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Abstract. When an infinite sequence contains a bottom cell, we can-
not access the rest of the sequence with the ordinary stream access. On
the other hand, when we consider an extended stream access with two
heads, we can read or write 11-sequences, which are infinite sequences
with at most one bottom cell. In this paper, we present a way of extend-
ing a lazy functional language with such an extended stream access in
the realm of sequential computation. It has an application in real number
computation in that the set of real numbers is topologically embedded
in the set of 1. -sequences [16], and therefore we can consider a program
with such an extended stream access as directly manipulating real num-
bers. We implemented this mechanism by modifying the runtime of the
Hugs system, which is a graph-reduction based implementation of the
Haskell language. We present programming examples like addition and
multiplication on real numbers in this extended Haskell.

For this implementation, we extended Haskell with the gamb operator,
which works just as McCarthy’s bottom-avoiding nondeterministic choice
operator “amb”. The difference is that it is realized in the realm of se-
quential computation, and that it is applicable only when the graph
representations of the arguments share the same redex. In order to show
that programs corresponding to two-head stream accesses satisfy this
condition, we introduce a PCF-based calculus of term-graphs and define
a data-type of 11-streams as a subtype of [Booll.

1 Introduction

Stream is a useful data structure used in expressing, for example, process com-
munication, and can be manipulated easily in functional languages. We are inter-
ested in boolean streams, so a stream in this paper means an infinite sequence
of 0 and 1, which is accessed from left to right. One way of representing a
stream in a functional language is to use the list type [Bool]. However, the type
[Bool] includes infinite sequences with bottoms and if a program tries to make
a stream access to input such an infinite sequence, it will be stuck at the bottom
cell because the computation to obtain the value of the cell will not terminate.
Therefore, with stream access, the part of the sequence after the first bottom is
discarded, though the rest of the sequence may have valuable information.

The first author has found that streams with bottoms are useful in represent-
ing continuous topological spaces like R, and performing computation over them.



We will call an infinite sequence which may contain at most n copies of bottom
an n_L-sequence, and denote by X9  the set of n_L-sequences. It is shown in [15]
that any n-dimensional separable metric space can be topologically embedded
in XY, and in particular, R can be topologically embedded in X7 ; by what
we call the Gray-code embedding. It means that each real number has a unique
representation as a 1.1-sequence, and through this representation, the approx-
imation structures of 'Y ; and R coincide. Note that R cannot be embedded
in X* and therefore the existence of L is essential; R is a 1-dimensional con-
nected space whereas Y'“ is a O-dimensional totally disconnected space. Thus,
if we have a computation which fills (or reads) a 11-sequence infinitely, then
we can consider that it is outputting (or inputting) a real number. As such, he
considered a machine called an IM2-machine. This machine has two heads on
each input/output tape to make an extended stream access on 1.1-sequences. It
is shown that the induced computability notion of the real functions coincides
with the standard one [19].

In this paper, we present a way of extending a functional language with the
two-head stream access of an IM2-machine in the realm of sequential computa-
tion. In [17], it is shown that we can express the behavior of an IM2-machine
naturally with a logic programming language with guarded clauses and com-
mitted choice, such as Concurrent Prolog, PARLOG, and GHC (Guarded Horn
Clauses). Therefore, we can already execute our real-number computation al-
gorithms on ordinary computers. However, since what we are expressing are
“functions” over the reals like addition and multiplication, it is more desirable
that we can express them as functions in functional programming languages.
In addition, if they are implemented in functional languages, we can also apply
higher-order functions like “map” and “foldr” to real number functions, which
is impossible with the above logic programming languages.

