Real Number Computation with Committed
Choice Logic Programming Languages

Hideki Tsuiki

Graduate School of Human and Environmental Studies, Kyoto University
606-8501, Sakyo-ku, Kyoto, Japan

Abstract

As shown in [10], the real line can be embedded topologically in the set 2y of
infinite sequences of {0, 1, L} containing at most one L. Moreover, there is a nonde-
terministic multi-headed machine, called an IM2-machine, which operates on E‘j_,l
and which induces the standard notion of computation over the reals via this embed-
ding. In this paper, we study how the behavior of an IM2-machine can be expressed
in “real” programming languages. When we use a lazy functional language like
Haskell and represent a sequence as an infinite list, we cannot express the behav-
ior of an IM2-machine. However, when we use a logic programming language with
guarded clauses and committed choice, such as Concurrent Prolog, PARLOG, and
GHC (Guarded Horn Clauses), we can express the behavior of IM2-machines natu-
rally and execute them on an ordinary computer. We show that GHC-computability
implies IM2-computability but not vice versa when we consider functions defined
on Zil in general, but they coincide when we only consider functions defined on
the reals. We give some GHC program examples, such as the conversions between
Gray-code and the signed digit representations, and the addition function on reals.

1 Introduction

It is easy to show that the real line cannot be embedded in Cantor space
{0,1}¥; Cantor space is totally disconnected and 0-dimensional whereas the
real-line is connected and 1-dimensional. For this reason, in order to define a
suitable notion of computation on the reals in terms of machines acting on in-
finite sequences (Type-2 machines), we need to use a redundant representation
like the signed-digit representation[17].

On the other hand, the present author has shown that real numbers are repre-
sented uniquely as infinite sequences if we allow at most one undefined cell in a
sequence. Indeed, the real line can be topologically embedded in the space X9 ;

Preprint submitted to Elsevier Science 19 April 2004

of infinite sequences of {0,1, L} containing at most one L by the Gray-code
embedding[10]. He also defined the notion of an IM2-machine (indeterministic
multi-head Type-2 machine) which makes generalized stream access to X ,
using two heads on each input and output tape, and has indeterministic (i.e.
nondeterministic) behavior depending on which head is used to input a charac-
ter. The notion of IM2-computability over the reals induced by the Gray-code
embedding is equivalent to the standard notion of Type-2 computability over
the reals induced by the signed-digit representation. More generally, the set
¥4 . of nl-sequences, which are infinite sequences of {0,1, L} with at most
n copies of L, is itself a n-dimensional topological space into which any n-
dimensional separable metric space can be embedded [9,11]. Therefore, we
can compute over a n-dimensional separable metric space with a generalized
IM2-machine with n + 1 heads, and this is the smallest number of heads that
will do.

In this paper, we study how the behavior of an IM2-machine can be expressed
in real programming languages. If we represent an n_-sequence as an infinite
list some of whose components may cause non-terminating computation, we
can express the rules of an IM2-machine in the syntax of a lazy functional
programming language like Haskell[4]. Actually the present author used the
syntax of Haskell to express Gray-code based real-number algorithms in [10].
However, the syntax requires a semantics different from the ordinary one,
and those algorithms do not behave correctly if implemented in Haskell. The
problem is that, in functional languages, we can only make sequential access
to an infinite list, and computation stalls whenever a bottom is encountered.
Contrary to this, if we use a logic programming language with guarded clauses
and committed choice such as Concurrent Prolog[8], PARLOG]I3|, and (Flat)
GHC (Guarded Horn Clauses)[14,15], we can directly express the behavior
of an IM2-machine as a program, and execute it on an ordinary computer.
The ability of an IM2-machine to wait for the next character from multiple
heads corresponds to parallel execution of guards, and the indeterminism of
an IM2-machine corresponds to committed-choice nondeterminism. Among
those programming languages, we adopt (Flat) GHC, which is based on simple
formalism and which has an efficient implementation. We give some examples
of GHC programs operating on n_l -sequences such as the conversions between
Gray-code and the signed digit representation, and the addition function on
reals with respect to the Gray-code embedding.

We compare the expressive powers of IM2-machines and GHC programs on

9, and its subspaces. When X | is considered, IM2-computability implies
GHC-computability but not vice versa. However, they are equivalent when
we only consider functions defined on subspaces of ¥¢ ,, composed of minimal
limit elements of what we call an n_-domain. Since the image of the Gray-code
embedding has such a structure, IM2-computability and GHC-computability
coincide for real number computation realized in X ;. This equivalence means

that we can use GHC as a language to define IM2-computable functions on

“ 5> instead of IM2-machines. Thus, we can use the expressive power of GHC
in defining such functions; for example, we can define a function as a compo-
sition of recursively defined processes in GHC. Furthermore, we can execute
them on an ordinary computer.

This research on computation over X9 | shows a difference between the expres-
sive powers of functional and logic programming languages on infinite data. It
also shows how logic programming languages may be exploited to implement
continuous computation over topological structures.

In Sections 2,3, and 4, following [10], we introduce the signed-digit represen-
tation, Gray-code embedding, and IM2-machines. In Section 5, we show that
it is impossible to express the behavior of an IM2-machine if a sequential lazy
functional language is used and a sequence is represented as an infinite list. We
introduce the language GHC in Section 6, and show that IM2-machines can
be translated into GHC programs in Section 7. We study the relation between
IM2-computability and GHC-computability in Section 8. In this section, we
assume familiarity with basic domain theory. See, for example, [1,5] for expo-
sitions of the theory of domains. In Section 9, we present another translation
of IM2-machines into GHC programs. This time, the obtained programs are
written in the demand-driven fashion. Finally, we discuss implementation in
other programming languages in Section 10.

Notations

In this paper, we consider the closed unit interval T = [0, 1] instead of the whole
real line. We write ¥* (and X¢) for the sets of finite (and infinite) sequences
of a finite character set X, respectively, and 2> for ¥* U X*. We write ¢[k] for
the k-th character of a sequence ¢, with ¢[0] the first element of the sequence.

We write 3¢ for (XU{L})¥. We call a member of X4 a bottomed sequence. We
define an order relation on ¥4 so that p < ¢ iff ¢ is obtained by substituting
some copies of L in p with characters in ¥. We call a bottomed sequence in
which at most n copies of L appears an n_L-sequence, and write 3¢ |, C 3¢ for
the set of nl-sequences. Though we present the theory without fixing ¥, one
may think of ¥ as {0,1} when we are concerned with bottomed sequences.
From this definition, we have ¥* = ¥ , C ¥, C ¥, C ... C 9. We
call p € ¥4 which contains finite number of ¥ characters a finite bottomed
sequence, and write 37 for the set of them. We write ¥ |, for the set of finite
bottomed sequences which contain at most n copies of 1. when we discard the
infinite sequence of L at the end of the sequence. In other word, it is the set
of p € 3¢ such that p[k] = L for k > r where r is the index of the (n + 1)-th
appearance of L.

We write A — B for the set of partial functions from A to B, and A = B for

the set of multi-valued partial functions from A to B, that is, a subset of A x B
considered as a partial function from A to the set of nonempty subsets of B. We
write f :C A — Bor f:C A= B when f belongs to these sets. When n; <ny
and my < my, a partial function in X, — 3¢ = can also be considered
as an element of X%~ — X9 . Similarly for 3% = X9 . Therefore,
we have the relation 3¢ ; — X9, C X9, = X9, C ... C ¥ — X9, and
Y oYY CXY =3, C... X =Y.

2 Real-number computation by Type-2 machines

A representation of a set X is a partial surjective function from ¢ to X for a
finite alphabet . When ¢ is a representation and §(p) = x, we say that p is a
0-name of x. The decimal expansion d is a standard representation of the real
numbers. However, when we use this representation, we cannot express such
a simple algorithm as multiplication by three with a Type-2 machine [17]. A
Type-2 machine is, from programming point of view, a program which makes
stream access to input/output infinite sequences. Because a machine can only
read a finite prefix of the input when it outputs a character, a machine to
multiply by three cannot write the first digit when the input is 0.33333...,
and thus it does not work properly. It is also the case for the binary expansion.

Definition 1 Suppose that 6; is a representation of X; (i = 0,1,...,k).
We say that a partial multi-valued function f :C X7 X ... x X = X s
(01, .., 0k, 00)-Type2-computable if there is a Type2-machine with n inputs
which converts every §; X ... X 0g-name of (x1,...,x,) € dom(f) to a §o-name
of a member of f(xy,...,xk).

As we have seen, “multiplication by three” is not (819, d19)-Type2-computable.
In order to obtain a more natural notion of computability, we need to use a
representation with higher redundancy.

Definition 2 The (modified) signed digit representation s, of I uses the char-
acter set I' = {0,1,1} and it is a partial function from T'“ to I defined as

dom(6e,) = T¢\ (T*1° U T*TY\ {19, T7}),
Oanlaray...) = 1/2 452 {a; - 27TV},
Here, 1 represents —1.

