦ 〈JtK, JϕK, JsK〉,

JΓ ` RecC(t, ϕ, s)K def
= I ◦ 〈JtK, JϕK, JsK〉,

JΓ ` λx.tK def
= ΛSets(JtK),

JΓ ` λCx.tK def
= Λ(JtK).

where I, ev and Λ are the iterator, evaluation morphism and
exponential transpose respectively.
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Interpretation of BCS in Sh(UCONT(2N, 2N),J )

The truth of formula Γ ` A in context Γ ≡ x1 : S1, . . . , xn : Sn can be
defined by forcing relation ~ζ 
 Γ ` A between finite list
~ζ ≡ ζ1, . . . , ζn of elements (ζi ∈ JSiK) and formula Γ ` A in context:

1. ~ζ 
 Γ ` t = s def⇐⇒ JtK(~ζ) = JsK(~ζ);

2. ~ζ 
 Γ ` A ∧ B def⇐⇒
(
~ζ 
 Γ ` A

)
∧
(
~ζ 
 Γ ` B

)
;

3. ~ζ 
 Γ ` A→B def⇐⇒ ∀f ∈M
(
~ζ ◦ f 
 Γ ` A→ ~ζ ◦ f 
 Γ ` B

)
;

4. ~ζ 
 Γ ` ∀x : S A def⇐⇒ ∀f ∈M∀g ∈ JSK ~ζ ◦ f , g 
 Γ, x : S ` A;

5. ~ζ 
 Γ ` ∃x : S A def⇐⇒ ∃T ∈ J ∀g ∈ T∃f ∈ JSK
~ζ ◦ g, f 
 Γ, x : S ` A.
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Some refinements

I For the truth of Γ ` A, it suffices to consider list ~ζ such that if
Si is either N or NN then ζi ∈ JSiK is a constant function, i.e. it
can be identified with element of N or NN

I For the clauses for quantifiers, if the sort S of variable is either
N or NN, quantifications over JSK can be restricted to
quantifications over N and NN.

I The base case is equivalent to the following.

~a 
 Γ ` t = s
def⇐⇒ JtK(~a) = JsK(~a)

⇐⇒ ∀b ∈ 2NJtN [Γ/~a(b)]K∗ = JsN [Γ/~a(b)]K∗.

where tN [Γ/~a(b)] is obtained from t by replacing λC by λ, and
xi by ai(b) (regarded as formal symbols.). The resulting term
is informally interpreted in the base set theory, which is
denoted by JtN [Γ/~a(b)]K∗.
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Forcing in EL

1. ~a 
 Γ ` t = s def⇐⇒ ∀b ∈ 2NJtN [Γ/~a(b)]K∗ = JsN [Γ/~a(a)]K∗;

2. ~a 
 Γ ` A ∧ B def⇐⇒ (~a 
 Γ ` A) ∧ (~a 
 Γ ` B);

3. ~a 
 Γ ` A→B def⇐⇒ ∀f ∈M (~a ◦ f 
 Γ ` A→~a ◦ f 
 Γ ` B);

4. ~a 
 Γ ` ∀x : S A def⇐⇒ ∀f ∈M ∀g ∈ JSK~a ◦ f , g 
 Γ, x : S ` A;

5. ~a 
 Γ ` ∃x : S A def⇐⇒ ∃T ∈ J ∀g ∈ T∃f ∈ JSK
~a ◦ g, f 
 Γ, x : S ` A.

The sheaf semantics for BCS involves following notions:
I Uniformly continuous functions of the types 2N → N,

2N → NN, and 2N → 2N.
I Compositions between them.
I Applications of those functions to elements of 2N.
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Forcing in EL

By a context Γ, we mean a finite list of choice sequence variables.
Let A be a formula of BCS in a context Γ, where Γ ≡ α0, . . . , αn−1
Let ~ϕ ≡ ϕ0, . . . , ϕn−1 be a list of lawlike terms of EL. We define a
formula ~ϕ 
 Γ ` A of EL by induction on A.

1. ~ϕ 
 Γ ` u = v
def≡ ∀a ∈ 2N uN [Γ/~ϕ|a] = vN [Γ/~ϕ|a];

2. ~ϕ 
 Γ ` A ∧ B
def≡ (~ϕ 
 Γ ` A) ∧ (~ϕ 
 Γ ` B);

3. ~ϕ 
 Γ ` A→B
def≡ ∀a ∈ KC (~ϕ · a 
 Γ ` A→ ~ϕ · a 
 Γ ` B);

4. ~ϕ 
 Γ ` ∀aA
def≡ ∀b ~ϕ 
 Γ ` A[a/b];

5. ~ϕ 
 Γ ` ∀αA
def≡ ∀a ∈ KC ∀b ~ϕ · a, b 
 Γ, β ` A[α/β];