It is easy to show that the two-head stream access of an IM2-machine can
be implemented if we consider parallel computation and use McCarthy’s “amb”
operator [11]. The amb operator is a bottom-avoiding nondeterministic choice
operator, defined so that amb M N is reduced to V if M has the value V, V' if
N has the value V', and its computation does not terminate only when both M
and N do not have normal forms. Note that if the computations of both of the
arguments are terminating, amb M N has two possibilities. Therefore, amb is a
nondeterministic multi-valued function. In order to compute amb A N, we need
to compute the values of M and N in parallel, and we can express the “parallel
or” operator with “amb.” There are some researches extending parallel func-
tional languages with the amb operator [2]. However, such an implementation
requires complicated control and scheduling over threads. Moreover, the moti-
vation and goal of such parallel operator is different from ours. Nondeterminism
and multi-valuedness are known to be essential in real-number computation,
and, correspondingly, IM2-machines are defining nondeterministic multi-valued
functions. However, IM2-machines are performing sequential computation, and
real-number computation is not related with parallelism in this context. There-
fore, it is more natural to implement it in the realm of sequential computation,
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Fig. 1. The binary expansion and the Gray-code expansion of real numbers. Here,
horizontal line means that the corresponding bit has value 1 [16].

and see what causes nondeterminism and multi-valuedness without using paral-
lelism.

Thus, we consider our extension to sequential functional languages, and in-
troduce a variant gamb of the amb operator to a graph-reduction based functional
language. It is defined as an extension of the Haskell language and implemented
by modifying the runtime system of the Hugs system, which is based on the
notion of G-machines|7,6, 8]. This implementation is available from the author’s
homepage[18], with some programming examples like addition and multiplica-
tion on real numbers.

Our gamb operator is a partial sequential realization of the amb operator.
The difference is that gamb works sequentially, and that it works only for the
case that the two term-graphs M and N given as the arguments share the same
subgraph L as a redex and the normal form of one of M and N is composed
from the weak head normal form of L only by list and boolean operations. In
order to show that programs corresponding to two-head stream accesses satisfy
this condition, we introduce a PCF-based calculus of term-graphs and define a
datatype of 11-streams as a subtype of [Bool]. This datatype also brings out
a set of primitive operators to manipulate 1.1-streams.

In Section 2, we overview Gray-code based real-number computation and

IM2-machines, and show how it is expressed with McCarthy’s “amb” operator.
In Section 3, we introduce the operator gamb and explain how it works on term-
graphs. In Section 4, we define GPCFY | and study its type system. In Section
5, we explain how gamb is implemented as an extension of Haskell. In Section
6, we explain programming examples of real number functions and higher order
functions which use the gamb operator.
Notations: We consider the unit closed interval Z = [0, 1] instead of the whole
real line. We use 0 and 1 for the boolean values false and true, for simplicity. We
fix the alphabet ¥ = {0,1}, and denote by X the set of infinite sequences of
Y. We call an infinite sequence of {0,1, L} which may include at most one copy
of L an 1l-sequence, and denote by XY | the set of 1L-sequences. Except for
section 4, we use the word term-graph informally for a graph representation of
a (lambda) term.



2 Gray-code and Real-number Computation

2.1 Gray-code embedding

Gray-code expansion is an expansion of Z = [0, 1] as infinite sequences of {0, 1},
which is different from the ordinary binary expansion. Figure 1 shows the binary
and Gray-code expansion of Z. In the binary expansion of z, the head h of
the expansion indicates whether z is in [0, 1/2] or [1/2, 1], and the tail is the
expansion of f(z,h) for f the following function:

2 (when h = 0)
f(x’h)_{Qm—l (when h=1) °

Note that the rest of the expansion depends on the choice of the head character
h when z = 1/2. On the other hand, the head of the Gray-code expansion is the
same as that of the binary expansion, whereas the tail is the expansion of #(x)
for ¢ the so-called tent function:

(22 (0<z<1/2)
“”‘{2(1—@«) (1/2<z<1)"

This expansion is based on Gray code[5], which is a binary coding of natural
numbers different from the ordinary one.

We have two binary expansions for a dyadic number (a rational number of the
form m/2*). For example, 3/4 has two expansions 110000... and 101111.... It is
also the case for the Gray-code expansion, and 3/4 has two expansions 111000...
and 101000.... Note that they differ only at one bit. It means that the second bit
does not, contribute to the fact that the value is 3/4, and it is more natural to
leave it undefined (L). Thus, we define the expansion of 3/4 as 1.1.1000.. ., and
define the modified Gray-code expansion as follows.

