Determinacy strength of infinite games in ω -languages recognized by variations of pushdown automata

Wenjuan Li jointly with Prof. Kazuyuki Tanaka

Mathematical Institute, Tohoku University

Sep. 16, 2016

Workshop on Mathematical Logic and its Applications JSPS Core-to-Core Program Kyoto University, Kyoto

- Infinite games
 - Gale-Stewart game $\mathbb{G}(X)$, where $X \subseteq A^{\omega}$ is a winning set for player I
- Determinacy
 - With the usual convention, C-Det denotes that "A Gale-Stewart game G(X) is determined (one of the two players has a winning strategy), if X is contained in the class C".
- ω -languages accepted by automata
 - $L(\mathcal{M})$, where \mathcal{M} is some kind of automata

Question

If the winning sets are effectively given, i.e., winning sets are accepted by some kind of automata, how is the determinacy strength of such games?

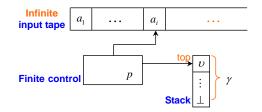
Introduction

• Pushdown automata, visibly pushdown automata, etc.

Determinacy strength and ω-languages
 2DVPL_ω, r-PDL_ω, PDL_ω, etc.

3 Ongoing and future works

Pushdown automata on infinite words (ω -PDA)



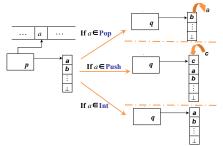
A run on $a_1...a_n...$ is an infinite sequence of configurations:

$$(q_{in}, \perp) \xrightarrow{a_1 \text{ or } \varepsilon} (q_1, \gamma_1) \dots \xrightarrow{a_n \text{ or } \varepsilon} (q_s, \gamma_s) \xrightarrow{a_{n+1} \text{ or } \varepsilon} \dots$$

An infinite word $a_1...a_n... \in A^{\omega}$ is accepted by a Büchi pushdown automaton if there exists a run visiting a state in F infinitely many times.

Visibly Pushdown Automata

▶ For (1-stack) visibly pushdown automata (2VPA), the *alphabet A* is partitioned into Push, Pop, Int. The *transitions* are as follows.



For 2-stack visibly pushdown automata (2VPA), the *alphabet A* is partitioned into Push₁, Pop₁, Push₂, Pop₂, Int.

Example

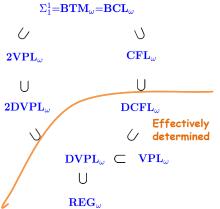
Given $A = (\{a\}, \{\overline{a}\}, \{b\}, \{\overline{b}\}, \emptyset)$, the language $\{(ab)^n \overline{a}^n \overline{b}^n | n \in \mathbb{N}\}$, is recognized by a deterministic 2-stack visibly pushdown automaton (2DVPA).

Introduction

• Pushdown automata, visibly pushdown automata, etc.

Determinacy strength and ω-languages 2DVPL_ω, r-PDL_ω, PDL_ω, etc.

Determinacy strength of infinite games in deterministic 2-stack visibly ω -languages



REG_{ω}: ω -regular lang. (FA) **CFL** $_{\omega}$: context free ω -lang. (PDA) **DCFL** $_{\omega}$: deterministic **CFL** $_{\omega}$ (DPDA) **VPL**_{ω}: visibly pushd. ω -lang. (VPA) **BTM**_{ω}: ω -lang. by Büchi Turing machine Note that these languages are defined with Büchi or Muller condition.

イロト イ理ト イヨト イヨト

Question

How about other acceptance conditions of lower levels?

In this talk

we concentrates on determinacy strength of infinite games specified by nondeterministic pushdown automata and variants of it with various acceptance conditions, e.g., safety, reachability, co-Büchi conditions.

Safety (or Π_1) accepance condition

$$L(\mathcal{M}) = \{ \alpha \in \Sigma^{\omega} | \text{there is a run } r = (q_i, \gamma_i)_{i \ge 1} \text{ of } \mathcal{M} \text{ on } \alpha \\ \text{ such that } \forall i, q_i \in F \}.$$

Reachability (or Σ_1) acceptance condition

$$L(\mathcal{M}) = \{ \alpha \in \Sigma^{\omega} | \text{there is a run } r = (q_i, \gamma_i)_{i \ge 1} \text{ of } \mathcal{M} \text{ on } \alpha \\ \text{ such that } \exists i, q_i \in F \}.$$

Let lnf(r) be the set of states that are visited infinite many times during the run r.