6. ~ϕ 
 Γ ` ∃aA
def≡ ∃d ∀i < 2d∃b ~ϕ · cons(d,i) 
 Γ ` A[a/b];

7. ~ϕ 
 Γ ` ∃αA
def≡ ∃d ∀i < 2d∃a ~ϕ · cons(d,i), a 
 Γ, β ` A[α/β].
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Forcing in EL

Theorem (Soundness)
Let A be a formula of BCS in the context Γ ≡ α0, . . . , αn−1. Then

BCS ` A =⇒ EL ` ∀a0, . . . , an−1 [~a 
 Γ ` A] ,

where ~a ≡ a0, . . . , an−1.
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Elimination Translation

Definition
The class Form(B) of formulas is defined by the clauses defining
the formulas of BCS together with the following clause:
I If A ∈ Form(B), then (∀α ∈ B)A, (∃α ∈ B)A ∈ Form(B).

N.B. (∀α ∈ B) and (∃α ∈ B) are added as primitive symbols, not
as abbreviations of quantifiers for choice sequence followed by a
predicate 2N.
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Elimination Translation

A mapping A 7→ pAq of formulas A in Form(B) without free choice
sequence variables to formulas pAq of EL is defined as follows:

pu = vq ≡ uN = vN ,

pA ∧ Bq ≡ pAq ∧ pBq,
pA→Bq ≡ pAq→pBq,
p∀aAq ≡ ∀apAq,
p∀αAq ≡ ∀ap∀γ ∈ BA[α/a|γ]q,

p∃aAq ≡ ∃apAq,
p∃αAq ≡ ∃ap∀γ ∈ BA[α/a|γ]q,
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Elimination Translation

p∀α ∈ Bu = vq ≡ ∀a ∈ 2Nu[α/a]N = v[α/a]N ,

p∀α ∈ BA ∧ Bq ≡ p∀α ∈ BAq ∧ p∀α ∈ BBq,
p∀α ∈ BA→Bq ≡ ∀a ∈ KC (p∀γ ∈ BA[α/a|γ]q→p∀γ ∈ BB[α/a|γ]q) ,

p∀α ∈ B∀aAq ≡ ∀bp∀α ∈ BA[a/b]q,

p∀α ∈ B∀βAq ≡ ∀a∀b ∈ KCp∀γ ∈ BA[α/b|γ, β/a|γ]q,

p∀α ∈ B∀β ∈ BAq ≡ ∀a, b ∈ KCp∀γ ∈ BA[α/b|γ, β/a|γ]q,

p∀α ∈ B∃aAq ≡ ∃d∀i < 2d∃bp∀γ ∈ BA[α/ cons(d,i) |γ, a/b]q,

p∀α ∈ B∃βAq ≡ ∃ap∀γ ∈ BA[α/γ, β/a|γ]q,

p∀α ∈ B∃β ∈ BAq ≡ ∃a ∈ KCp∀γ ∈ BA[α/γ, β/a|γ]q,

p∃α ∈ BAq ≡ ∃a ∈ KCp∀γ ∈ BA[α/a|γ]q.
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The main results

Theorem
Let A be a formula of BCS in a context Γ ≡ α0, . . . , αn−1. Then

EL ` ∀a0, . . . , an−1 (~a 
 Γ ` A↔ p∀β ∈ BA[Γ/~a|β]q) .

where A[Γ/~a|β] ≡ A[α0/a0|β, . . . , αn−1/an−1|β].

Corollary
Let A be a formula of BCS which does not contain free choice
sequence variables. Then

EL ` (
 A)↔ pAq,

where (
 A) ≡ (〈〉 
 〈〉 ` A).

Theorem
If A is a formula of EL, then pAq ≡ A. Thus BCS ` A⇒ EL ` A.
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Future work

Clarify the connection between elimination translation and internal
language.

1. EL ` ∀a0, . . . , an−1 (~a 
 Γ ` A↔ p∀β ∈ BA[Γ/~a|β]q) , where
A[Γ/~a|β] ≡ A[α0/a0|β, . . . , αn−1/an−1|β].

2. On the other hand, we have a correspondence between
forcing and derivability in the internal language of Sh(M,J ).

~a 
 Γ ` A ⇐⇒ `Sh(M,J ) ∀α ∈ 2NA[Γ/~a(α)].

3. The elimination translation seems to be a translation of forcing
expressed in the internal language of Sh(M,J ) into the
forcing expressed in the language of EL.

4. Can we understand other elimination translations (choice
sequences, lawlike sequences, binary lawlike sequences, etc)
in the siminlar way by considering suitable sheaf category and
theory of arithmetics?
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