This definition is a bit different from the ordinary one in that the signed
digit representation is usually defined as a total function from I'¥ to [—1,1]
defined as 0y, (ayas. ..) = ¥°,{a;-27}. In Definition 2, we restrict the ordinary
one by fixing the first digit as 1 and deleting it from the string, and not

allowing names of the forms I'*111 ... and I'*111 ... except for 111... and 111....
This modification is only for some technical reason, and does not change the
induced Type-2 computability over the reals. The representation d,, has high
redundancy in that replacements of substrings of the forms 11 to 01 and 11 to
01 do not change the number. Actually, infinitely many numbers have infinitely
many names with dg,.

The above mentioned function to multiply by three becomes computable with
respect to this representation. (s, 0,)-Type2-computability is the most stan-
dard computability notion over the reals in that it coincides with many other
computability notions on the reals based on different approaches. All the rep-
resentations equivalent to g, are shown to be redundant, and redundancy is
considered as a fundamental property of real-number representations. See [17]
for the theory of Type2-computability.

3 Gray-code embedding

Gray-code expansion is an expansion of I as infinite sequences of {0, 1}, which
is different from the ordinary binary expansion. Figure 1 shows the binary
and Gray-code expansion of I. In the binary expansion of x, the head h of
the expansion indicates whether x is in [0, 1/2] or [1/2, 1], and the tail is the
expansion of f(x,h) for f the following function:

2% T (when h = 0.)

f(z,h) =
2xx—1 (when h=1.)
Note that the rest of the expansion depends on the choice of the head character
h when 2 = 1/2. On the other hand, the head of the Gray-code expansion is
the same as that of the binary expansion, whereas the tail is the expansion of
t(z) for t the so-called tent function:

) = 2% T (0<z<1/2)
Cl2s(1—2) (Q/2<z<1)

We have two binary expansions for a dyadic number (a rational numbers of
the form m/2¥). For example, 3/4 has two expansions 110000... and 101111....
It is also the case for the Gray-code expansion, and 3/4 has two expansions
111000... and 101000.... Note that they differ only at one bit. Generally, the
two Gray-code expansions of a dyadic number differ only at one bit and the
sequence after the bit is always 1000.... In this way, the second bit does not
contribute to the fact that the value is 3/4, and it is more natural not to

bit2 _— —————— Dit2

bitl bitl

Fig. 1. The binary expansion and the Gray-code expansion of real numbers. Here,
horizontal line means that the corresponding bit has value 1.

specify the bit and leave it undefined (). Thus, we define the expansion of
3/4 as 111000.. ., and define the modified Gray-code expansion as follows.

Definition 3 Let ¥ = {0,1} and P: I — X, be the map

0 (x <1h)
P(z) = L (z=1h)
1 (:U > 1/2)

Gray-code embedding G is a function from I to X¢ | defined as G(z)[n] =
P(t"(x)) (n=0,1,...). We call G(z) the modified Gray-code expansion of x.

We write image(G) C ¢ | for the image of the Gray-code embedding. We
have a topology on ¥ |, which is the subspace topology of the Scott topology
on X¢. G is actually a topological embedding of ['in 3¢ ; with respect to this
topology.

4 IM2-machine

We consider that information about a real number z is given incrementally
as shrinking open intervals a; < z < by, ay < x < by, ... converging to x.
We study how a machine can output the modified Gray-code expansion of x
on a tape based on this. When the information z < 1/2 or 1/2 < x is given,
it can write 0 or 1 on the first cell, respectively. However, when z = 1/2,
neither information is given and therefore it cannot fill the first cell eternally.
However, in this case, it obtains the information 1/4 < z < 3/4 at some time,
and it can write 1 on the second cell skipping the first one if it is allowed to
write a character not only on the leftmost unfilled cell but also on the next
unfilled cell. After that, if the information 1/4 < 2 < 1/2 0or 1/2 < x < 3/4

is given, it can write 0 or 1 on the skipped cell, respectively, and if it has
the information 3/8 < z < 5/8, it can write 0 on the third (i.e., the second
unfilled) cell. In this way, when x = 1/2, the first cell is left unfilled and the
sequence 1000... is written from the second cell. Thus, if we consider that
the output tape is filled with L at the beginning, we can output the modified
Gray-code expansion on the tape.

We can formulate this mechanism to write on the first or the second unfilled
cell as an output with two heads. We consider two heads on each tape which
move automatically after an output so that they are always located at the first
and the second unfilled cell. That is, the two heads H; and H, are located at
the first two cells at the beginning, and only Hy moves to the next cell after
an output from H,, and H; moves to the position of Hy and Hy; moves to
the next cell after an output from H;. This is a generalization of the ordinary
stream access with one head, which moves to the next cell after an output.

As for the input, when the value of a cell is L, a machine cannot wait for it
to be filled because it may not be filled eternally. Therefore, in order to skip
a bottom cell and continue the input, we need two heads also on input tapes,
which move the same way as the output-tape heads. Then, when both of the
cells under the two heads are filled, a machine may have two possible inputs
which will cause two different computations. Therefore, it has nondeterministic
behavior and both of the computational paths must produce valid results. The
author used the word indeterminism and called the machine an IM2-machine
(indeterministic multi-head Type-2 machine) to distinguish it from the non-
determinism used for nondeterministic automatons. They are different in that
a nondeterministic automaton accepts a word when one of the computational
paths accepts the word, whereas our machine should produce a valid result
not depending on the computational path it takes. Though the word nonde-
terminism is commonly used for both purposes when we are talking about
programming languages, in order to identify the particular kind of nondeter-
minism which occurs in IM2-machines, I will use the word indeterminism for
IM2-machines also in this paper.

Definition 4 We define an IM2-machine in a general form so that it can
input/output n_L-sequences with n+1 heads on each tape. We say that an IM2-
machine has type (X9, ,..., X% ,¥¢) when it has & input tapes 11, . .., T}
of types X , ,..., X%, , and one output tape Ty of type X9 , . Though we
use the same alphabet ¥ for simplicity of the presentation, the character set
Y can be different for each tape, in practice. The tape T; has n; + 1 heads
H\(T;), ...,H,11(T;). The character set of T; is ¥, and the bottom 'L’ can
also appear on an input tape or an output tape. An IM2-machine has a set
@ of states (with one initial state gp) and a set of worktapes. Worktapes are
the same as Turing-tapes in that only one head exists on each worktape which
moves in both directions. For worktapes, we consider another character set I'

which includes the blank character 'B’. A machine has a set of computational
rules of the form

g i1(c1)y -y in(cr),wi(dy), ..., ws(ds) =
q,0(c),wi(d)),...,wi(d}), My(w),..., My(w!).

Here, ¢,¢" € Q, i; are heads of different input tapes, o is an output head of the
output tape, w;, w;, w; are worktapes, c;, ¢, d; and d; are characters from the
corresponding character sets, and M; (j =1,...,g) are '+’ or ’—’. Each part
of the rule is optional; there may be a rule without o(c), for example. Note
that "B’ can appear in d; and dj, but "L’ cannot appear in c¢; nor c.

The meaning of this rule is that if the state is ¢ and the characters under
i; (j=1,...,r) and the heads of w. (e =1,...,s) are ¢; and d,, respectively,
then change the state to ¢, write the characters cand dj (j = 1,...,) under o
and the heads of w}, respectively, move the heads of wj (j = 1,...,u) forward
or backward depending on whether A; = '+’ or '—’, and move the heads of
input/output tapes as follows. For each i; (j = 1,...,r) and o, when it is
H(T;) and the type of Tj is ¥, each head Hy(T;) (e < d < n) moves to the
position of Hyy1(T}) and H,1(7T;) moves to the next cell.

At the beginning, the inputs (pi,...,px) (pi € ¥¢,,) are put on the input
tapes, the output tape is filled with 'L’, worktapes are filled with the blank
character 'B’, and the state set to the initial state. It repeats infinitely the
selection of one of the applicable rules and its execution. We call a sequence
of rules executed by a machine a computational path. We say that it outputs
q € 39 ,,, when there is a computational path with which the output tape Tp
satisfies To[k] = ¢ at some finite time when ¢[k] = ¢ for ¢ € X, and Tylk] = L
eternally when ¢[k] = L.

As we have noted, an IM2-machine has indeterministic behavior and thus it
may have more than one computational path to the same input, and thus it has
the possibility to output many different results to the same input. Therefore,
an IM2-machine defines a partial multi-valued function.

Definition 5 An IM2-machine M of type (X9, ,..., %%, X9) realizes a
partial multi-valued function f from ¥f , x ... x X7 =~ to X9 " if, when
a tuple of arguments in dom(f) is given, M outputs infinitely under all the
computational paths of M, and the set of outputs to (p1,...,pr) € dom(f)
is a subset of f(pi,...,pr). When such an M exists, we say that f is IM2-
computable.