Co-Büchi (or Σ_2) acceptance condition

$$L(\mathcal{M}) = \{ \alpha \in \Sigma^{\omega} | \text{there is a run } r = (q_i, \gamma_i)_{i \ge 1} \text{ of } \mathcal{M} \text{ on } \alpha \\ \text{ such that } \mathsf{Inf}(r) \subseteq F \}.$$

$(\Sigma_1 \wedge \Pi_1)$ acceptance condition

There exist F_r , $F_s \subset Q$,

$$L(\mathcal{M}) = \{ \alpha \in \Sigma^{\omega} | \text{there is a run } r = (q_i, \gamma_i)_{i \ge 1} \text{ of } \mathcal{M} \text{ on } \alpha \\ \text{such that } \exists i, q_i \in F_r \land \forall i, q_i \in F_s \}.$$

$(\Sigma_1 \vee \Pi_1)$ acceptance condition

There exist F_r , $F_s \subset Q$,

$$L(\mathcal{M}) = \{ \alpha \in \Sigma^{\omega} | \text{there is a run } r = (q_i, \gamma_i)_{i \ge 1} \text{ of } \mathcal{M} \text{ on } \alpha$$

such that $\exists i, q_i \in F_r \lor \forall i, q_i \in F_s \}.$

Δ_2 acceptance condition

There exist F_b , $F_c \subset Q$,

$$\begin{split} \mathcal{L}(\mathcal{M}) &= \{ \alpha \in \Sigma^{\omega} | \text{there is a run } r \text{ of } \mathcal{M} \text{ on } \alpha \text{ such that } \mathsf{Inf}(r) \cap \mathcal{F}_b \neq \emptyset \} \\ &= \{ \alpha \in \Sigma^{\omega} | \text{there is a run } r \text{ of } \mathcal{M} \text{ on } \alpha \text{ such that } \mathsf{Inf}(r) \subset \mathcal{F}_c \}. \end{split}$$

Various acceptance conditions of ω -2DVPA

- We denote the ω-languages accepted by ω-2DVPA with different acceptance conditions as follows.
- ► ω-languages accepted by deterministic Turing machines with safety (resp., reachabiliy, co-Büchi, Büchi) condition is the collection of all arithmetical Π₁⁰-sets (respectively, Σ₁⁰-sets, Σ₂⁰-sets, Π₂⁰-sets).

Acceptance conditions	Subclass of $\textbf{2DVPL}_{\omega}$	
Reachability	$2DVPL_\omega(\Sigma_1)$	$\subseteq \Sigma_1^0$
Safety	$2DVPL_\omega(\Pi_1)$	$\subseteq \Pi_1^0$
Co-Büchi	$2DVPL_{\omega}(\Sigma_2)$	$\subseteq \Sigma_2^0$
Büchi	$2DVPL_{\omega}(\Pi_2)$	$\subseteq \Pi_2^0$

Similarly, by **2DVPL** $_{\omega}(\mathcal{C})$ we denote the ω -languages accepted by deterministic 2-stack visibly pushdown automata with an acceptance condition \mathcal{C} .

There exists an infinite game in $2\mathbf{DVPL}_{\omega}(\Sigma_1 \wedge \Pi_1)$ with only Σ_1^0 -hard winning strategies.

Proof.

- Let \mathcal{R} be a universal 2-counter automaton.
- We construct a game G_R such that the halting problem of R is computable in any winning strategies of player II, while player I has no winning strategy, and moreover the winning set for player II is accepted by a deterministic 2-stack visibly pushdown automaton with a Σ₁ ∨ Π₁ acceptance condition.

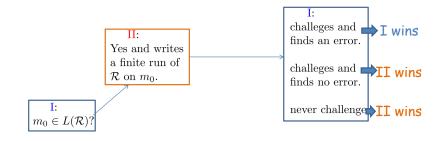
- ✓ A 2-counter automaton can be seen as a restricted 2-stack pushdown automaton with just one symbol for each stack: the number of the symbols in a stack is expresses as a nonnegative integer in a counter.
- ✓ The input is a natural number *m* which is initially store in one of the counter.
- ✓ By the current state and the tests results on whether each counter is zero or not, the automaton goes to next state and do operations on the two counters by increasing the counter(s) by 1, or decreasing the counter(s) by 1 if the counter is not zero.
- ✓ It is known that a (deterministic) 2-counter automaton, is equivalent to a Turing machine. Thus the halting problem for a certain (universal deterministic) 2-counter automaton is Σ_1^0 -complete.

