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Overview

I Real numbers as streams: Signed digits and Gray code

I Partiality and non-determinism

I Coinductive representation of Signed digits and Gray code via
realizability

I Capturing partiality and non-determinism logically

I Conclusion and future work
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Signed digit representation
Let I = [−1, 1] ⊆ R and SD = {−1, 0, 1}.

A signed digit representation of a real number x ∈ I is a stream
d0 : d1 : . . . ∈ SDω such that

x =
∑
i∈N

di ∗ 2−(i+1)

All reals in I have signed digit representations, most of them
uncountably many.

The signed digit representation is admissible in the sense of TTE.
In particular:

Exactly the computable reals have a computable signed digit
representation.

A function on the reals is computable iff it can be computed
on signed digit representations.
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Gray code

Gray code (named after Frank Gray in 1946 who called it
“reflected binary code”) is an alternative to the binary
representation of natural numbers where neighbouring numbers
differ in only one digit.

Tsuiki extended this to a representation of real numbers.

H. Tsuiki: Real Number Computation through Gray Code
Embedding. TCS 284, 2002.

A similar representation was studied in

P. D. Gianantonio: An abstract data type for real numbers. TCS
221, 1999.
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Tsuiki’s partial Gray code for real numbers

The Gray code or Gray representation of x ∈ [−1, 1] is the
itinerary of the tent map t(x) = 1− 2|x |. This means that the
n-th digit is 0 resp. 1 if tn(x) < 0 resp. > 0.

If tn(x) = 0, then the n-th digit is undefined.

Remarkably, every real in [−1, 1] has a unique Gray code.

Like the signed digit representation Gray code is admissible, though
not exactly in the sense of TTE where only total streams are
considered as representations.

One easily sees that at most one digit of the Gray code can be
undefined. Therefore, computation with the Gray code can be
modeled by a Two-Head-Turing-Machine.
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From Gray code to signed digits (Tsuiki)

Set neg 0 = 1; neg 1 = 0

gtos (0:g) = -1 : gtos g

gtos (1:a:g) = 1 : gtos (neg a : g)

gtos (a:1:c:g) = 0 : gtos (a : neg c : g)

The pattern of the third line overlaps with those in the first and
second line and the digit a may be undefined.

Therefore, this program is non-deterministic and will not be
correctly executed in a functional language such as Haskell.
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From signed digits to Gray code (Tsuiki)

Set nh(a:s) = neg a : s

stog (-1:s) = 0 : stog s

stog ( 1:s) = 1 : nh(stog s)

stog ( 0:s) = a : 1 : nh g

where a : g = stog s

This function is not productive in the strict sense since in the third
line the output of the first digit a is deferred to the recursive call.

Nevertheless the output is a correct Gray code (which may be
undefined at one point).
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Logic for exact real number computation

We are looking for a logical system such that:

I Data representation such as signed digits or Gray code can be
obtained as realizers of coinductive predicates.

I Partial and non-deterministic function such as stog and gtos

can be extracted from proofs.
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Related work: Realizing Gray code deterministically

B., Kenji Miyamoto, Helmut Schwichtenberg, Hideki Tsuiki: Logic for

Gray-code computation (submitted)

gives a realizability interpretation and Minlog implementation of an
intensional version of Gray code, called pre-Gray code, using a
conventional constructive system and conventional program
extraction.

This skirts the issue of non-determinism at the price of giving up
the uniqueness of Gray code.

An earlier version of this talk was presented at CSL 2016.

B. Extracting Non-Deterministic Concurrent Programs. LIPIcs 26, 2016.
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Intuitionistic Fixed Point Logic (IFP)

I Intuitionistic many-sorted logic in finite types.

I Sorts represent abstract mathematical structures given by
∨-free axioms.

I Inductive and coinductive definitions of predicates as least and
greatest fixed points of monotone predicate transformers.

I Realizers are untyped recursive programs.

I The definition of realizability is usual except that quantifiers
are interpreted uniformly:

I a r ∃x A(x) means ∃x (a rA(x)).
I a r ∀x A(x) means ∀x (a rA(x)).
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Real and natural numbers

The structure of the real numbers R = (0, 1,+, ∗,−, /,<, | · |) is
treated as a sort specified by ∨-free axioms.

The natural numbers are defined as the least subset of R that
contains 0 and is closed under successor:

N µ
= { 0 } ∪ { x + 1 | x ∈ N }

Realizability automatically associates with this definition the unary
representation of natural numbers and with proofs of closure
properties of N programs operating on that representation.
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Signed digits and Gray code in logical form

Signed Digit representation

C(x)
ν
= ∃d ∈ SD . x ∈ Id ∧ C(2x − d)

where Id := [d/2− 1/2, d/2 + 1/2] and
ν
= means ’largest’.