In this definition, a multi-valued function f is considered as a specification
which M must satisfy. This specification is 'weak’ in the following two senses.
Firstly, the behavior of M to p ¢ dom(f) is not specified and it may output

some value to p € dom(f). Secondly, a = f(q) means that M must produce an
element of a but M need not have the possibility to produce all the elements
of a. From these properties, the following lemma is apparent.

Lemma 6 (1) If f is IM2-computable and g is its restriction to S C dom(f),
then g s also IM2-computable.

(2) If f is IM2-computable, dom(f) = dom(g), and f(p) C g(p) for all p €
dom(f), then g is also IM2-computable.

k+1

Definition 7 Let ¥ = {0,1}. An IM2-machine M of type (X7 },...,%7)
realizes a partial multi-valued function f from I* to I if the embedding of f in
(3¢ ,)F = X%, by G is realized by M. In this case, we say that f is Gray-code
computable. We define the computability of a partial function as a special case
of that of a multi-valued function.

Theorem 8 ([10]) A partial (multi-valued) function f from 1% to T is Gray-
k+1

——~
code computable iff it is (Jsn, - .., 0sn)-Type2-computable.

In [9] and [11], it is shown that there is an embedding of any n-dimensional
separable metric space in X3¢ | . Therefore, when we fix such an embedding, we
can also introduce computability notion on such spaces through IM2-machines.

5 Impossibility of implementing IM2-machines in functional lan-
guages

We consider how the behavior of an IM2-machine can be expressed in the
syntax of a lazy functional programming language, as a recursively defined
function which inputs and outputs infinite lists. The states and worktapes are
treated in the same way as those of a functional-language implementation of
a Turing machine. That is, the recursive function has extra arguments for the
state and the contents of the worktapes before and after the head positions,
with the order reversed on the before part. As for the inputs and outputs with
multiple heads, we express as follows. Here, we explain with the two-head case.

First, the output. The return value of the function is an infinite list which
consists only of unfilled cells of the output tape. Therefore, the two heads
are considered as located at the first two members of the list. Thus, we can
express the output from the first head as c:foo() with ¢ the character 0 or
1 and foo () the recursive call to produce the rest of the output. The output
from the second head is written as x:c:xs where x:xs=foo(), with the same
meanings for ¢ and foo(). Note that, in both cases, the new head positions

of a machine are the first two members of foo ().

As an example, we consider the partial function stog :C I' — X4 ; which
converts the signed-digit representation to the modified Gray-code expansion
for T' = {0,1,—1} and ¥ = {0,1}. The IM2-machine which realizes stog has
the type (I, X4 ;). Tt has 4 states (0,0), (0,1), (1,0), and (1, 1) with (0,0) the
initial state, and it does not use worktapes. It has 12 computation rules with
the following forms [10].

(0,0), 1(0) = (0,1), Hy(O)(1);

This line means, when the state is (0,0) and the input from the head of tape
I is 0, the machine changes the state to (0,1) and outputs 1 from the second
head of the output tape O. The Haskell program produced from this rule is
as follows:

stog(xs) = stog0(xs,0,0)
stog0(0:xs,0,0) = c:1:ds where c:ds = stog0(xs,0,1)

This program is equivalent to the following three-line program which is com-
posed by considering the recursive structure of Gray-code embedding.

stog(l:xs) = 1l:nh(stog xs)
stog(-1:xs) = O:stog xs
stog(0:xs) = c:1:nh ds where c:ds= stog xs

Here, nh is the function to invert the value of the first element of an infinite
list, defined as follows.

not O 1
not 1 =0
nh (s:ds) = not s:ds

This is a correct Haskell program and it works as expected; the execution of
stog([0,0..]1) has no output because it starts computing the value of the
first cell, which is L, but the execution of tail(stog([0,0..]1)) will produce
[1,0,0,0... infinitely.

Next, the input. As is the case for the output, the argument corresponding to
an input tape is an infinite list composed of those cells which have not been
read by the machine, and we consider that the two heads are located at the
first two elements of the list. It looks natural to express such a function as
follows, using pattern matching on the first and the second argument.

10

foo(0:xs,..) = bari(xs,..)
foo(l:xs,..) = bar2(xs,..)
foo(c:1:xs,..) = bar3(c,xs,..)
foo(c:0:xs,..) = bar4(c,xs,..)

Note that this definition has an overlap between the first two lines and the
rest, corresponding to the indeterministic behavior of our machine. As an
example, consider the partial multi-valued function gtos :C 3¢ | = I'¥ which
converts the modified Gray-code expansion to the signed digit representation,
and express the behavior of an IM2-machine which realizes gtos. Here, we only
list a program which is written based on the recursive structure of Gray code
embedding.

gtos(0:xs) = -1:gtos(xs)
gtos(l:xs) = l:gtos(nh xs)
gtos(c:1:xs) = O:gtos(c:nh xs)

Note that we do not need to express the case for c:0:xs because the second
character of the argument to gtos is inverted on the third line.

This program uses the correct Haskell syntax. However, the meaning of this
program in Haskell is different from our intention. The meaning of this pro-
gram is as follows. Evaluate the argument to a cons cell and then evaluate the
head of the cell. If the value is 0 or 1, then apply the first two rules. If it has
other values, then it tries to apply the third rule. Thus, if the evaluation of
the head of the argument does not terminate, it cannot apply the third rule
even if the value of the second element is 1. Therefore, the execution of gtos
(stog [0,0..]) diverges instead of producing [0,0,0,....

As another example, the addition algorithm with respect to Gray-code is pre-
sented in [10]. The algorithm is also written in the Haskell syntax, and it
diverges for dyadic numbers when executed in Haskell.

Of course, if we express an n_L-sequence as an infinite list of pairs of the form
(head-number, character) such as [(2,1),(1,0),...], we can implement the
behavior of an IM2-machine in Haskell. We consider a character set =y, =
{a") |a € %,i€{1,2,...,n+1}} and assign a”) to the pair (4, a). The function
which maps an infinite sequence in =y ,“ to the corresponding n_-sequence
is a representation of X% . When this representation is combined with the
Gray-code embedding, it comes to be a representation of I equivalent to the
signed-digit representation. In particular, it is redundant and 1®0®M ... is
equivalent to 0M1™M . In this paper, we are interested in implementations
which treat each nl-sequence as an infinite list of ¥ which may contain at
most n copies of L.

The multi-valued function gtos has no computable choice function, i.e., there

11

is no single-valued computable function which is a subset of gtos and which
has the same domain as gtos. If such a choice function exists, by composing
it with the stog function, we have a computable function I'Y — I' which de-
termines the normal form of the signed-digit representation, which is known
to be impossible[17]. This fact means that the gtos function cannot be imple-
mented in a deterministic language. In the following theorem, we also show
the existence of a single-valued IM2-computable function not expressible in a
sequential functional language. Here, a sequential functional language means
a language in which the “parallel or” operator cannot be expressed.

Theorem 9 When we express an n_L-sequence directly as an infinite list which

may contain at most n copies of L, there is an IM2-computable single-valued
function not expressible in a sequential functional language.

PROOF. Let ¥ = {0, 1}. Consider the function pors : ¥4 ; — X defined
with the following Haskell syntax.

dom(pors) = ¥“ U L1¥* U1L1%¥

pors(0:0:x8) = 0:xs
pors(l:c:xs) = 1:xs
pors(c:1:xs) = 1:xs

pors is an IM2-computable single-valued function. Suppose that pors is a pro-
gram which implements the pors function. Then, the parallel-or operator can
be expressed as por(c,d) = head pors(c:d:[0,0..]). Therefore, pors cannot
be expressed in a sequential functional language. [

It does not mean that we always need parallel execution mechanism for ex-
pressing the behavior of an IM2-machine. Actually, we have only one thread
of computation in an IM2-machine, whose result is given at the first or the
second cell of a tape. This theorem says that when a functional language is
considered and ¥, is implemented as the (infinite) list type and therefore
we can use the ’cons’ operator on the type, then we need parallel execution
mechanism for expressing IM2-computable functions. When a 11 -sequence is
given as an output of an IM2-machine, it has the property that the first or the
second element is computed as the result of one sequential computation. How-
ever, when ¢ | is implemented as the (infinite) list type, we cannot assume
this property because we can construct, with the cons operation, an infinite
list whose first two elements may be unrelated. This is actually what we did
in the above proof.

12

6 The language GHC (Guarded Horn Clauses)

Our goal is to find a platform on which we can execute our real-number algo-
rithms with Gray-code. As we studied in the previous section, we cannot use
sequential functional languages. In the following sections, we study implemen-
tations of IM2-machines in committed choice logic programming languages.

