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Overview

We introduce a free albebra K of K-expressions, and define an
embedding map which injectively embeds the set of closed λ-terms
into K.
Some notable features of the datatype K are:

1 All the K-expressions are constructed without using any
variables.

2 Instead of the notion of substitution we have the notion of
instantiation and can use this notion to define the β-reduction
step as an algebraic operation on K.

Taking advantage of these features, we can develop a proof theory
of λ-calclulus and can show the Church-Rosser Theorem smoothly
within the Minlog proof assistant.
We can also define a category of derivations which admits pushout.



Frege’s view

In §§28 – 31 of Grundgesetze der Arithmetic, volume 1 (1893),
Frege tried to define the syntax and semantics (bedeutung) of the
language (Begriffsschrift) he used in the book.

Russell found a technical gap in Frege’s definition (Russell
Paradox), but it is interesting to note that Frege defined his
well-formed expressions (proper names), which include higher-order
expressions, without starting from variables.

Therefore, I believe that Frege would have rejected the definition
of raw lambda-terms given by Church:

Λ 3M,N,P ::= x | (M N) | λxM



Raw λ-terms

Definition of raw lambda-terms.

Λ 3M,N,P ::= x | (M N) | λxM

(M N) stands for the application of (function) M to N .

We write [x := N ]M for the result of substituting N for x in M .



Problems with raw λ-terms

A problem with raw lambda-terms is that substitution is non-trivial.

Let M be λy(x y). Then, what is [x := y]M?

[x := y]λy(x y) = λy(y y) is not correct. y was a free variable
before substitution, but it becomes a bound variable after
susbstitution.

The problem is solved by renaming y in M to a fresh variable z.
Then, [x := y]λz(x z) = λz(y z).

We replaced M = λy(x y) by M ′ = λz(x z) which is obtained
by renaming. Such a pair M and M ′ are called α-equivalent.



Problems with raw λ-terms (cont.)

A second problem with raw λ-terms is that the notion of
immediate subterm becomes obscure on (raw) λ-terms.

For example what is (or, are) the immediate subterm(s) of

λxλy(x y)?

You may say the answer is λy(x y) (with x free).

But, then what about
λyλx(y x)?

Your answer should be λx(y x) (with y free).

Since two given terms are α-equivalent, the answers must also be
α-equivalent. But, this is not the case here.



Problems with raw λ-terms (cont.)

All of these difficulties boil down to the following:

1 The raw λ-terms λxx and λyy are two distinct raw λ-terms
(since they are syntactically different).

2 However, we somehow wish to identify them. And we do this
by quotienting Λ by the α-equivalence relation.



Raw λ-terms as an algebra

Raw λ-terms Λ form a free algebra whose generators are the set of
variables X. Its signature is:

1 var : X→ Λ.

2 apply : Λ× Λ→ Λ.

3 λ : X× Λ→ Λ.

This is good. However, as we saw, to develop a proof theory of the
λ-caclulus, we must work in the quotient algebra Λ/ ≡α.

But, since the quotient algebra is not a free algebra, we cannot use
natural inductive argument on the structure of terms. Even worse,
since we cannot directly define substitution on Λ, there is no
homomorphism from Λ to Λ/ ≡α which commutes with
substituion.



Structure of raw λ-terms

To see the essence of the α-equivalence relation, we make the
following observation.
Recall that:

Λ 3M,N,P ::= x | (M N) | λxM

By writing λx1x2···xnM for λx1λx2 · · ·λxnM (n ≥ 0), any
λ-term can be uniquely written in one of the following two forms.

1 λx1x2···xny.

2 λx1x2···xn(M N).



The set Λ0 of closed terms

Then, we can define the subset Λ0 of Λ, consiting of closed
λ-terms, as follows.

y ∈ x̄
λx̄y ∈ Λ0

λx̄M ∈ Λ0 λx̄N ∈ Λ0

λx̄(M N) ∈ Λ0

Note that the above definition does not rely on the notion of free
occurrences of a variable in a term.

This definition suggests that we should be able to develop proof
theory of the λ-calculus with free variables without appealing to
the notion of bound variables, and of the λ-caluculs of closed
λ-terms without using the notion of variables.

But, it looks like that we need variables to develop λ-calculus even
on closed λ-terms.
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λβ-calculus

(λxM N)→βM [x := N ]
β

M →βM
′

(M N)→β (M ′ N)
L

N →β N
′

(M N)→β (M N ′)
R

M →β N

λxM →β λxN
ξ

M →βM
Rfl

M →β N N →β P

M →β P
Trn

The β-rule captures the informal notion of function application.



K-expressions

Definition (K-expressions)

i ∈ N k ∈ N
Pik ∈ K

j ∈ N M ∈ K N ∈ K
(M N)j ∈ K

We use K,L,M,N as metavariables ranging over K-expressions
Pik is called a projection. We use I, J as metavariables ranging

over projections. (M N)j is called an application.

Remark

1 K-expressions are defined without using the notions of
variable, λ-abraction and α-equivalence. They are all closed
terms.

2 K is a free algebra where projections are free generators and
applications are binary operations parameterized by j. So, we
can study the structure of K-epressions proof-theoretically by
inductive arguments.



Height and Thickness

Definition (Height)

1 Ht(Pik) := i+ k + 1.

2 Ht((M N)j) := min{j,Ht(M),Ht(N)}.

An expression of height h can always be applied to h arguments.