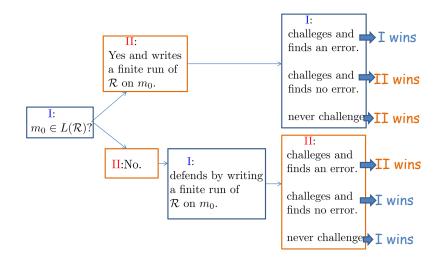
- A configuration (q, m, n) of a 2-counter automaton \mathcal{R} is coded as qa^mb^n , where $q \in Q$, and m, n are non-negative integers in the two counters.
- A run for a natural number m on \mathcal{R} : $q_{\text{in}}a^{m_0}b^{n_0} \mapsto_{\mathcal{R}} q_1a^{m_1}b^{n_1} \mapsto_{\mathcal{R}} q_2a^{m_2}b^{n_2} \mapsto_{\mathcal{R}} \cdots$, where q_{in} is the initial state, and $m_0 = m$, $n_0 = 0$.
- A run is halting if it reaches a halting configuration.
- A natural number $m \in L(\mathcal{R})$ iff there exists a run on m such that $q_{in}a^mb^{n_0} \mapsto_{\mathcal{R}} q_1a^{m_1}b^{n_1} \mapsto_{\mathcal{R}} \cdots \mapsto_{\mathcal{R}} q_s a^{m_s}b^{n_s}$, where $n_0 = 0$ and q_s is a halting state.

・ 聞 と ・ 臣 と ・ 臣 と …

Back to the proof: construct a game $G_{\mathcal{R}}$

Let ${\mathcal R}$ be a universal 2-counter automaton.





э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If player II says "no", how does she challenge?

Player II wants to makes sure

- (1) the sequence of configurations provided by player I is a sequence of the form qa^mb^n and connected by \triangleright ,
- (2) it starts with the initial configuration,
- (3) any two consecutive configurations constitute a valid transition of \mathcal{R} , and
- $\left(4\right)$ the sequence of configurations is ended with a halting configuration.

The conditions (1), (2) and (4) are easy to check with Σ_1 conditions (i.e., player I lose with Π_1). In the following we explain how player II challenges if she thinks player I cheated by disobeying the above rule (3).

I
$$m_0 \in L(R)$$
? $q_0 a^{m_0} b^{n_0} \triangleright \cdots \triangleright q_i a^{m_i} \overline{b^{n_i}} \triangleright q_{i+1} a^{m_{i+1}} b$
II Yes/No
With a witness:

Such a play can be checked by a deterministic 2-stack visibly pushdown automaton.

Assume player II has a winning strategy σ , then

 $\mathcal{L}(\mathcal{R}) = \{m : \text{player II follows her winning strategy } \sigma \text{ and answers "yes"} \\ \text{to } m \text{ in the game } \mathbb{G}_{\mathcal{R}} \text{ in } 2\mathsf{DVPL}_{\omega}(\Sigma_1 \wedge \Pi_1) \}.$

Since the halting problem of \mathcal{R} is Σ_1^0 -complete, any winning strategy for player II is Σ_1^0 -hard.

Corollary

The determinacy of games in $2\mathbf{DVPL}_{\omega}(\Sigma_1 \wedge \Pi_1)$ with an oracle implies ACA_0 . In fact, they are equivalent to each other over RCA_0 .

Sketch.

 We use a 2-counter automaton R with an oracle function f : N → N, denoted as R^f. m₀ ∈ L(R^f) iff there exists a run on m s.t.

$$q_0a^{m_0}b^{n_0} \rhd q_1a^{m_1}b^{n_1} \rhd \cdots \rhd q_sa^{m_s}b^{n_s},$$

where $n_0 = f(m_0)$ and q_s is halting.