GHC (Guarded Horn Clauses) is a simple parallel logic programming lan-
guage for programming with communicating processes. It is based on Horn-
clause logic programming, and has the notion of guarded clause and committed
choice. In this language, the system does not search solutions by backtrack-
ing. Therefore, the value of a variable once computed is never revoked. In the
following sections, we will study implementations of IM2-machines in the lan-
guage KL1[13], which is based on the concept of Flat GHC [14,15]. Since Flat
GHC is a sublanguage of GHC, we will simply call the language GHC.

A GHC program is a set of guarded clauses of the following form:
H :- Gl,...,Gn | Bl,...,Bm.

Here, H, G;’s, and B;’s are atomic formulas. H is called a clause head, G;’s are
called guard goals, and B;’s are called body goals. The part of a clause before
“1” (including the clause head) is called the guard, and the rest is called the
body. The guard specifies the condition which needs to be satisfied to apply
the clause. The body specifies the action to be taken when it is selected. When
a goal G satisfies the guard of some program clause, we say that G is ready,
and otherwise, G is suspended. Fach variable in GHC is a logical variable; a
data some of whose part includes variables can be assigned.

In implementing IM2-machines, we only use integers and lists. In addition, we
do not use guard goals and thus use clauses of the form

H :- B,,...,By.

In this case, a goal is ready when it matches the head of one of the clauses.
As body goals, we only use unifications (i.e. goals with predicate =) and
invocations of user-defined predicates. Body unifications are used to generate
a substitution and constrain the possible values of variables.

For the execution of a program, we consider a multi-set of goals, called the goal-
set. The execution of a program starts with the initial goal-set “{main}”, and
proceeds as follows. (1) One ready goal A is selected from the goal-set. (2, the
reduction step) Choose one clause C whose guard is satisfied by A, execute the
unification goals in it, and replace the goal A in the goal-set with the body of
C'. (3) Repeat these steps until the goal-set becomes empty. In GHC, the word

13

main :- pinf(Y), sum(X,Y), naturals(0,X).
naturals(N, X) :- X = [N|XX], N1 := N + 1, naturals(N1, XX).
sum([X|XX],Y) :- Xmod 2 =:=0 | Y = [XI|YY], sum(XX,YY).
sum([X[XX],Y) :- X mod 2 =\= 0 | sum(XX,Y).
pinf ([N|Y]) :- builtin:print(N), pinf(Y).

Program 1. A program example of GHC

process is used informally as a goal whose reduction is recursively defined and
thus produces a goal with the same predicate. Processes communicate with
each other through variables shared by them.

Program 1 is a simple GHC program which outputs even numbers infinitely.
It is composed of three processes. naturals(0,X) produces an infinite list
0,1,2,3,4,.... sum(X,Y) writes the input value of X to Y when it is even,
and discards it when it is odd. pinf(Y) displays the value obtained from
the input stream. =:= and =\= are equality and in-equality predicates, re-
spectively. We explain how this program is executed. {main} is the initial
goal-set, which is reduced to {pinf(Y), sum(X, Y), naturals(0,X)}. In this set,
only naturals(0,X) is ready and therefore it is selected. After the reduction,
X is bound to [0]XX] and naturals(0,X) is replaced with naturals(1,XX) in
the goal set. Then, since [0|XX] matches [X|XX] and 0 mod 2 =:= 0, the first
clause of sum becomes ready and is selected. Thus, Y is bound to [0]YY] and
pinf([0|YY]) becomes ready.

Note that this results from a particular order of evaluation to evaluate from
left to right in the goal-set. It is adopted in klic-3.003[16], which is an im-
plementation of KL1 for non-parallel computers. However, the language GHC
itself does not specify the order ready goals are selected. In particular, the lan-
guage GHC does not prescribe fair scheduling and thus a ready goal may not
be selected forever. In this example, since a goal with the predicate naturals
is always in the goal-set and it is also possible that this clause is always se-
lected and sum and pinf are never executed. In this sense, this is not a correct
GHC program. We will explain in Section 9 how to write a program which
does not rely on a particular scheduling policy.

GHC has two kinds of nondeterminism. One is caused by the order in which
a goal is selected from the set of ready goals as we mentioned above. The
other one is caused by the choice of a clause when multiple clauses satisfy a
goal. The former one is usually called “and-nondeterminism.” The latter one is
usually called “don’t-care” or committed-choice nondeterminism. In KL1, we
can specify goal priority and clause priority to control these nondeterminism
to some extent. In this paper, we do not consider this priority mechanism and
study how the indeterminism of IM2-machines is related to the nondetermin-
ism of GHC programs.

14

main 1= pinf(ZZ),gtos(YY,ZZ) ,stog(XX,YY),inf0(XX) .

stog([-11X],YY) :- YY=[0]Y], stog(X,Y).
stog([11X1,YY) YY=[1/Y],nh(Z,Y),stog(X,Z).
stog([01X],YY) :- YY=[C,1|Y],nh(Z,Y),stog(X,[CIZ]).

gtos([0]Y],XX)
gtos([11Y],XX)
gtos([C,1|Y],XX):

XX = [-1|X],gtos(Y,X).
XX=[11X1,nh(Y,Z),gtos(Z,X).
XX=[01X],nh(Y,Z),gtos([CIZ],X).

inf0 (XX) :- XX = [0]1X], infO(X).

pinf ([X]|Y]) :- io:outstream([print (X),flush]l) ,pinf(Y).
nh (X, XX) .- X=[X0|X1],not(X0,Z) ,XX=[Z|X1].

not (0,X) - X =1.

not (1,X) :- X = 0.

Program 2. Conversions between Gray-code and the signed-digit representations.

7 Implementation in GHC

As is explained in the previous section, we can express process communications
through streams, simply by assigning the same logical variable to an argument
of the producer process and that of the consumer process. Since a logical
variable is used, we can assign to it a term which may contain variables. In
particular, we can instantiate the second member of a stream leaving the head
as a variable. Therefore, it is expected that an extended stream with multiple
heads can also be expressed and thus the behavior of an IM2-machine can be
implemented in this language.

Program 2 is an implementation of stog and gtos functions written in this
way in GHC. These programs have the same problem as Program 1, and it
works only with fair scheduling of ready goals, which will be discussed in
Section 9. This program is composed of 4 processes. inf0 produces an infinite
list [0,0,0,...], stog and gtos realize stog and gtos functions, respectively,
and pinf outputs the stream to the display. These processes are connected in
this order and the connections between inf0 and stog and between gtos and
pinf are ordinary streams and between stog and gtos is an extended stream
with two-head accesses.

As the last body-goal of the third clause of stog shows, we can leave the first
character unbound and instantiate the second character with 1. On the other
hand, since the check of the guard parts of the clauses are done in parallel, we
can naturally express and execute conditions of the form “if the first character
is 0 then execute something and if the second character is 1 then execute
another thing,” as the clauses of gtos show. In lazy functional languages,
we have demand-driven (or top-down) control in that the computation of an
expression starts when a request is given by the context. On the other hand,

15

in GHC, computation is done rather in a bottom-up fashion; it starts when
there is enough information to make it, and as the result, more information is
given as the bindings of the variables.

The computational rules of an IM2-machine can be translated into a GHC
program with one predicate as follows.

Translation 1: The translation is almost the same as the translation into
Haskell syntax in Section 5. We explain it for the following rule of an IM2-
machine of type (X% ,,3% 5,34 ,) for ¥ = {0,1}, which has the state-set
() C N (with the initial state 0) and one worktape W.

5, Hy(11)(0), W(0) = 7, Hy(0)(1), W (1), —=(W). (1)

This rule says that if the state is 5, the character under the second head of
the input tape I1 is 0, and the character under the head of W is 0, then move
to state 7, output 1 from the second head of the output tape, write 1 to the
head position of W, and move the head of W to the left. The GHC clause
corresponding to this rule is as follows:

mm(5, [D, O|X], YY, [T|W1], [0|W2], ZZ) - (2)
77 = [C, 1|Z], mm(7, [D|X], YY, W1, [T, 12}, [C|Z]).

By adding the following clause m which assigns the initial values, we complete
the translation.

m(XX,YY,ZZ) :- mm(0,XX,YY,[],ALLB,ZZ).

Here, ALLB is the infinite sequence [—1, —1,—1,...] with —1 representing the
blank character. Though GHC does not have the power to express infinite
sequences, we consider here an extended operational semantics which allows
bindings of infinite sequences to variables. Later in Definition 19, we will define
another realization which does not use such an extended semantics.

Definition 10 A partial multi-valued function f :C (X%)* = ¥ is real-
ized by a GHC-goal m(X1, ..., Xk, X0) if every execution of m(py,po, ..., pr,Z)
for (p1,...,pr) € dom(f) will produce on Z an element p of f(pi,...,px).
That is, for every infinite computational path of the program, there is a
p € f(p1,...,pk) such that a character c¢ is assigned to Z[k] when p[k] = ¢
and no value is assigned to Z[k] when p[k] = L. If f is realized by a GHC-goal,
we say that f is GHC-computable.

Through the comparison of the operational semantics of IM2-machines and
GHC programs, we have the following.

