
Proof Theory of The Lambda Calculus

Masahiko Sato
Graduate School of Informatics, Kyoto University

(Joint work with Takafumi Sakurai and Helmut Schwichtenberg)

Workshop on Mathematical Logic and its Applications
Kyoto University

September 17, 2016
(Revised on September 23, 2016)

Overview

We introduce a free albebra K of K-expressions, and define an
embedding map which injectively embeds the set of closed λ-terms
into K.
Some notable features of the datatype K are:

1 All the K-expressions are constructed without using any
variables.

2 Instead of the notion of substitution we have the notion of
instantiation and can use this notion to define the β-reduction
step as an algebraic operation on K.

Taking advantage of these features, we can develop a proof theory
of λ-calclulus and can show the Church-Rosser Theorem smoothly
within the Minlog proof assistant.
We can also define a category of derivations which admits pushout.

Frege’s view

In §§28 – 31 of Grundgesetze der Arithmetic, volume 1 (1893),
Frege tried to define the syntax and semantics (bedeutung) of the
language (Begriffsschrift) he used in the book.

Russell found a technical gap in Frege’s definition (Russell
Paradox), but it is interesting to note that Frege defined his
well-formed expressions (proper names), which include higher-order
expressions, without starting from variables.

Therefore, I believe that Frege would have rejected the definition
of raw lambda-terms given by Church:

Λ 3M,N,P ::= x | (M N) | λxM

Raw λ-terms

Definition of raw lambda-terms.

Λ 3M,N,P ::= x | (M N) | λxM

(M N) stands for the application of (function) M to N .

We write [x := N]M for the result of substituting N for x in M .

Problems with raw λ-terms

A problem with raw lambda-terms is that substitution is non-trivial.

Let M be λy(x y). Then, what is [x := y]M?

[x := y]λy(x y) = λy(y y) is not correct. y was a free variable
before substitution, but it becomes a bound variable after
susbstitution.

The problem is solved by renaming y in M to a fresh variable z.
Then, [x := y]λz(x z) = λz(y z).

We replaced M = λy(x y) by M ′ = λz(x z) which is obtained
by renaming. Such a pair M and M ′ are called α-equivalent.

Problems with raw λ-terms (cont.)

A second problem with raw λ-terms is that the notion of
immediate subterm becomes obscure on (raw) λ-terms.

For example what is (or, are) the immediate subterm(s) of

λxλy(x y)?

You may say the answer is λy(x y) (with x free).

But, then what about
λyλx(y x)?

Your answer should be λx(y x) (with y free).

Since two given terms are α-equivalent, the answers must also be
α-equivalent. But, this is not the case here.

Problems with raw λ-terms (cont.)

All of these difficulties boil down to the following:

1 The raw λ-terms λxx and λyy are two distinct raw λ-terms
(since they are syntactically different).

2 However, we somehow wish to identify them. And we do this
by quotienting Λ by the α-equivalence relation.

Raw λ-terms as an algebra

Raw λ-terms Λ form a free algebra whose generators are the set of
variables X. Its signature is:

1 var : X→ Λ.

2 apply : Λ× Λ→ Λ.

3 λ : X× Λ→ Λ.

This is good. However, as we saw, to develop a proof theory of the
λ-caclulus, we must work in the quotient algebra Λ/ ≡α.

But, since the quotient algebra is not a free algebra, we cannot use
natural inductive argument on the structure of terms. Even worse,
since we cannot directly define substitution on Λ, there is no
homomorphism from Λ to Λ/ ≡α which commutes with
substituion.

Structure of raw λ-terms

To see the essence of the α-equivalence relation, we make the
following observation.
Recall that:

Λ 3M,N,P ::= x | (M N) | λxM

By writing λx1x2···xnM for λx1λx2 · · ·λxnM (n ≥ 0), any
λ-term can be uniquely written in one of the following two forms.

1 λx1x2···xny.

2 λx1x2···xn(M N).

The set Λ0 of closed terms

Then, we can define the subset Λ0 of Λ, consiting of closed
λ-terms, as follows.

y ∈ x̄
λx̄y ∈ Λ0

λx̄M ∈ Λ0 λx̄N ∈ Λ0

λx̄(M N) ∈ Λ0

Note that the above definition does not rely on the notion of free
occurrences of a variable in a term.