• The game $\mathbb{G}_{\mathcal{R}^f}$

$$\mathbf{I} \quad m_0 \in L(R)? \quad \boldsymbol{q}_0 \boldsymbol{a}^{m_0} \boldsymbol{b}^{f(m_0)} \vartriangleright \cdots \vartriangleright \boldsymbol{q}_i \boldsymbol{a}^{m_i} \boldsymbol{b}^{n_i} \vartriangleright \boldsymbol{q}_{i+1} \boldsymbol{a}^{m_{i+1}} \boldsymbol{b}$$

 $\begin{array}{c} \text{II} \qquad \text{Yes/No} \qquad \qquad \text{Challenge } c\overline{b}(\overline{a}\$)^{m_{i+1}}\overline{q} \triangleleft \overline{b}^{n_i}(\overline{a}\overline{\$})^{\min\{m_i,m_{i+1}\}}\overline{*}\overline{q} \\ \text{with a witness:} \end{array}$

• Such a play can be checked by a deterministic 2-stack visibly pushdown automaton with an oracle tape, in which the oracle tape is read-only, non-real-time and in the form $1^{f(0)}01^{f(1)}01^{f(2)}\cdots$.

Corollary

For any n, there exists an infinite game in $2\text{DVPL}_{\omega}(\mathcal{B}(\Sigma_1))$ with only Σ_n^0 -hard winning strategies.

The brief idea is as follows. Take the case n = 3 as an example. Let A be any Σ₃⁰ set. Then there is a 2-counter automaton R such that m₀ ∈ A if and only if

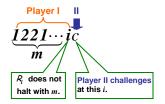
 $\exists m_1 \forall m_2(\mathcal{R} \text{ halts on } m = 2^{m_0} 3^{m_1} 5^{m_2}).$

We can construct game starts with player I by asking m_0 in A or not.

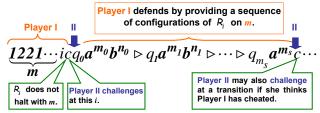
The determinacy of games in $2\mathbf{DVPL}_{\omega}(\Pi_1)$ implies Σ_1^0 -SP.

Proof.

- ▶ Let \mathcal{R}_1 and \mathcal{R}_2 be two 2-counter automata such that $L(\mathcal{R}_1) \bigcap L(\mathcal{R}_2) = \emptyset$.
- Player I has a sequence of m's, and for each m, he chooses i such that R_i does not halt with m.
- ▶ Player II may challenge player I's choice *i* at any *m*.



Then player I defends by producing an infinite sequence of configurations of *R_i* on *m*, *q*₀*a^{m₀}b^{n₀}* ▷ *q*₁*a^{m₁}b^{n₁}*..., where *m*₀ = *m* and *n*₀ = 0.



- While player I is producing a sequence of configurations, player II may challenge at any point she thinks player cheated.
- Player I's winning set is accepted by a 2DVPA(Π₁). Assume that player I has a winning strategy σ, then the desired separating set is X = {m : player I follows σ and picks R₂ for m}.

Corollary

The determinacy of the games in 2**DVPL** $_{\omega}(\Pi_1)$ with an oracle is equivalent to WKL₀ over RCA₀.

W. Li (Tohohu University)

The determinacy of $2\mathbf{DVPL}_{\omega}(\Delta_2)$ implies the determinacy of Δ_1^0 games in ω^{ω} , which is equivalent to ATR_0 .

- ▶ We mimic the proof of Δ_2^0 -Det(in 2^{ω}) $\rightarrow \Delta_1^0$ -Det(in ω^{ω}) in [NMT07]¹.
- By using their coding technique, we write α̃ ∈ ω^ω for the unique sequence coded by α ∈ 2^ω. Note that not all sequences in 2^ω code a sequence in ω^ω.

¹T. Nemoto , M.Y. Ould MedSalem, K. Tanaka. Infinite games in the Cantor space and subsystems of second order arithmetic. MLQ, 2007, 53(3): 226-236.

- Then, a play α̃ in Δ₁⁰ game in ω^ω can be translated into a play α in 2^ω and α is winning for player 0 (resp. player 1) iff
 - (a) $\tilde{\alpha}$ is a winning play (resp. $\tilde{\alpha}$ is not a winning play) in the Δ_1^0 game in ω^{ω} while both players obey the rules to produce a play α , or
 - (b) while they are producing $\alpha,$ player 1 (resp. player 0) breaks the rules. [a Σ_2^0 statement]

which constitutes a Σ^0_2 winning set for player 0 (resp. player 1). Thus the game is Δ^0_2 in $2^\omega.$

Note that the increase in complexity of winning condition is mainly due to the complexity of the coding rules that we follow.