Theorem 11 Suppose that an IM2-machine M of type (3¢ ,, , ..., X4 59)

» = ng

16

15 translated into the GHC program m(X1, X2,...,Xk, ZZ) by Translation 1.
Then, a multi-valued function f:C X9 X ... x X9 =39 s realized by
M iff f is realized by m.

The program obtained through Translation 1 contains only one non-unification
goal in the body of each clause. Therefore, the goal-set contains only one goal
throughout the execution, and parallel execution is done only in the check of
the guards. Thus, “and-nondeterminism” is not used in implementing [IM2-
machines as GHC programs and indeterminism of an IM2-machine corre-
sponds to the committed-choice nondeterminism of GHC programs, among
the two kinds of nondeterminism of GHC we explained in Section 6. We will
discuss this again in Section 9.

Corollary 12 When we consider multi-valued functions in 39 , x...x¥9¢ =
th_ no’

IM2-computable functions C GHC-computable functions.

This inclusion relation is strict in general. As a counter example, consider the
identity function id, from 3% , to XY . It is realized by the GHC program

idghc(X,Z) :- X = Z.

However, it is not realizable by an IM2-machine. A candidate for an IM2-
machine realizing the identity function on ¥¢ ; for ¥ = {0, 1} is the following:

id(folX], Y) - Y
id([11X], Y) - Y
id([C,01X1, Y)
id([C,11X1, Y)

[01z], id(x, 2).
[11z], id(X, 2).
= [D,01Z], id([CIX], [DIZz]).
= [D,11Z], id([CIX], [DIz]).

|
=<

Here, we present the GHC program obtained through Translation 1 for sim-
plicity. This program may activate only the third rule for the input [0, 0,0, ...].
That is, the first head may be left at the first cell and [L,0,0,0...] may be
produced as the result. Therefore, this IM2-machine does not realize id,,.

Proposition 13 1) When f :C ¥¢ | = X4 is IM2-computable and p < q

for p,q € dom(f), we have f(p) C f(q).
2) idy, is not IM2-computable for n > 1.
In particular, there is a GHC-computable function which is not IM2-computable.

PROOF. 1) Suppose that an IM2-machine M, when applied to p, produces
r following a computational path L. Then, for every ¢ > p, M can take the

17

same computational path and thus may produce the same output r.
2) Immediate from (1).]

This proposition means that we cannot show that a function is IM2-computable
by giving a GHC program. However, as we show in the next section, when re-
stricted to image(G) C X | of the image of the Gray code embedding, TM2-
computability and GHC-computability coincide. Therefore, when we consider
real number computation, we can use GHC programs instead of IM2-machines.

8 The equivalence of IM2- and GHC-computability for real num-
ber computation

In this section, we show the equivalence of IM2-computability and GHC-
computability of real-valued functions encoded through the Gray-code em-
bedding. We prove this fact more generally for the case that a function is
defined on subspaces of X9 | composed of minimal limit elements of some
domain structures [11].

First, we prepare some notions which we use in this section. In this paper,
we use the word domain for an w-algebraic pointed dcpo. We write K (D) for
the set of finite (i.e. compact) elements of D, and L(D) for the set of limit
(i.e. non-finite) elements of D. We write K(z) for the set of finite elements
below x. We consider domains with concrete structures. When P is a poset,
we define the level of d € P as the maximal length of a chain 1p = ay <
a1 < ...<a, = d, when it exists. We say that a domain D is stratified if each
e € K(D) has a level. When D is a stratified domain, we write K, (D) for the
set of level-n finite elements of D, K, (p) for K(p) N K,,(D), and K,(S) for
U{K,(p) | p € S}. Thus, when D is a stratified domain, K (D) is stratified as
K(D) = Ky(D)UK(D)U...and K¢(D) = {Lp}. The poset (X%, <) forms a
stratified domain, with K(X9) = % . For 3¢, the level of d is just the number
of ¥-characters in d. In a poset P, when d < d' and there is no element e such
that d < e < d', we say that d' is an immediate successor of d and call the
pair (d,d’) a successor pair or an edge from d to d’. We write succ(d) for the
set, of outgoing edges from d.

We say that a domain D has enough minimal limit elements if, for each y €
L(D), there exists a minimal element x of L(D) such that x < y. The domain
¥4 does not have enough minimal limit elements. On the other hand, we can
show that every finite-branching domain (i.e., stratified domain D such that
suce(d) is a finite set for every d € K (D)) has enough minimal limit elements
[11]. We write M (D) for the set of minimal elements of L(D) when D has
enough minimal limit elements.

18

000 00b1 001 0b10 011 01b1l Olb bl00 110 11bl 111 1bl0 101 10b1l 100

NN NN NN N

~ L~

Fig. 2. The structure of Dg. In this figure, b means 1.

We write Dy, for the subdomain of ¢ with K (Dx,) =¥ , and L(Ds,) =
¥4 - Note that K(Dsy) and L(Dx,) are the sets of finite-time and infinite-
time states of tapes of IM2-machines, respectively. Dy, is a finite-branching
domain and M (Dy,) is the set of bottomed sequences with just n copies of
1. We write Dg for the subdomain of Dy, ; which corresponds to Gray-code.
That is, L(Dg) = X UX*110¥ and K(Dg) = X* UX*L10* for ¥ = {0, 1}, as
Figure 2 shows. Dz is a finite-branching domain and M (Dg) is the image of
the Gray-code embedding G, and thus homeomorphic to I.

We introduce a labelling of edges of K(Dy,) with the character set =y,
defined in Section 5, so that the label o is assigned to an edge filling the
i-th unfilled cell with a. For example, the edge from 1“ to L11% is labeled
with 1 and the edges from 111% to 1101“ and from 110L1“ to 010LY
are labeled with 02 and 0", respectively. Then, this labelling induces, for
a subdomain D of Dy, a naming system (i.e., a partial surjective function)
bK(p) : Exn” — K (D) and a representation ¢,py : Zx," — L(D).

Our goal is to use subdomains of Dy, ,, to restrict the behavior of IM2-machines.
We say that D is a nl-domain when (1) K(D) C K(Dsx,) and L(D) C
L(Ds,), (2) the embedding of D in Dy, is full (i.e., d < ein D iff d < e in
Ds.,,) and preserves the least element, the levels of finite elements, and the
supremums of directed sets, and (3) the set ¢[}1(D)(K(D)) is recursive.

From (2), the level of d € K(D) is just the number of Y-characters in d, and
an edge from d to d' corresponds to an operation to fill one unfilled cell of
d. Therefore, K (D) is defining a restriction on the way a tape is filled by an
IM2-machine, and L(D) is the set of n_L-sequences obtained as an output of
an IM2-machine which outputs an element of K (D) at each finite time. The
condition (3) is equivalent to the condition that for each d € K(D), the set
succ(d) is computable from the ¢xpy-name of d.

Ds. , is an nL-domain with succ(d) = =y, for every d, and Dy is a 1 L-domain
with suce(d) = {00,110 12} when d € ¥* and suce(d) = {0, 10,02}

19

when d € ¥* 1 10*. When = € L(D), every infinite strictly increasing sequence
in K (z) converges to an element of y € L(D) such that y < z. Therefore, the
following lemma is immediate.

Lemma 14 When D is an nl-domain and x € M (D), every infinite strictly
increasing sequence in K (x) converges to x.

Definition 15 Let D; (i =0,...,k) be n; L-domains. A partial multi-valued
function f :C L(D;) X ... x L(Dy) = L(Dy) is (D ..., Dy, Dy)-IM2-realized
by an IM2-machine M iff f is realized by M and M inputs/outputs n;L-
sequences only following the structure of K(D;) on each input/output tape
T; (i =0,1,...,k). We say that f is (D; ..., Dg, Dy)-IM2-computable when
there is an IM2-machine which (D; ..., Dy, Dg)-IM2-realizes f.

For ') € 2y, we say that an IM2-machine inputs/outputs as a(?) specifies
when it inputs/outputs a from the i-th head.

Proposition 16 When D is an nl-domain, the identity function on M (D)
is (D, D)-IM2-computable.

PROOF. First, note that succ(d) C Ex,, and therefore succ(d) is selected
from the powerset of =y, ,,. We consider a machine M which has the state set
the union of the powerset of =y, ,, and {—1}. For each o C Zy,,, and a € a, M
has a rule which says that if the state is a and it has an input specified by a,
change the state to “-1”, output as specified by a, and put a to the end of a
worktape . That is, W remembers ¢ (p)-name of the sequence it has already
input. When the state is “-17, it calculates o = suce(d) for the current input
state d written on W, and change the state to «. When a sequence p € M (D)
is given on the input tape, M inputs p infinitely, and therefore the way M
inputs p forms an infinite increasing sequence in K (D). Since it converges to
p by Lemma 14, M reads all the characters of p, and copies it to the output
tape.]