Definition 1 ([16], [4]). Let ¥’ = {0,1} and P : 7 — X be the map

0 (.7; < 1/2)
P)={ L (x=1})
1 (x> 1/2)

Gray-code embedding G is a function from 7 to XY | defined as G(z)[n] =
P(t"(z)) (n=0,1,...). We call G(z) the modified Gray-code expansion of .

Note that L appears only once in each modified gray-code expansion. G is a
topological embedding of 7 in X' |, where the topology of X'} | is given as the
subspace topology of the Scott topology of X'| “.

2.2 IMZ2-machine

We study how the ordinary stream access can be extended to input/output 11-
sequences. We explain it with the way the Gray-code of a real number is input
or output by a program.
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Fig. 2. The process of outputting streams

For the output, we consider that a program (effectively) computes a real
number = when it executes infinitely and produces better and better approxi-
mations of z as shrinking intervals. Therefore, we study how the Gray-code of x
is output on a tape based on such information. When the information z < 1/2
or 1/2 < =z is obtained by such a shrinking interval, a machine can write 0 or
1 on the first cell, respectively. However, when = = 1/2, neither information
is given however long it waits and therefore it cannot fill the first cell forever.
However, in this case, it obtains the information 1/4 < z < 3/4 at some time,
and it can write 1 on the second cell skipping the first one if it is allowed to write
a character not only on the leftmost unfilled cell but also on the next unfilled
cell. After that, if the information 1/4 < < 1/2 or 1/2 < x < 3/4 is given, it
can write 0 or 1 on the skipped cell, respectively, and if it has the information
3/8 < x < 5/8, it can write 0 on the third (i.e., the second unfilled) cell. After
that, the computation of z will have the possibility to fill the first or the 4th
cell of the string as Figure 2 shows. In this way, when z = 1/2, the first cell is
left unfilled and the sequence 1000... is written from the second cell. Thus, if
the output tape is filled with L at the beginning, we can output the modified
Gray-code expansion on the tape.

We can formulate this mechanism as an output with two heads. We consider
two heads H; and H> on each tape. They are located at the first two cells at the
beginning, and only H> moves to the next cell after an output from H,, and H;
moves to the position of H> and Hs moves to the next cell after an output from
H,. In this way, the two heads are always located at the first and the second
unfilled cell of the string. This is a generalization of the ordinary stream access
with one head, which is located at the first unfilled cell and moves to the next
cell after an output.

As for the input, when the value of a cell is |, a machine cannot wait for it to
be filled. Therefore, in order to skip a bottom cell and continue the input, we need
two heads also on input tapes, which move the same way as output-tape heads.
Then, when both of the cells under the two heads are filled, a machine has two
possible inputs which may cause two different computations. Therefore, it has
nondeterministic behavior and both of the computational paths must produce
valid results.

In this way, we define a machine, called an IM2-machine (Indeterministic
Multi-head Type2-machine), which has two heads on each input/output tape
and which has nondeterministic behavior depending on the order it inputs. See
[16] for the detailed definition of an IM2-machine.



2.3 IM2-machine outputs with functional languages

Ordinary stream access can be expressed in a lazy functional language as a re-
cursively defined function of type [Bool] — [Bool]. As for the stream access with
two heads, it is trivially impossible to express it in functional languages because
multi-valued functions are not definable in functional languages. It is also shown
in [17] that some IM2-computable single valued functions are not expressible in
functional languages when 1.1 -sequences are implemented as [Bool]. Therefore,
for such an implementation, we need some extension to the language.

For the output, we need no extension and we can express the output of a
11-sequence with two heads in a functional language.

The output from the first head is expressed as c:foo() with c the character
0 or 1 and foo () the recursive call to produce the rest of the output. The output
from the second head is written as x:c:xs where x:xs=foo(), with the same
meanings for ¢ and foo(). Note that the new head positions (i.e. x and the head
of xs) comes to be the first two positions of the output of the recursive call of
foo(). Therefore, we can consider that the tape is composed only of unfilled
cells and the two heads are always located at the first two cells of the output.
Note that c is a constant and therefore, when a term denoting a 1.1-stream is
reduced to a weak head normal form (i.e., a cons cell), it must have one of the
four forms 0: M', 1 : M', z:0: M',and z : 1 : M'".