This definition suggests that we should be able to develop proof
theory of the λ-calculus with free variables without appealing to
the notion of bound variables, and of the λ-caluculs of closed
λ-terms without using the notion of variables.

But, it looks like that we need variables to develop λ-calculus even
on closed λ-terms.

The set Λ0 of closed terms

Then, we can define the subset Λ0 of Λ, consiting of closed
λ-terms, as follows.

y ∈ x̄
λx̄y ∈ Λ0

λx̄M ∈ Λ0 λx̄N ∈ Λ0

λx̄(M N) ∈ Λ0

Note that the above definition does not rely on the notion of free
occurrences of a variable in a term.

This definition suggests that we should be able to develop proof
theory of the λ-calculus with free variables without appealing to
the notion of bound variables, and of the λ-caluculs of closed
λ-terms without using the notion of variables.

But, it looks like that we need variables to develop λ-calculus even
on closed λ-terms.

λβ-calculus

(λxM N)→βM [x := N]
β

M →βM
′

(M N)→β (M ′ N)
L

N →β N
′

(M N)→β (M N ′)
R

M →β N

λxM →β λxN
ξ

M →βM
Rfl

M →β N N →β P

M →β P
Trn

The β-rule captures the informal notion of function application.

K-expressions

Definition (K-expressions)

i ∈ N k ∈ N
Pik ∈ K

j ∈ N M ∈ K N ∈ K
(M N)j ∈ K

We use K,L,M,N as metavariables ranging over K-expressions
Pik is called a projection. We use I, J as metavariables ranging

over projections. (M N)j is called an application.

Remark

1 K-expressions are defined without using the notions of
variable, λ-abraction and α-equivalence. They are all closed
terms.

2 K is a free algebra where projections are free generators and
applications are binary operations parameterized by j. So, we
can study the structure of K-epressions proof-theoretically by
inductive arguments.

Height and Thickness

Definition (Height)

1 Ht(Pik) := i+ k + 1.

2 Ht((M N)j) := min{j,Ht(M),Ht(N)}.

An expression of height h can always be applied to h arguments.

Definition (Thickness)

1 Th(Pik) := 1.

2 Th((M N)j) := Th(M) + Th(N).

Projections

A projection Pik represents the following λ-term.

λx̄yz̄y,

where x̄ = x1 · · ·xi, z̄ = z1 · · · zk and y 6∈ z̄.

For example, P0
0 = λyy = I and P0

1 = λyzy = K.

Embedding of Λ0 into L

Recall the following definition of Λ0.

y ∈ x̄
λx̄y ∈ Λ0

λx̄M ∈ Λ0 λx̄N ∈ Λ0

λx̄(M N) ∈ Λ0

We define the embedding [M] of M ∈ Λ0 into K as follows.

[λx1···xiyz1···zky] := Pik.

[λx̄(M N)] := ([λx̄M] [λx̄N])k, where x̄ = x1 · · ·xk.

Remark
The definition is well-defined, since α-equivalent terms are
embedded to the same K-expression.

Combinators

We can define combinators I, K and S as follows.

1 I := λxx = P0
0.

2 K := λxyx = P0
1.

3 S := λxyz((x z) (y z)) = (λxyz(x z) λxyz(y z))3

= ((λxyzx λxyzz)3 (λxyzy λxyzz)3)
3

= ((P0
2 P2

0)
3

(P1
1 P2

0)
3
)
3

.

Instantiation

Definition (Instantiation)

Given K,L ∈ K such that Ht(K) > n and Ht(L) ≥ n, we
define 〈K L〉n ∈ K as follows.

1 〈Pik M〉n :=


Pi−1
k if n < i,

⇑ki M if n = i,

Pik−1 if n > i.

2 〈(K L)i M〉n := (〈K M〉n 〈L M〉n)i−1.

Definition (Lifting)

1 ⇑ki Pjl :=

{
Pj+kl if i ≤ j,
Pjl+k if i > j.

2 ⇑ki (M N)j := (⇑ki M ⇑ki N)
j+k

.

Note that: ⇑ki M = 〈Pik M〉i.

Instantiation (cont.)
We can combine the previous two definitions and get the following.