From the definition, when D; is an n; L -domain, (Dy, ..., Dy, Dy)-IM2-computability
implies IM2-computability. The converse is also true if f is defined on M (D;) x
... X M(Dy):

Proposition 17 Let f :C M(Dy) x ... x M(Dy) = M(Dy) for D; an n;1-
domain. If f is IM2-computable, then f is (D; ..., Dy, Dy)-IM2-computable.
In particular, f is realized by a machine which inputs characters from all the
input tapes simultaneously, and behaves deterministicly inside in the sense that
iof two executions of M have the same order of inputs, then they have the same
computational path.

20

PROOF. Suppose that an [M2-machine M of type (X, ,...,%% 59)
which realizes f is given. The new machine M’ has worktapes to remember
the contents and the head positions of the input tapes of M. M’ simulates the
behavior of M. That is, (1) if there is an applicable rule of M to the contents of
the worktapes, then execute it. (2) If there is no applicable rule, M’ reads one
character form each input tape in the same way as we did in Proposition 16
and copy them on worktapes. M’ repeats (1) and (2). If M’ has the stage (2)
infinitely many times, M’ reads all the characters of the input tapes from the
proof of Proposition 16. Therefore, at least one rule of M becomes applicable
after a finite repetition of stage (2). This means that M’ simulates an infinite
computational path of M. In step (1), a machine can judge if each rule is
applicable or not because M’ uses only worktapes which includes 'B’ instead
of L. Therefore, we can define M’ so that M’ searches for an applicable rule of
M in a deterministic way. When M has an output, the location of the output
may not be allowed by the structure of K'(Dy). Therefore, M’ first stores it on
a worktape, and M’ outputs only when the content of the worktape becomes
a member of K (D).]

In Proposition 17, we considered a simulation of an IM2-machine by another
IM2-machine. In the same way, an IM2-machine can simulate a GHC-program
when the function it realizes is restricted to M (Dy) x...x M (Dy) = M(Dy). In
this case, an IM2-machine can copy the inputs to the worktapes incrementally
as we did in Proposition 17. Since an IM2-machine is a generalization of a
Turing machine, we can also write an interpreter of GHC as an IM2-machine.
After each step of the execution of a GHC-program, it checks what is bound
to the variable corresponding to the output stream, and it outputs when the
content of the variable is a member of K (Dy).

Theorem 18 1) When f :C M(D;) X ... x M(Dy) = M(Dy) for D; an
n; L-domain (i =0,...,k), [is IM2-computable iff f is GHC-computable.

2) In particular, f :C I¥ = 1 is Gray-code computable iff its embedding in
(29)F =59, by G is GHC-computable.

This justifies the use of GHC, instead of IM2-machines, as a language to de-
fine effectivity on the reals. Therefore, GHC programs like Program 2 can be
considered as defining Gray-code computable functions, and those programs
written in the Haskell syntax which can be directly translated into GHC pro-
grams can also be considered as defining Gray-code computable functions.

21

main 1= pinf(ZZ),gtos_d(YY,ZZ),stog_d(XX,YY),infO0(XX) .
infO([X1/X]) :- X1 = 0, inf0(X).

gtos_d(YY, [X1IX]) :- YY = [V1,Y2]Y], gtosi(YY, [X1]X]).
gtos1([0]Y], XX) :- XX = [-1]X], gtos_d(Y, X).

gtos1([11Y], XX) :- XX = [11X], nh(Y, Z), gtos_d(Z, X).
gtos1([C,1]Y], XX) :- X1 = [0]|X], nh(Y, Z), gtos_d([C|Z], X).

stog_d(XX, [Y1,Y2]Y]) :- XX = [X1]X], stogl(XX, [¥1,Y2]Y1).
stogl([-11X], YY):- YY = [0]Y], stog_d(X, Y).
stogl([1IX], YY):- YY = [1]Y], nh(Z,Y), stog_d(X, Z).

stogl([0|X], YY):- YY = [C,1]Y], nh(Z, Y), stog_d(X, [C|Z]).
Program 3. Demand-driven implementations of gtos and stog in GHC

9 Demand-driven implementation in GHC

We define the composition of GHC processes as we did in the main clause of
Program 2. That is, by sharing a logical variable between a producer process

and a consumer process. Suppose that m; (i = 1,...,k) are GHC processes
realizing f; :C YV} x ... x Y, = Z; and n is a GHC process realizing g :C
Zy X ... X Zy = Z. Then, we write no (my,...,m) for the process composed
by connecting the ¢-th input of n with the output of m; for ¢ = 1,...,k, and
assigning the same variable to the j-th inputs ofmy, ..., m, foreach j =1,...,L.
Then, it is expected that no (my,...,m) realizes g o (fi,..., fr). However, it
it not true; when we cannot expect fair scheduling, there is a computational
path that executes only the clauses of m; and no (my, ..., m) does not have an
output.

In [10], it is proved that g o (f1,..., fx) is IM2-computable if the component
functions are IM2-computable. However, the set of rules of the IM2-machine
for g o (f1,..., fx) is not a simple collection of the rules of the components,
but rather a complicated one in order to ensure that all the components are
fairly scheduled. When we consider an implementation in a real programming
language GHC, a function composition should be expressed as a composition
of processes.

For the case of usual stream programming in GHC, this problem is solved by
writing each process in a demand-driven way. That is, the producer process
is kept suspended until the consumer process raises a demand for a value. A
demand can be conveyed from the consumer process to the producer process
by instantiating the variable representing the stream with a cons cell.

This programming technique applies also to the case of multi-head stream
access. The clauses stog_d and gtos_d in Program 3 are the stog and gtos
functions rewritten in this way, respectively. One thing to note is that we need
to instantiate the variable representing the stream not with one cell but with

22

a list of cells with the length n 4 1, where n is the number of bottoms which
may appear on the stream. In this example, we instantiate it with a list of two
cells on the first line of gtos_d. Otherwise, the goal is activated by mistake
at the place one is preparing the new stream by removing the value given on
the second head (in this example, the body of the third clause of stogl).

We formalize this notion of a demand-driven GHC process, which starts the
calculation of the next output when a demand is raised by the consumer pro-
cess. We consider that a stream is filled following the graph structure of K (D)
for some n;l-domain D. For example, in the stog_d program, the output
stream is filled following K (Dg). GHC-computability defined in Definition 10
was based on an extended operational semantics which allows bindings of in-
finite sequences to variables. The computability we define here does not use
such an extended semantics.

Definition 19 Suppose that D is an nl-domain, p € L(D), and S C L(D).
We say that the goal m(X) D-dd-realizes p (or S) if it is suspended when X
is not bound to a sequence of cons cells of length at least n 4+ 1, and for
[> n +1, the execution of {m(X),X = [Z4,...,Z;]|Z]} produces an element of
K, . (p) (or K;_,,(S)) on X and become suspended. In addition, the execution
of {m(X), out(X)} with the following program produces infinite output on X,
which is p (or a member of 5).

out(X):X = [Zy, .. ., Zns1|Z], dd(X).
dd([0|X]):-out(X).
dd([1|X]):-out(X).

dd([C, 0|X]):-out([C|X]).

ad([Cs, . ., Cay 1X]):-0ut ([Cs, .. ., Ca[X]).

Here, a clause with the head predicate dd exists for each one-character output
of ¥¢ .

In this definition, it is more natural to change the set of clauses with the head
predicate dd depending on the string d € K (D) that m has already output,
so that it accepts only the elements of succ(d). We defined as above only
because it is equivalent and much simpler. Next, we define demand-driven
GHC processes which input and output n_L-domain elements.

Definition 20 Suppose that D; is an n; L-domain (i = 0,1,...,k) and f :C
L(Dy)x...xL(Dy) = L(Dy). We say that the goalm(X1,...,Xk, Z) (Dy,..., Dy, Dy)-
dd-realizes f (in short for (Dy,..., Dy, Dg)-realizes f in a demand-driven

way) if the following goal om(Z) Dg-dd-realizes the set f(pi,...,pr) when
oracle,, (X1) is any oracle goal which D;-dd-realizes p;.

23

om(Z) :- oracley, (X1),...,oracle,, (Xk),m(X1,...,Xk, Z).

Here, we allow an oracle goal which may not be expressible as a GHC pro-
gram. We say that f is (Dy,..., D, Dy)-dd-computable if there is a goal
m(X1,...,Xk,Z) which (Dy,..., Dy, Dy)-dd-realizes f.

Lemma 21 Suppose that the GHC goalm(X1,...,Xk,Z) (D, ..., Dy, Dy)-dd-
realizes f :C L(Dy) X ... x L(Dy) = L(Dy). Then, the following goal oms (Z)
Dy-dd-realizes the set f(S1,...,Sk) for Six... xSy C dom(f). Here, oracleg, (X1)
s any oracle goal which D;-dd-realizes S;.

oms(Z) :- oracles, (X1),...,oracles, (Xk),m(X1,...,Xk, Z).