As for the recursive call, the recursive function may have additional argu-
ments to convey the internal state of the computation. However, in some cases,
we can simplify (or even omit) such arguments by allowing the function to mod-
ify the result of the recursive call. As such a modification on 1_1-sequences, we
consider inversion of boolean values. We use the function nh to invert the first
character of a string defined as follows:

not 0 = 1
not 1 =0
nh c:a = not c:a

and allow expressions like c:nh foo() and not x:c:nh xs where x:xs=foo()
for the programs in the above paragraph.

As an example, we consider the function stog which converts the signed-digit
representation to the Gray-code representation. The signed-digit representation
is an expansion of [—1, 1] as an infinite sequence of I" = {0, 1, —1}, defined as

Ssn(aras...) = X2 {a;27'}.

It is equal to the ordinary binary expansion if we do not use —1, and highly
redundant in that every real number has infinitely many representations. For
our purpose of writing the conversion with Gray-code, we fix the first character
as 1 and discard it from the sequence so that every sequence denotes a real
number in Z. We also change the definition of the Gray-code representation so
that when G(z) contains a bottom, then the two sequences obtained by filling
the bottom cell with 0 and 1 are also representing .



When the first digit of a signed-digit representation is —1,1 and 0, it means
that the number is in the intervals [0,1/2], [1/2,1], and [1/4, 3/4], respectively.
Note that these three intervals are expressed in Gray-code representation as the
output of 0 and 1 from the first head, and the output of 1 from the second
head, respectively. We can write in Haskell the conversion from signed-digit to
Gray-code representations as follows considering the recursive structures of both
representations [16].

stog(l:xs) = 1:nh(stog xs)
stog(-1:xs) = O:stog xs
stog(0:xs) = c:1:nh ds where c:ds= stog xs
When we execute stog([0,0..]),it will have no output on the display because

the result is [1,1,0,0..], but when we execute tail(stog([0,0..])), it will
produce [1,0,0,0... infinitely.

2.4 IM2-machine inputs with the amb operator

As for the input, we can express it if we can use McCarthy’s “amb” operator[11],
as follows. In this paper, we consider a variant of the amb operator of type

amb:: a -> a -> Amb a

where the datatype Amb a is defined as data Amb a = Left a | Right a. The
term amb M N is reduced to Left V' if M has the normal form V', Right V' if
N has the normal form V', and its computation does not terminate only when
both M and N do not have normal forms. When both M and N have normal
forms, we have two possibilities and thus it is a nondeterministic operator.

Since an IM2-machine waits for one of the two cells to be filled, we can express
it with the amb operator of type Bool -> Bool -> Amb Bool as follows.

foo(a:b:xs) = case (amb a b) of

Left 0 -> ... foo(b:xs)
Left 1 -> ... foo(b:xs)
Right 0 -> ... foo(a:xs)
Right 1 -> ... foo(a:xs)

Note again that the argument of the recursive call is an infinite list without
the cells we have read in. Also for this case, we allow the modification of the
argument of the recursive calls with nh and not such as foo (not b:nh xs).

As an example, we consider the gtos function which converts the Gray-
code representation to the signed-digit representation. This program is also con-
structed from the recursive structures of both representations.

gtos(a:b:xs) = case (amb a b) of
Left 0 -> -1:(gtos (b:xs))
Left 1 -> 1:(gtos (nh (b:xs)))
Right 1 -> 0:(gtos (a:nh xs))
Right O -> case a of 0 -> -1: -1:(gtos xs)
1 -> 1:1:(gtos (nh xs))



Fig. 3. The sharing structure of the term-graph of amb

3 Partial Sequential Realization of the Amb Operator

As we showed in the previous section, we can express the two-head stream access
of an IM2-machine with the amb operator. However, in order to implement this
operator, we need to execute two threads for both arguments in parallel. Parallel
execution is a heavy mechanism, which is not easy to implement.

When we are implementing the two-head stream access of an IM2-machine,
we always use the amb operator in the form

amb a b where a:b:x = M.