Note that x ∈ I−1 iff x ≤ 0, x ∈ I1 iff x ≥ 0, x ∈ I0 iff |x | ≤ 1/2.

I s rC(x) iff s is a signed digit representation of x .

Gray code

G(x)
ν
= (x 6= 0→ x ≤ 0 ∨ x ≥ 0) ∧G(t(x))

I s rG(x) iff s is a Gray code of x .

We want to show constructively C = G which will give us
programs translating between the two representations.

Is it possible? Will we get gtos and stog?
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Non-Determinism in logical form

In order to prove C = G constructively we extend IFP by

I Non-Deterministic implication: A | B (read “A if B”)

I Archimedean Induction (AI), a computationally meaningful
version of the Archimedean property.
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Non-Deterministic implication
Classically, A | B is the same as implication, B → A.

Constructively, A | B is distinguished by a non-deterministic
realizabilty interpretation:

a r (A | B) := (r(B)→ Def(a)) ∧ a frA

where

r(B) := ∃b b rB (“B is realizable”)

Def(a)
µ
= (∃b a = Res(b)) ∨
∃b, c a = Amb(b, c) ∧ (Def(b) ∨Def(c))

a frA
ν
= ∀b (a = Res(b)→ b rA) ∧
∀b, c (a = Amb(b, c)→ b frA ∧ c frA)

Amb(b, c) means non-deterministic choice between a and b
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Realizable laws

A→ A | B

A | ⊥

(B → A0 ∨ A1)→ (¬B → A0 ∧ A1)→ (A0 ∨ A1) | B,

if A1,A1,B are non computational

A | B → (A→ A′ | B)→ A′ | B

A | B → (B ′ → B)→ A | B ′

A | B → A | B ′ → A | ¬¬(B ∨ B ′)

A | B → B → A if A is non computational
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Nondeterminism monad

S(A) := A | True

Derived laws

A→ S(A)

S(A)→ (A→ S(A′))→ S(A′)

S(A)→ A if A is non computational

A | B → A | ¬B → S(A)
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Nondeterministic signed digits and Gray code

C(x)
ν
= S(∃d ∈ SD . x ∈ Id ∧ C(2x − d))

G(x)
ν
= ((x ≤ 0 ∨ x ≥ 0) | x 6= 0) ∧G(t(x))

Theorem
G ⊆ C

The extracted program is gtos.
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Archimedean Induction

Archimedean Property

Version 1 ∀x∃n ∈ N x ≤ 2n not realizable

Version 2 ∀x (∀n ∈ N x ≤ 2−n → x = 0) non computational

Archimedean Induction (AI)

∀x 6= 0 ((|x | ≤ 1/2→ A(2x))→ A(x))

∀x 6= 0 A(x)

(AI) is realized by the fixed point combinator, i.e. if f realizes the
premise, then the least fixed point of f realizes the conclusion.
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From signed digits to Gray code

Theorem (AI)

C ⊆ G

Proof.
By coinduction. To show:

(1) C(x)→ x 6= 0→ x ≤ 0 ∨ x ≥ 0

(2) C(x)→ C(t(x))

Part (1) can be shown by Archimedean Induction.

Part (2) can be shown by coinduction.
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Extracted program (from proof of C ⊆ G)

t s = l1 s : t (l2 s)

where l1 is extracted from (1) C(x)→ x 6= 0→ x ≤ 0 ∨ x ≥ 0
and l2 is extracted from (2) C(x)→ C(t(x))

l1 (-1:s) = 0 l2 (-1:s) = s

l1 ( 1:s) = 1 l2 ( 1:s) = - s

l1 ( 0:s) = l1 s l2 ( 0:s) = 1 : l2 s

Analysis:

t (-1:s) = 0 : t s

t ( 1:s) = 1 : t (- s) = 1 : nh (t s) (easy to see)

t ( 0:s) = l1 s : t (1 : l2 s)

= l1 s : 1 : nh (t (l2 s))

= head(t s) : 1 : nh (tail(t s) (by def of t)

= a : 1 : nh g where a : g = t s

Hence t = stog.
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Conclusion and further work

I We have shown that it is possible to capture nondeterminism
logically through realizability and program extraction

I Computing with other models of real numbers such the
interval domain requires nondeterminism as well (Potts,
Edalat, Escardo, 1997). In fact, nondeterminism is
unavoidable (Escardo, Hofmann, Streicher, 2004).

I To do:

I extract stog directly from a suitable proof (without
transformation),

I implement the system and evaluate the performance of
memoized computation with Gray code.

I Related project: Logic for extracting imperative programs
(j.w.w. Gregory Woods).
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