Definition (Thickness)

1 Th(Pik) := 1.

2 Th((M N)j) := Th(M) + Th(N).



Projections

A projection Pik represents the following λ-term.

λx̄yz̄y,

where x̄ = x1 · · ·xi, z̄ = z1 · · · zk and y 6∈ z̄.

For example, P0
0 = λyy = I and P0

1 = λyzy = K.



Embedding of Λ0 into L

Recall the following definition of Λ0.

y ∈ x̄
λx̄y ∈ Λ0

λx̄M ∈ Λ0 λx̄N ∈ Λ0

λx̄(M N) ∈ Λ0

We define the embedding [M ] of M ∈ Λ0 into K as follows.

[λx1···xiyz1···zky] := Pik.

[λx̄(M N)] := ([λx̄M ] [λx̄N ])k, where x̄ = x1 · · ·xk.

Remark
The definition is well-defined, since α-equivalent terms are
embedded to the same K-expression.



Combinators

We can define combinators I, K and S as follows.

1 I := λxx = P0
0.

2 K := λxyx = P0
1.

3 S := λxyz((x z) (y z)) = (λxyz(x z) λxyz(y z))3

= ((λxyzx λxyzz)3 (λxyzy λxyzz)3)
3

= ((P0
2 P2

0)
3

(P1
1 P2

0)
3
)
3

.



Instantiation

Definition (Instantiation)

Given K,L ∈ K such that Ht(K) > n and Ht(L) ≥ n, we
define 〈K L〉n ∈ K as follows.

1 〈Pik M〉n :=


Pi−1
k if n < i,

⇑ki M if n = i,

Pik−1 if n > i.

2 〈(K L)i M〉n := (〈K M〉n 〈L M〉n)i−1.

Definition (Lifting)

1 ⇑ki Pjl :=

{
Pj+kl if i ≤ j,
Pjl+k if i > j.

2 ⇑ki (M N)j := (⇑ki M ⇑ki N)
j+k

.

Note that: ⇑ki M = 〈Pik M〉i.



Instantiation (cont.)
We can combine the previous two definitions and get the following.

Definition (Instantiation 〈K M〉n)

1 〈Pik Pjl 〉n :=


Pi−1
k if n < i,

Pj+kl if n = i andi ≤ j,
Pjl+k if n = i and i > j,

Pik−1 if n > i.

2 〈Pik (M N)j〉n :=


Pi−1
k if n < i,

(〈Pik M〉n 〈P
i
k N〉n)

j+k
if n = i,

Pik−1 if n > i.

3 〈(K L)i M〉n := (〈K M〉n 〈L M〉n)i−1.

Remark
n is just passed around and does not change. So, for each n,
instantiation is defined by primitive recursion on K-expressions.



de Bruijn indices

D,E, F ::= i | (D E) | [D]

Substitution 〈D F 〉i (read: substitute F for i in D) is defined as
follows.

1 〈j F 〉i :=

{
F if i = j,

j o.w..

2 〈(D E) F 〉i := (〈D F 〉i 〈E F 〉i).

3 〈[D] F 〉i := [〈D F ′〉i+1], where F ′ is obtained from F by
shifting indices of F appropriately.

Remark
Both i and F are changed in the third item of the definition. So,
to define 〈D F 〉0, one has to define 〈D F 〉i for all i.



Instantiation Lemma

Lemma (Instantiation Lemma)

n < m < Ht(K),m ≤ Ht(L), n ≤ Ht(M) `
〈〈K L〉m M〉n = 〈〈K M〉n 〈L M〉n〉m−1.

Note that we have:

〈(K L)m M〉n := (〈K M〉n 〈L M〉n)m−1, and



Substitution and Instantiation

x 6= y, x 6∈ FV(M) `
K[x := L][y := M ] = K[y := M ][x := L[y := M ]].

1 < Ht(M) ` 〈〈K L〉1 M〉 = 〈〈K M〉 〈L M〉〉.

We can see that Instantiation operation naturally represents
β-conversion rule as an algebraic operation.



Kβ-calculus

Ht(M) > n Ht(N) ≥ n
(M N)n→β 〈M N〉n

β

M →βM
′

(M N)n→β (M ′ N)n
L

N →β N
′

(M N)n→β (M N ′)n
R

M →βM
Rfl

M →β N N →β P

M →β P
Trn

The β-rule of Kβ-calculus subsumes the β and ξ rules of
λβ-calculus.

(λxM N)→βM [x := N ]
β

M →β N

λxM →β λxN
ξ



Further directions

1 Adding free variables (as constants) to K.

Then we can compare K-expressions directly with λ-terms
with free variables.

2 First-order theory of Kβ-calculus.

Should be straigtforward, just by including instantiation
operation as a function symbol. Note that there are no
satisfactory first-order theories of λβ-calculus since abstraction
cannot be naturally axiomatized.
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Conclusion

We introduced the datatype K of K-expressions and showed
that it is possible to embed closed λ-terms into K faithfully.

We also showed that it is possible to develop proof theory of
the λ-calculus without ever using the notions of variables,
α-equivalence or substitution.

We showed the Church-Rosser Theorem by the residual
method, and also showed that it is possible to define a natural
category of derivations which admits pushout.

All the results reported in this talk were formally verified in
the Minlog proof assistant.
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