Here, M represents a “producer process” which makes the two-head output
access to an 11-stream. The point is that the calculation of the two arguments
of amb share the same redex M and therefore we do not need to compute them
in parallel. If a functional language is implemented based on graph reduction [7],
the above term is represented as shown in Figure 3. Here, an application node
is labelled with a combinator name when it is an application of a combinator,
for simplicity. In this way, the two term-graphs representing the two arguments
share the same subgraph as a redex. Therefore, if we can reduce this term using
this sharing structure, it is expected that we can implement the partial amb
operator we need for 1.1-stream access in the realm of sequential computation.
As such an operator, we introduce gamb, which has the type

gamb:: Bool -> Bool -> Amb Bool.

We explain how gamb works with an example of the reduction of gtos(stog
[0,0..]1), where the program gtos is modified so that it uses the gamb operator
instead of amb. From the definition of gtos, the evaluation of gamb a b in the
definition of gtos will produce the term-graph Figure 4(A). The arguments a b
of gtos are marked with (a) and (b), respectively. In this graph, there is only
one redex node stog, which is shared by both of the arguments. Therefore, it
is evaluated and we have the term-graph (B). It has three redexes, two of them
are put the marks (*) and (**) and the other one is stog. If we use the leftmost
outermost reduction strategy as usual functional languages do, the redex (*)
is reduced and then the redex stog is reduced. After that, it starts a non-
terminating computation of the node (a).

However, since the term-graph stog is the producer process of an 1.1 -stream,
it is reduced to one of the four forms 0 : M', 1 : M', z:0: M',and z : 1 : M’
as we noted in Section 2.3. Therefore, we can obtain one of the normal forms
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Fig. 4. The evaluation of gtos(stog([0,0..1))

of (a) and (b) by applying only the reduction rules head (B : L) — B and
tail (B : L) — L. Thus, we consider the reduction strategy of gamb M N
to reduce both M and N with these two rules as long as they are applicable.
Therefore, the redex (**) is reduced before stog, and we obtain the term-graph
(C). Then, the redex (***) is reduced and we have (D). In this way, the argument
(b) is reduced to a normal form 1 and gamb will return the value Right 1. As the
result, the whole program gtos(stog [0,0..]) is reduced to the term-graph
Figure 4(E), which is a head normal form.

Next, consider the reduction of gtos in (E), which is a bit more complicated.
Note that subgraphs of (xs) are reduced through the reduction of (**) in (B)
because of the sharing, and we can use this simplified graph from the beginning.
As we noted in Section 2.3 and 2.4, a function to output (input) a 1.l-stream
can modify the result (arguments) of the recursive call by inserting not and nh.
Correspondingly, the argument-subgraphs (a’) and (b’) of the term-graph (F)
have nodes with labels not and nh, above their shared redex stog. Thus, we
modify the reduction strategy of amb M N we mentioned above, so that M and
N are reduced with the following reduction rules (I).

Reduction rules (I)

head (B:L) - B (R-head)
tail (B:L) = L (R-tail)
not 0 -1 (R-not0)
not 1 -0 (R-not1)
nh (B:L) —not B:L (R-nh)



This is the minimum list of rules which works. We had better also use the rules
nh nh L — L and not not B — B in practice so that the term-graphs do not
become significantly large.

Thus, the term-graph (F) is reduced to (G), and then, the two arguments
of gamb share the same subgraph stog, and thus it is reduced and after that,
reduction rules (I) become applicable, and thus it is also reduced to Right 1.1In
this way, if we continue the reduction, we obtain an infinite graph (H).

To summarize, the term-graph gamb M N is reduced as follows.

(1) Rules in (I) are applied to subgraphs of M and N which are reachable from
the root through nodes labelled with cons, head, tail, not, and nh until no more
rules are applicable. Rules are applied in some fixed order; in our implementation,
the leftmost outermost reduction order on M, and then on N.

(2) If one of them become a normal form (that is, 0 or 1), then gamb returns the
corresponding value. For example, if M is reduced to 0, gamb M N is reduced
to Left 0. If both are normal forms, gamb returns the left value.

(3) Compare the leftmost outermost redexes of M and N. If they are not iden-
tical, then raise a runtime error.

(4) Reduce the shared redex in (3) to a weak head normal form.

(5) Repeat (1) to (4) until it returns in (2) or it raises an error in (3).