Proposition 22 Suppose thatm; (i = 1,...,k) are GHC goals which (Dy, ..., Dy, E;)-
dd-realizes f; :C L(Dy) x ... x L(D;) = L(E;) and n is a GHC goal which

(Ey, ..., Ey, E)-dd-realizes g :C L(E)) x ... x L(Ey) = L(E). Then, no
(my,...,mg) (Dy,..., Dy, E)-dd-realizes g o (f1,..., fr)-

PROOF. Immediate from Lemma 21.]

Now, we define the following translation of an IM2-machine to a GHC pro-
gram.

Translation 2: We explain the translation for the computational rule (1) of
an IM2-machine of type (3¢ 5,34 5, %% ,) in Section 7. It is translated into
the following clause:

mr(5, [D, 0|X], YY, [T|W1], [O|W2], ZZ) (3)
27 = [C, 1/Z], mm(7, [D[X], YY, W1, [T, 1]w2], [c|Z]).

That is, only modifying the head predicate of the clause (2) obtained by
Translation 1 from mm to mr. In addition, we add the following clauses to the
whole program.
m(X, Y, Z):-mm(0, X, Y, [], ALLB, Z), al1b(ALLB).
mm(Q, XX, YY, W1, W2, [Z1, Z2|Z]):-XX = [X1, X2|X], YY = [Y1, Y2|Y],
w2 = [W|W3], mr(Q, XX, YY, W1, W2, [Z1, Z2|Z]).
allb([A[B]):-A = 0,allb(B).

It is expected that if M is an IM2-machine which (D; ..., Dy, Dy)-IM2-realizes

24

a multi-valued function f, then the GHC program m obtained by Translation
2 (Dy ..., Dy, Dy)-dd-realizes f. However, it is true only for a special type of
IM2-machine. For example, we can consider a Type2-machine which realizes
f:C ¥¥ — X% as a special case of an IM2-machine which (Dy, X*°)-IM2-
realizes f; it has two heads on the input tape but only uses H;. However,
the GHC program m obtained through Translation 2 does not (D 1, ¥*°)-dd-
realize f, because when executed with a oracle predicate oracle,(X) which
Dy, 1-dd-realizes p € £, oracle,(X) may instantiate X with [C, 1|X] and m does
not have a corresponding rule. Therefore, we define such a special kind of
IM2-machine, which accepts all the elements of succ(d) when it has already
input d.

Definition 23 Suppose that D; are n; L-domains (i = 0,1,...,k) and M is
an IM2-machine which (Dy,..., Dy, Dy)-IM2-realizes a partial multi-valued
function f. We call each finite-time state of M obtained with the input
(p1,--.,pk) € dom(f) a configurationof (M, ps, ..., pk), and the strings (dy, ..., d) €
K(p1) X ...x K(pg) read at that time the input-state of the configuration. We
say that M strongly (D, ..., Dy, Dy)-IM2-realizes f if, for each (py,...,px) €
dom(f) and for each configuration C' of (M, p,...,px) with the input state
(dy,...,dy) € K(p1) x ... x K(pg), if (a1, ..., a;) € succ(dy) X ... x succ(dy),
then there is a computational path starting from C' such that the next input
is a sub-tuple of (ay,...,a;). Here, the input of a computational rule can be
expressed as (by,...,b;) for b; € Zx,, U {L}, with b; = a € Zy,, when it
inputs from the i-th stream as indicated by a, and b, = L when it does not
have an input from the ¢-th stream. A sub-tuple means a tuple obtained by
replacing some components with L.

The proof of Proposition 17 shows that the machine M’ constructed in the
proof strongly (D, ..., Dy, Dy)-IM2-realizes f. Therefore, we have

Proposition 24 Let f :C M(Dy) x ... x M(Dy) = M(Dy) for D; an n;L-
domain (i = 0,1,...,k). If f is (D;..., Dy, Dy)-IM2-computable, then there
is a machine M which strongly (D; ..., Dy, Dy)-IM2-realizes f and which be-
haves deterministicly inside.

Theorem 25 Let D; be an n; L -domain (i =0,..., k). Suppose that an IM2-
machine M of type (E‘Lnl, D Dy E‘Lno) is translated into a program for
the goal m(X1,...,Xk,Z) by Translation 2. If a multi-valued function f :C
M(Dy) x ... x M(Dy) = M(Dy) is strongly (D, ..., Dg, Dy)-IM2-realized by
M, then f is (D, ..., Dy, Dy)-dd-realized by m.

PROOF. Consider the case k¥ = 2 and ny = ny = ng = 1. For (p1,p2) €
dom(f), the execution of { oracle,, (XX), oracle,, (YY), m(XX, YY, ZZ), ZZ = [Z1, Z2|Z]}

25

will cause the reduction of m, which will perform unifications XX = [X1,X2[X],
YY = [Y1,Y2]|Y], and W2=[W|W3], and thus one of X1 or X2 and one of Y1 or
Y2 is instantiated by the oracle predicates, and W is instantiated to 0 by allb.
Suppose that X2 and Y2 are instantiated to 0. Since M strongly (D;, Dy, Dy)-
IM2-realizes f, for each pair of values given on the input tapes, at least one
clause of mr is executable. When it executes a mr clause with inputs, after the
reduction of mm, the corresponding input streams are instantiated with lists of
cons cells with one more length, and thus oracle predicates will fill one more
characters. In this way, an element of succ(d;) x succ(ds) is given on the input
tape for (di,ds) the portions of the streams currently read by the predicate.
This repetition stops when a clause with an output is activated and a list of
cons cells with length 1 is bound to zz. [

Thus, we have two steps of translation. By Proposition 24, every IM2-machine
which (Dy, ..., Dy, Dg)-IM2-realizes f can be translated into an IM2-machine
which strongly (D, ..., Dy, Dy)-IM2-realizes f. Then, it is translated into
a GHC program which (Dy,..., Dy, Dg)-dd-realizes f by Translation 2, as
Theorem 25 shows. Note that, in many interesting cases, an IM2-machine
which strongly (Ds,. .., Dy, Dy)-IM2-realizes f is given from the beginning
and thus we do not need the first translation, as the following proposition
shows.

Proposition 26 If a total multi-valued function f : M(Dg)* = M(D) is
(DR, ..., Dr, D)-IM2-realized by M, then it is strongly (Dg, ..., Dgr, D)-IM2-
realized by M.

PROOF. First, consider the case k = 1. Dy has the property that for each
d € K,(Dgr), there is an element p € M(Dg) such that K, (p) = {d}. There-
fore, for a successor pair (d', d) in K(Dg) and a configuration C' with the input
state d’, M must have a rule to read the input from d’ to d so that it can input
infinitely when p is given as the argument, or it runs infinitely and produces
an output without reading the input any more. Since d and d’ are arbitrary, a
configuration with the input-state d’ must have all of the three ways of read-
ing the next character, or it can execute without reading the input forever.
Therefore, we have the result. The same argument applies to the case f has
more than one arguments. [

The goal stog_d in Program 3 (I'*°, Dy)-dd-realizes the stog function, and
gtos_d (Dg, [*™)-dd-realizes the gtos function. Program 4 is a GHC program
which (D, Dr, Dg)-dd-realizes the addition function (more precisely, it is the
average function pl(x,y) = (x +y)/2 in order to adjust the result to I) with
respect to the Gray-code embedding, which is based on the algorithm written

26

pl(A,B,[Z1,Z21Z]):-A=[A1,A2,A3|A],B=[B1,B2,B3|B],pl1(A,B,[Z1,Z22]|Z]).
pli([0lAl,[0IB],ZZ) :- ZZ = [0lZ], pl(A, B, Z).
pl1([11A],[11B],ZZ) :- ZZ = [11Z], pl(A, B, Z).
pli([O|Al,[1IB],Z):-Z=[C,1|W],nh(B,BN),pl(A,BN,R),[CID]=R,nh(D, W).
pli([1lA],[0IB],Z):-Z=[C,1|W],nh(A,AN),pl(B,AN,R),[CID]=R,nh(D,W).
pl1([C,1|A],[D,11B],ZZ) :- ZZ=[E,1]Z], nh(ES,Z), [E|ES]=R,
nh(A,AN), nh(B,BN), pl([C|AN], [D|BN],R).
pli([C,1,01A],[0,01B],ZZ):-ZZ=[0|Z],p1([C,1]A],[1|BN],Z),nh(B,BN).
pli([C,1,01A],[1,0IB],ZZ):-ZZ=[11Z],pl (AN, [1|BN],Z) ,nh([C,1|A],AN),
nh(B,BN) .
pli([C,1,0lA],[0,D,1|B],ZZ):-ZZ=[0,11Z] ,p1 (ANN,BNN,Z) ,nh([C|AN] ,ANN),
nh([DIBN], BNN), nh(A, AN), nh(B,BN).
pli([C,1,01A],[1,D,1IB],ZZ):-ZZ=[1,1]1Z],pl([C|AN],BNN,Z),
nh([D|BN],BNN), nh(A, AN), nh(B,BN).
pl1([0,0]A],[D,1,0IB],ZZ) :- ...
pli([1,01A],[D,1,0IB],ZZ) :- ... symmetric to the above 4 clauses.
pli([o,C,11A],[D,1,0IB]1,ZZ) :- ...

pli([i,C,11A]1,[D,1,01B],Z2Z) :- .
Program 4. GHC 1mplementat10n of p1

with the Haskell syntax in [10]. Though they are not direct translations of
IM2-machines, the translations from the Haskell syntax are essentially the
same as Translation 2. A slight difference is that, since the original algorithm
of pl reads two characters from each input 1.l-stream to determine which
clause to apply, Program 4 instantiates a list of cells with length three on the
first line. This is because the guard of the predicate pl1 requires two elements
out of the first three cells of each input stream.