通 ト イヨ ト イヨト

Now we convert this Δ_1^0 game in ω^{ω} to a 2**DVPL** $_{\omega}(\Delta_2)$ using the coding rules given by the above Δ_2^0 game in 2^{ω} .

- The coding rule does not need any modification for $2\mathbf{DVPL}_{\omega}(\Delta_2)$. So, for simplicity, the players are assumed to obey this rule and we just treat the above case (a).
- Given a Δ_1^0 game, there exist two 2-counter automata \mathcal{R}_0 and \mathcal{R}_1 such that

s is a winning play $\leftrightarrow \exists n \ \sharp s[n] \in L(\mathcal{R}_0) \leftrightarrow \neg \exists n \ \sharp s[n] \in L(\mathcal{R}_1),$

where $\sharp s[n]$ denotes a code of the initial *n*-segment of *s*.

We construct a game $\mathbb{G}_{\mathcal{R}_1,\mathcal{R}_2}$ as follows.

- When a player produces a finite sequence α[n] in the Δ₂⁰ game in 2^ω such that #α̃[n] ∈ L(R_i)(i ∈ {0, 1}), player i in the game G_{R₀,R₁} starts providing a sequence of configurations of R_i on #α̃[n], which player i claims to halt in finite steps.
- While player *i* is making such a sequence of configuration of \mathcal{R}_i on $\sharp \widetilde{\alpha}[n]$, the player 1 i may challenge at any point.

Corollary

The determinacy of games $2\mathbf{DVPL}_{\omega}(\Sigma_2)$ is equivalent to ATR_0 over RCA_0 .

Proof.

By the above theorem,

```
2\mathbf{DVPL}_{\omega}(\Sigma_2)-Det \rightarrow 2\mathbf{DVPL}_{\omega}(\Delta_2)-Det \rightarrow \mathsf{ATR}_0.
```

By [NMT07],

```
ATR_0 \rightarrow \Sigma_2^0-Det in 2^{\omega} \rightarrow 2\mathbf{DVPL}_{\omega}(\Sigma_2)-Det.
```

Determinacy strength of infinite games in pushdown ω -languages

We treat ω-languages accepted by nondeterministic ω-PDA with different acceptance conditions.

Accepting conditions	Subclass of $(r-)\mathbf{PDL}_{\omega}^2$
Reachability	$(r-)PDL_\omega(\Sigma_1)$
Safety	$(\mathit{r} ext{-})PDL_\omega(\Pi_1)$
Co-Büchi	$(r-)PDL_\omega(\Sigma_2)$
Büchi	$(r-)PDL_\omega(\Pi_2)$

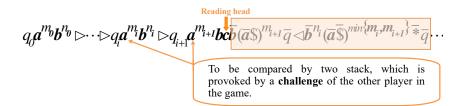
Recall:

- ▶ $\mathsf{PDL}_{\omega}(\Pi_2) = \mathsf{CFL}_{\omega}.$
- ▶ **DPDL**_{ω}(Π_2) \subsetneq **DPDL**_{ω}($\mathcal{B}(\Sigma_2)$) = **DCFL**_{ω}.
- PDL_ω(Π₁) (respectively, PDL_ω(Σ₁), PDL_ω(Σ₂), PDL_ω(Π₂)) is a subclass of arithmetical Π₁⁰ (respectively, Σ₁⁰, Σ₂⁰, Σ₁¹) class.

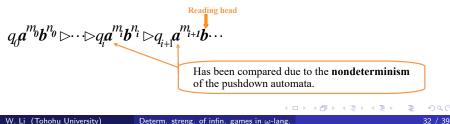
²The symbol r denotes the real-time case.

Intuitively...

• A play in an infinite game in 2**DVPL**_{ω}:

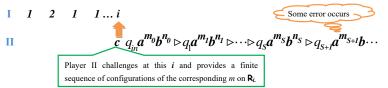


• A play in an infinite game in PDL_{ω} :



The determinacy of games in r-**PDL**_{ω}(Σ_1) implies Σ_1^0 -SP.