We need the repetition (5) because the shared redex can be reduced to a
shared redex again by rules in (I). Rules in (I) are graph reductions imple-
mented as follows. When (R-not0) or (R-notl) is applied, the not node is simply
overwritten with 1 or 0. It is also the case for the (R-nh) rule; the nh node is
overwritten with a new not node. However, in (R-head) and (R-tail) rules, we
cannot overwrite the head node with the node B because the node B already
exists. Instead, we overwrite head with a new indirection node which points to
B. This is actually the way term-graphs are reduced in graph-based functional
language implementations [9, 7,6]. We omit an indirection node in the figures.

The gamb operator is a partial realization of amb. That is, (1) when gamb M N
is reduced to L, amb M N can also be reduced to L, and (2) when the reduction
of gamb M N does not terminate, the reduction of amb M N does not terminate.

4 A Term-graph Calculus of 1_1-streams

In the previous section, we defined the reduction of gamb M N for arbitrary
terms M and N of type Bool, and therefore gamb M N may cause a runtime
error in (3) depending on the ways graph implementations of M and N share a
subgraph. In this section, we define a term-graph calculus GPCF? | which has
the type of 11-streams as a subtype of [Bool], and show that such a runtime
error does not happen when gamb is used for 1.1 -stream access.

We start with defining a term-graph. Let I" be a set of labels with arity in
N. A term-graph over a signature I" is a quadruple g = (N, symb, args,r) such
that (1) N is a finite set of nodes, (2) symb: N — [ is a function which assigns
a label to a node, (3) args : N — N* is the list of successor nodes such that
length(args(n)) = arity(symb(n)), (4) r € N is the root of g, and (5) g is acyclic
as a graph. Note that we only consider acyclic term-graphs in this paper.



GPCFY |

Types: o,T ::= Bool | Stream | ¢ — 7 | AmbBool
Variables(of type 7): 27, y7, 27
Term-Graphs: B,L,M,N ::=0|1|head L |tail L | B: L | not B |nh B

| Ae™.M | M N | px".M | if B then M else N
| gambr L | Left B | Right B | M||N

B :: Bool
T t : 7 0 :: Bool 1 :: Bool _
ypesystem T o oo oo —ot B - Bool
L :: Stream L :: Stream L :: Stream

head L :: Bool tail L :: Stream nh L :: Stream

M:T B:Bool,M ::0,N ::0 M:>:oc—=17,N:u:o

T-tail
A M :o—T1 if B then M else N :: o MN :: 1 (T-tail)
M:o L :: Stream
T- > 0 = 0 = ]_ T_
pre. Mo (T-mou) not™ ¢: L :: Stream (n20,c or ¢ =1) (T-cons)

L :: Stream

not! y:ci:...:Cp :nh" = wherey:21:...:2,:x =1L :: Stream
(ci=0o0rc¢;=1G=1,...,m),l,m,n,k>0) (T-b01)

L :: Stream L :: AmbBool, M :: Bool -0, N : Bool—o
gambr L :: AmbBool (M|[N) L::o
B :: Bool B :: Bool

Left B :: AmbBool Right B : AmbBool

(I)-reduction: applying the following rules to subgraphs reachable from the root through
nodes labelled with :, head, tail, not, and nh until no more rules are applicable.

head (B: L) - B (R-head)
tail (B:L) = L (R-tail)
not 0 -1 (R-not0)
not 1 —0 (R-not1)
nh (B:L) — not B:L (R-nh)
Reduction rules (II):
(Az".M) N — M where z” = N (R-app)
px” .M — M where 7 = pz”.M (R-mu)
if 1 then M else N - M (R-if0)
if 0 then M else N - N (R-if1)
flg Lett B) o fB (R-L)
fllg (Right B) —gB (R-R)
Reduction rules (III):
gambr (0: M) — Left 0 gambr (M :0: N) — Right 0
gambr (1: M) — Left 1 gambr (M :1: N) — Right 1

Fig. 5. The term-graph calculus of 11-streams GPCFY ,




GPCFY is a PCF-like term-graph calculus with Stream and AmbBool type
(Figure 5). We consider the minimal set of types for our explanation and omit
the integer type, for example. We consider typed variables to simplify the type
system and let X7 be a set of variables of type 7. The set I of labels (with arity)
is defined as {0, 1® head™®,tail®, :2) not™® nh(M 27 r\g7@)

@) (application), if_then_else_(*), ua:r(l), gambr) Left™") Right(!),

||®) (destructor for AmbBool)}. Here, a variable z” is a member of X7. We
have the condition that for each Axz™ and px”, there exists at most one bounded
variable node with label z7.