Finally, we consider how programs written in a demand-driven way operates
not on M (D) but on L(D). Since an IM2-machine M which strongly (D, E)-
IM2-realizes f can accept, at the input-state d, all the inputs in succ(d), we
can consider that a sequence of suce(d) characters is the input. That is, we
can give, instead of p, an infinite sequence s € =y ,“ such that ¢L(D)(s) =p
as an input. When, in addition to this, the machine behaves deterministicly
inside, the computational path of a machine is determined uniquely based on
s € Zx,". This means that the machine is equivalent to a Type2-machine.
Therefore, by Proposition 24,

Proposition 27 Suppose that D; (i = 0 1,...,n) are n;L-domains. A partial
maulti-valued function f :C M(Dy)x. (k) = M(Dy) is (D1, ..., Dy, Dy)-
IM2-computable iff f is (¢r(Dy)s - - ¢L (Dy)» PL(Do)) - Type2-computable.

Theorem 8 can be derived from this proposition because the signed digit rep-
resentation is equivalent to ¢p(py. This proposition cannot be extended to
[:C L(D) = L(E). A counter example is the id,, function in Section 7, which
is obviously (¢r(py,,.)s PL(Ds..))-Type2-computable. As another example, con-
sider the total functions gftos : L(Dg) = T¥ and stog : ¥ — L(Dg) for T =

27

{0,1,T} and L(Dg) = S UX* 110%. stog is the extension of stog to I'” defined
by the same algorithm in Section 5, and gfos is an extension of gtos, which is
the inverse of stog. For example, we have gfos(010¥) = {T1¢,011¢,0011¢,...}.
We can show that gtos is not (Dg, T>®)-IM2-computable by Proposition 13 be-
cause gtos(010) does not include gtos(110¥) = {0¢}. On the other hand, gtos
is Type2-computable with respect to (¢r(py), idre).

Let D; be an n; L-domain (i = 0, ..., k) and consider that f :C L(D;) x ... x
L(Dy) = L(Dy) is realized by a Type2-machine M of type (ér(p,), - - -, PL(Dy)> PL(Dy))-
Then, by considering an input character a(? € Ex,n as indicating an input of a
from the i-th head, we can consider the rules of M as rules of an IM2-machine
of type (X4 ,,,,..., X9 .., X9 ,,,)- Then, applying Translation 2, we have a GHC
program m. Since a Type2-machine is deterministic, m has a unique compu-
tational path when the behaviors of the oracle predicates are fixed. We can
express the output of an oracle predicate oracle, as a sequence in ¢,py(p).
When the oracles output (si,...,s;) € =5, X ... x =5, , then the behav-
ior of m is just the same as the behavior of M to (sq,..., sg). Therefore, the
GHC program m (Dy, ..., Dy, Dy)-dd-realizes f. This is a strong result in that
it considers L(D) instead of M (D). For example, it says that the gtos func-
tion is (Dg, [*°)-dd-computable, whereas it is not (Dg, '*®)-IM2-computable.
Actually, the gtos_d process in Program 3 (Dg, '™°)-dd-realizes gtos.

In this way, when the consumer process is always waiting for the next input
to come and the inputs are processed one by one by the consumer process
in the order they arrive, we can consider that the computation proceeds in
a deterministic way. On the other hand, it is known in the theory of real-
number computation that nondeterminism and multi-valuedness are essential
properties of real-number computation. Therefore, when we consider that a
process inputs 3¢ |, which includes the set of real numbers as a subspace,
then we have nondeterminism and multi-valuedness. The above investigation
shows that this nondeterminism is caused by the multiple possibilities of the
order in which an input tapes is filled by an oracle predicate (i.e., the order
in which information about a real number is given by the environment).

10 Implementations in other programming languages, and conclu-
sions

As we have seen, our implementation of IM2-machines uses the notion of
guarded clauses and committed choice. Therefore, other parallel logic program-
ming languages with guarded clauses and committed-choice nondeterminism,
like PARLOG[3] and Concurrent Prolog|[8], can also be used instead of GHC.
We can also investigate the behavior of IM2-machines in the framework of
concurrent constraint programming [2,6], which also has the notion of logical

28

variables and guarded-choice nondeterminism.

SICStus Prolog, which is a dialect of Prolog, contains the primitive “freeze”
which blocks a goal until a variable is instantiated. Though “freeze” does
not have enough expressive power, when we combine “when” and “nonvar”
primitives, one can block a goal until at least one of a set of variables is
instantiated. With these primitives, we can express IM2-computable functions.

One can consider an extension of a lazy functional language for implementating
an IM2-machine[12]. Since we want to express (multi-valued) ‘functions’ over
the reals like addition and multiplication, it is desirable if we can express
them as functions in some functional programming languages. Then, we can
use higher-order mechanism like “map” and “foldr” to real number functions,
which is impossible with logic-based programming languages.

The notions of guarded clause and committed choice was introduced into logic
programming languages in order to express processes which run in parallel. It
is interesting that they are just the facilities we need for real number compu-
tation, and these mechanisms are applied to this completely different research
area.

Acknowledgements

Many people suggested me the possibility of using logic programming lan-
guages for real number computation based on Gray-code. Among them, the
author would like to thank to Hiroyasu Kamo and [an Gent. He also thanks
Alex Shimpson for reading a draft paper and giving me a lot of comments.

References

1] Samson Abramsky and Achim Jung. Domain theory. In S. Abramsky,
D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science Volume 3, pages 1-168. Oxford University Press, 1994.

2] Frank S. de Boer, Alessandra Di Pierro, and Catuscia Palamidessi.
Nondeterminism and infinite computations in constraint programming.

Theoretical Computer Science, 151(1):37-78, 1995.

(3] Steve Gregory. Parallel Logic Programming in PARLOG. Addison-Wesley,
1987.
[4] Simon Peyton Jones, Editor. Haskell 98 Language and Libraries, The

Revised Report. Cambridge University Press, 2003.

29

[5]

[7]

8]

[10]

[11]

[14]

[15]

Gordon D. Plotkin. Post-graduate lecture notes in advanced domain
theory. 1981.

V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundations of
Concurrent Constraint Programming. In Proc. 18th Ann. ACM Symp. on
Principles of Programming Languages, New York, 1991.

Ehud Shapiro editor. Concurrent Prolog: Collected Papers, Volume 1 and
2. The MIT Press, 1986.

Ehud Shapiro. Concurrent Prolog: A progress Report. IEEE Computer,
19(8):44-58, 1986. Also in [7], Chapter 5.

Hideki Tsuiki. Computational dimension of topological spaces. In
Jens Blanck, Vasco Brattka, and Peter Hertling, editors, Computability
and Complexity in Analysis, volume 2064 of Lecture Notes in Computer
Science, pages 323-335, Berlin, 2001. Springer.

Hideki Tsuiki. Real number computation through gray code embedding.
Theoretical Computer Science, 284(2):467-485, 2002.

Hideki Tsuiki. Compact metric spaces as minimal-limit sets in domains
of bottomed sequences. Mathematical Structure in Computer Science, to
appear, 2003.

Hideki Tsuiki and Keiji Sugihara. Extending Haskell with Multi-head
Stream Accesses. Submitted, 2004.

Kazunori Ueda and Takashi Chikayama. Design of the kernel language
for the parallel inference machine. The Computer Journal, 33(6):494-500,
1990.

Kazunori Ueda. Guarded Horn clauses. E. Wada, editor, Logic
Programming 85, volume 221 of Lecture Notes in Computer Science, pp
168-179. Springer, 1986. Revised version in [7] Chapter 4.

Kazunori Ueda, Designing a Concurrent Programming Language. In Proc.
an International Conference organized by the IPSJ to Commemorate the
30th Anniversary (InfoJapan’90), Information Processing Society of Japan,
October 1990, pages 87-94.

klic Home Page http://www.klic.org/ .

Klaus Weihrauch. Computable analysis, an Introduction. Springer-Verlag,
2000.

30