Definition (Instantiation 〈K M〉n)

1 〈Pik Pjl 〉n :=


Pi−1
k if n < i,

Pj+kl if n = i andi ≤ j,
Pjl+k if n = i and i > j,

Pik−1 if n > i.

2 〈Pik (M N)j〉n :=


Pi−1
k if n < i,

(〈Pik M〉n 〈P
i
k N〉n)

j+k
if n = i,

Pik−1 if n > i.

3 〈(K L)i M〉n := (〈K M〉n 〈L M〉n)i−1.

Remark
n is just passed around and does not change. So, for each n,
instantiation is defined by primitive recursion on K-expressions.

de Bruijn indices

D,E, F ::= i | (D E) | [D]

Substitution 〈D F 〉i (read: substitute F for i in D) is defined as
follows.

1 〈j F 〉i :=

{
F if i = j,

j o.w..

2 〈(D E) F 〉i := (〈D F 〉i 〈E F 〉i).

3 〈[D] F 〉i := [〈D F ′〉i+1], where F ′ is obtained from F by
shifting indices of F appropriately.

Remark
Both i and F are changed in the third item of the definition. So,
to define 〈D F 〉0, one has to define 〈D F 〉i for all i.

Instantiation Lemma

Lemma (Instantiation Lemma)

n < m < Ht(K),m ≤ Ht(L), n ≤ Ht(M) `
〈〈K L〉m M〉n = 〈〈K M〉n 〈L M〉n〉m−1.

Note that we have:

〈(K L)m M〉n := (〈K M〉n 〈L M〉n)m−1, and

Substitution and Instantiation

x 6= y, x 6∈ FV(M) `
K[x := L][y := M] = K[y := M][x := L[y := M]].

1 < Ht(M) ` 〈〈K L〉1 M〉 = 〈〈K M〉 〈L M〉〉.

We can see that Instantiation operation naturally represents
β-conversion rule as an algebraic operation.

Kβ-calculus

Ht(M) > n Ht(N) ≥ n
(M N)n→β 〈M N〉n

β

M →βM
′

(M N)n→β (M ′ N)n
L

N →β N
′

(M N)n→β (M N ′)n
R

M →βM
Rfl

M →β N N →β P

M →β P
Trn

The β-rule of Kβ-calculus subsumes the β and ξ rules of
λβ-calculus.

(λxM N)→βM [x := N]
β

M →β N

λxM →β λxN
ξ

Further directions

1 Adding free variables (as constants) to K.

Then we can compare K-expressions directly with λ-terms
with free variables.

2 First-order theory of Kβ-calculus.

Should be straigtforward, just by including instantiation
operation as a function symbol. Note that there are no
satisfactory first-order theories of λβ-calculus since abstraction
cannot be naturally axiomatized.

Further directions

1 Adding free variables (as constants) to K.

Then we can compare K-expressions directly with λ-terms
with free variables.

2 First-order theory of Kβ-calculus.

Should be straigtforward, just by including instantiation
operation as a function symbol. Note that there are no
satisfactory first-order theories of λβ-calculus since abstraction
cannot be naturally axiomatized.

Further directions

1 Adding free variables (as constants) to K.

Then we can compare K-expressions directly with λ-terms
with free variables.

2 First-order theory of Kβ-calculus.

Should be straigtforward, just by including instantiation
operation as a function symbol. Note that there are no
satisfactory first-order theories of λβ-calculus since abstraction
cannot be naturally axiomatized.

Further directions

1 Adding free variables (as constants) to K.

Then we can compare K-expressions directly with λ-terms
with free variables.

2 First-order theory of Kβ-calculus.

Should be straigtforward, just by including instantiation
operation as a function symbol. Note that there are no
satisfactory first-order theories of λβ-calculus since abstraction
cannot be naturally axiomatized.

Conclusion

We introduced the datatype K of K-expressions and showed
that it is possible to embed closed λ-terms into K faithfully.

We also showed that it is possible to develop proof theory of
the λ-calculus without ever using the notions of variables,
α-equivalence or substitution.

We showed the Church-Rosser Theorem by the residual
method, and also showed that it is possible to define a natural
category of derivations which admits pushout.

All the results reported in this talk were formally verified in
the Minlog proof assistant.

Acknowledgement

We thank the Japan Society for the Promotion of Science (JSPS),
Core-to-Core Program (A. Advanced Research Networks) for
supporting the research.