We sometimes omit the type 7 when it is obvious from the context. Though
not and nh are A-expressible, we list them as primitives because we need special
treatment. Note that the p constructor does not produce a cyclic graph, and
px” is a label of a node for each z”.

When we express a term-graph in text, we use infix notation for :, ||, and @,
and we omit the operator symbol @. We consider that multiple occurrences of
the same bounded variable are expressing the same variable node.

In order to express sharing of nodes, we assign a variable to each node which
has more than one parents, and use the notation M where ™ = N for the
graph M with the variable node =7 substituted for N of type 7. We also use a
notation with pattern matching for the Stream type; we write M where y; :
- :Yn:x = N for M where r = tail z, where y, = head z,, ... where z, =
tail zjwhere y; = head zywhere z; = N. It is close to the call-by-need calculus
in [1], but they consider a term-calculus which simulates graph-based reduction,
whereas the objects of the calculus are term-graphs themselves in our calculus.
We also write not™ M for the n-times successive application of not to M.

In this type system, all the graphs are directed acyclic graphs, and therefore
the type of a term-graph is uniquely defined inductively. Reduction rules are
graph-reduction rules. Note that M where z7 = N, which is the right hand
side of (R-app) is obtained by copying M so that edges pointing to =" are
redirected to N. It is also the case for the (R-mu) rule. The set of reduction
rules is composed of the (I)-reduction and rules in (II) and (III). The reduction
rules are parallel to the evaluation rules of gamb in Section 3. We have defined
the (I)-reduction in this form for two reasons. One is to provide the subject-
reduction property, and the other one is to reduce Bs to a (I)-normal form when
gambr(Bj : By : L) is given. We consider leftmost outermost reduction order.

As operations to construct Stream term-graphs, we consider insertion of a
constant to the head or next to the head of a Stream element. This is par-
allel to the constructor of ordinary streams to insert a constant to the head.
We also allow the operation to remove the first or the second element from a
Stream element to form a new 11-stream. The (T-cons) and (T-tail) rules are
for the operations to the first element, and (T-b01) rule with m =1,k =0 (or
m = 0,k = 1) is for the insertion (or removal, respectively) operation to the sec-
ond element. The (T-b01) rule is applicable to terms-graphs obtained through
successive applications of these operators. As for destructors, we use the gambr
operator which corresponds to the following program.



gambr (M) = gamb a b where a:b:x = M.

Note that this is the way gamb is used to input from a 1.1 -stream. By structural
induction on M, we can prove the following.

Proposition 1. Suppose that M :: o and M is reduced to N in GPCFY, ;. Then
N is typable and N :: 0.

Corollary 1. Suppose that M is a term of type Stream and M is reduced to
L = Ny : Ny. Then, after applying (I)-reduction, one of the followings hold,

(1) Ny is a constant (i.e. 0 or 1),

(2) Ny is ¢: N3 for ¢ a constant,

(3) L has the form not! y : nh™ & where y: 21 :...: 2y 1@ = G for l,m,n > 0.

Corollary 1 shows that reduction of gambr M with the leftmost outermost
reduction will produce a value (case (1) or (2)), or continue the reduction of
G. For the latter case, when G is reduced to a cons cell, L is reduced by (I)-
reduction to one of the forms (1), (2), and (3). Thus, the reduction of gambr M
will produce a value Left ¢ or Right ¢ (¢ = 0 or 1) or it does not terminate.