Sketch.



Instead of checking by a challenge of player II, a pushdown automaton itself can nondeterministically check whether player I makes a mistake or not.

Remark

Safety condition is not the complement of reachability condition for nondeterministic pushdown languages.

Corollary

The determinacy of the games in r-**PDL**_{ω}(Σ_1) with an oracle is equivalent to WKL₀ over RCA₀.

 $RCA_0 \vdash \mathbf{PDL}_{\omega}(\Pi_1)$ -Det.

Proof idea

- Assume a pushdown automaton *M* with a Π₁ acceptance condition.
 We can construct a pushdown game *G_P* such that
 - if there exists a computable winning strategy σ for player i in G(L(M)), then there exists a winning strategy σ' for player i in G_P which is computable from σ, and vice versa.
- ► From Walukiewicz (1996, 2001), we can show that there is a winning strategy in G_P and it is computable.

Note that a pushdown game is played on an infinite graph, which is generated by a pushdown process.

$r extsf{-PDL}_{\omega}(\Sigma_2) extsf{-Det}$		$2DVPL_{\omega}(\Sigma_2)$ -Det $\leftrightarrow 2DVPL_{\omega}(\Pi_2)$ -Det
$\stackrel{\downarrow}{r-PDL_\omega(\Delta_2)-Det}$	$\stackrel{\uparrow}{\rightarrow} \Delta_1^0\text{-}Det \leftarrow$	$\stackrel{\downarrow}{2}DVPL_{\omega}(\Delta_2)$ -Det
$r extsf{-PDL}_{\omega}(\Sigma_1 \wedge \Pi_1) extsf{-Det}$	$\leftrightarrow \ \textit{ACA}_{0} \leftrightarrow$	$2DVPL_{\omega}(\Sigma_1 \wedge \Pi_1)$ -Det
r -PDL $_{\omega}(\Sigma_1)$ -Det	$\leftrightarrow ~ \textit{WKL} ~_0 \leftrightarrow$	$2DVPL_{\omega}(\Sigma_1)$ - $Det \leftrightarrow 2DVPL_{\omega}(\Pi_1)$ - Det

Corollary

For an acceptance condition $C \in \{\Sigma_1, \Sigma_1 \land \Pi_1, \Delta_2, \Sigma_2\}$,

r-**PDL**_{ω}(\mathcal{C})- $Det \leftrightarrow$ **PDL**_{ω}(\mathcal{C})-Det.

æ

- 一司

We can easily observe that all the arguments about pushdown automata, in fact, replaced by (nondeterministic) 1-counter automata, namely pushdown automata that can check whether the counter is zero or not with only one stack symbol.

Theorem

For an acceptance condition $C \in \{\Sigma_1, \Sigma_1 \land \Pi_1, \Delta_2, \Sigma_2\}$,

r-**CL**_{ω}(\mathcal{C})- $Det \leftrightarrow$ **CL**_{ω}(\mathcal{C})- $Det \leftrightarrow$ **PDL**_{ω}(\mathcal{C})-Det.

- Study the quantitative analysis of concurrent games in pushdown ω-languages.
- Investigate the determinacy strength of the Blackwell-type games in ω-languages, and its relation to probabilistic automata and other stochastic systems.

- [‡] R. Alur, P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, STOC'04, 2004.
- ‡ O. Finkel. The determinacy of context-free games. Journal of Symbolic Logic, 2013, 78(4): 1115-1134.
- ‡ C. Löding, P. Madhusudan, O. Serre. Visibly pushdown games. Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2004: Springer Berlin Heidelberg, 2005: 408-420.
- ‡ T. Nemoto , M.Y. Ould MedSalem, K. Tanaka. Infinite games in the Cantor space and subsystems of second order arithmetic. Mathematical Logic Quarterly, 2007, 53(3): 226-236.
- ‡ Walukiewicz I. Pushdown processes: Games and model checking. Computer Aided Verification. Springer Berlin Heidelberg, 1996: 62-74. Journal version appeared in Information and Computation, 2001, 164(2): 234-263.

(本語)と 本語(と) 本語(と)

Thank you!

æ

イロト イヨト イヨト イヨト