Thus, we can say that runtime error does not occur for a typable program
when gamb is added to a graph-reduction based lazy functional language with
this kind of graph-representations. However, most implementations of Haskell use
cyclic graphs for the representation of recursive structures. For this case, typing
rules presented here do not have such good properties. We consider a variant
GPCF?’| of GPCFY | in which term-graphs are allowed to be cyclic, pz™.M
is not a term-graph but a textual representation of a cyclic graph, and (T-mu)
and (R-mu) do not exit. To see the difference, consider the term-graph K =px.
a:1:y where a:y = x of type Stream. In GPCFY ,, it is reduced to Stream-
type terms of the forma:1:1:1:...: :1:y where a:y = K. On the other hand,
in GPCF77, it is reduced by (I)-reduction to the term-graph (ux.x):(uy.1:y)
which does not belong to Stream type. Here, ux.x is an indirection node point-
ing itself. Roughly speaking, GPCFY ; step by step simulates two-head stream
output of an IM2-machine, whereas cyclic graph representation enables us to
make all the infinite outputs at a time and realizes the result of infinite-time
computation, which our type system does not deal with. In the same way, the re-
duction of the term-graph gambr (ux. a:y where a:y = x) of type AmbBool
does not terminate in GPCFY ;| whereas it is reduced to gambr ((pa.a) : (uy.y))
by (I)-reduction and stops (i.e., causing a runtime error) in GPCF. Our im-
plementation in the next section is close to GPCFﬁ’f1 and has this behavior.

5 Implementation

We have implemented our gamb operator as an extension of the Hugs system,
which is a graph-reduction based implementation of the Haskell language. First,
we implemented it as an extension of Gofer ver2.30 which is an ancestor of the
Hugs system. Because Gofer ver2.30 has a good documentation [6], in particular
of the G-machine structure of the runtime system [7], it is not difficult to put a



hook on the eval operator of the G-machine of the Gofer system so that when
it is a function application and the function is gamb, then reduce it as listed in
Section 3. This implementation is available from the author’s web page[18].

6 Some Algorithms with Gamb

As we explained in the introduction, the main application area of 1.1-stream
programming is real number computation. We list two programs to compute
real-functions over the unit interval [0,1] in [18]. One is the average function pl
to compute (z + y)/2, and the other one is multiplication. They can also be
expressed as GPCFY -terms of type Stream — Stream — Stream.

We can also apply higher-order functions “map” and “foldrl” to real func-
tions like pl. Therefore, for example, we can write and execute

sum a = gtos (foldrl pl (map stog (map (code a))))

which calculates the sum of the elements of the finite list a. Here, the code
function maps a real number with decimal representation to the binary repre-
sentation. This time again, it can also be expressed in GPCFY .

7 Conclusion

We extended the notion of a stream to a stream with at most one bottom and
implemented, as an extension of Haskell, input/output of such extended streams.
This mechanism can be used for real number computation because the set of real
numbers is topologically embedded in X ;.

We defined a datatype corresponding to a 1.1-stream as a subtype of the
infinite list type [Bool]. There is another way of implementing computation
over 11-streams. That is, to assign a name to each constructor and represent
a 1l-stream as an ordinary stream. However, because of the several ways of
constructing the same 1.1-stream, such representation is not canonical. From
the authors experience, the existence of multiple-representation complicates 11 -
stream programs. In addition, if we accept this approach, we need to consider
the relation between the denotation as a 11-stream and its representation as an
ordinary stream. Since a 1 1 -stream itself is directly expressible in a programming
language, the author thinks it natural to try to write a program which directly
manipulates them, as we did in this paper.

We have two goals in this study of 1_L-stream calculi. One is to actually imple-
ment it and write and execute real-number programs. The other one is to study
the computational structure of 11-streams and relate it to that of real num-
bers. One observation here is that, the nondeterminism and multi-valuedness of
functions over 11-streams appear not because we perform parallel computation
but because we access the intensional information how the arguments are repre-
sented as term-graphs. We need to investigate it with non-sequentiality feature
of real number computation studied in [3].

In this paper, we have only presented the operational side of GPCFY ;. It is
expected that, through the investigation of the denotational side of GPCFY ;, we



can study the structure of 1L-streams from many aspects, including algebraic,
domain-theoretic, and category-theoretic point of view. The author is interested
in applying the semantics of a sequential nondeterministic language in [10] to
our language. It is left as a future work.
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