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Every compact metric space X is homeomorphically embedded in an w-algebraic domain
D as the set of minimal limit (i.e., nonfinite) elements. Moreover, X is a retract of the
set L(D) of all limit elements of D. Such a domain D can be chosen so that it has
property M and finite-branching, and the height of L(D) is equal to the small inductive
dimension of X. We also show that the small inductive dimension of L(D) as a
topological space is equal to the height of L(D) for domains with property M. These
results give a characterization of the dimension of a space X as the minimal height of
L(D) in which X is embedded as the set of minimal elements. The domain in which we
embed an n-dimensional compact metric space X (n < co) has a concrete structure in
that it consists of finite/infinite sequences in {0,1, L} with at most n copies of L.

1. Introduction

When D is an w-algebraic domain, we can consider the set L(D) of limit (i.e., nonfinite)
elements of D as a topological space with the subspace topology of the Scott topology
of D, and the set K (D) of finite elements of D as its approximation structure. That is,
K (D) forms a base of the topology of L(D) through the identification of d € K (D) with
the open set 1d N L(D). We can use this domain-theoretic viewpoint for a topological
space X when X is embedded in L(D). In this case, K (D) also forms a base of X, and
each element of X can be identified as the limit of an infinite strictly increasing sequence
in K(D).

This viewpoint is particularly effective when D is composed of infinite sequences in
¥, ={0,1,L}. In this case, each cell of a sequence can be considered as representing a
boolean information and an infinite strictly increasing sequence in K (D) can be consid-
ered as an infinite (possibly uncomputable) process which incrementally outputs 0 or 1
to the cells based on the partial information about the point obtained so far. The order
the cells are filled may not be unique, and regulated by the structure of K (D). Some of
the cells may be left unfilled even after the infinite time of execution, and in that case,
the corresponding cell has the value L.

Many of the computational notions over topological spaces studied so far are related to
this idea of representing a computation as an infinite process with incremental outputs
based on partial information. A Type-2 machine (Wei00) can implement this kind of



Hideki Tsuiki 2

output because we can encode, as an infinite sequence of characters, an infinite list of
pairs composed of the index and the value of a cell. An IM2-machine (Tsu02) can directly
manipulate this kind of sequences with bottoms because it has the ability to skip some
of the cells with multiple-heads and indeterministic rules. And RealPCF (Esc96) realizes
computation over the continuous domain of closed intervals of R so that better and better
approximations to an interval are obtained as the evaluation proceeds. Embeddings of
topological spaces into domains are studied by many authors (WS81; Bla00; Eda97;
ES98) with the motivation to use effective structures of domains (Smy77) for the study
of computation over topological spaces, and, in particular, the embedding of R in an
w-algebraic domain is studied in (Gia99).

In order that this programme to embed a space X in L(D) for the study of the
topological and computational structure of X works very well, we assume that all the
infinite increasing sequences in K (D) are meaningful, and identifying one point of X.
That is, every process whose output at each finite time is valid and which continues to
output infinitely should be considered as designating a unique point of X. We first show
that, when D has property M (which is equivalent to Lawson-compactness because we
only consider w-algebraic domains), this condition is equivalent to that X is a Hausdorff
space densely embedded in D as the set of minimal elements of L(D) (Section 4). Note
that many of the domains studied in computer science such as P, = {u | « C N} and
Plotkin’s T“(Plo78) do not have minimal limit elements. We introduce a condition on
K (D) which guarantees the existence of enough minimal limit elements. That is, K (D)
is a finite-branching poset. A domain with this condition on K (D) is called a finite-
branching domain (fb-domain in short). In any fb-domain, the minimal limit elements
form a compact space.

We show that for each compact metric space X, there is a fb-domain D which contains
X as the set of minimal limit elements of D. Moreover, X is a retract of L(D). We first
present a fb-domain RD which has Z = [0, 1] as the set of minimal limit elements (Section
5). RD is usually defined as the domain corresponding to the signed digit representation
of real numbers, and this retract structure has already been investigated in (Gia99).
In this paper, based on the Gray-code embedding (Tsu02), we present this domain as
a subdomain of BD;, which is the set of finite/infinite sequences in {0,1, L} with at
most one copies of L. Then, we define a new product, called the synchronous product, of
fb-domains and construct domains corresponding to the n-dimensional Euclidean cube
7" (n=0,1,2,...) and the Hilbert cube Z¥ (Section 7). Finally, we prove the existence
of such a fb-domain for a compact metric space in general, based on Nobeling’s universal
n-dimensional space (N6b) for the finite dimensional case, and the universality of the
Hilbert cube Z% for the infinite dimensional case (Section 8).

When X is n-dimensional (n < 00), we construct all the fb-domains mentioned above
so that they are composed of finite/infinite sequences in {0, 1, L} with at most n copies
of L. In addition, we show that it is necessary to use at least n copies of L when X
is n-dimensional and D has property M. For this purpose, the topological dimension of
the set of limit elements of a domain is studied. It is proved that the small inductive
dimension of L(D) is equal to the maximal length of a chain in L(D) when D has property
M (Section 5). Thus, we have a characterization of the dimension of a space X as the
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minimal height of L(D) in which X is embedded as the set of minimal elements. This is
a generalization of the result in (TsuOla), and the proof is simplified a lot by thinking
about the dimension of L(D) in general.

2. Preliminaries and notations

First, note that we use the word domain for an w-algebraic pointed dcpo in this paper.

Infinite Sequences

In this paper, we fix the character set ¥ as {0,1} unless otherwise noted. We write
¥* for the set of finite sequences of X, and ¢ for the set of infinite sequences of X.
¥* forms a tree (and thus a poset) with respect to the prefix ordering. We sometimes
identify an infinite sequence with an infinite tape, and call each place to write a character
a cell. A bottomed sequence is an infinite sequence of ¥, = ¥ U {Ll}, where L means
undefinedness. In other words, it is an infinite tape some of whose cells may not be filled
by a character in 3. We write 34 for the set of bottomed sequences. When o € ¥4, we
write a[j] (j =0,1,2...) for the j-th component of a. When a[j] = L for j > n, we say
that « is a finite bottomed sequence.

Domain Theory

Let (P, <) and (@, <) be partially ordered sets (posets). When d,e € P, we write d < e
ford < eandd # e, 1d for the set {d' € P |d" > d}, and |d for the set {d' € P | d' < d}.
We also write 1A (or JA) for the set Usea Ta (or Usea Ja) and say that a subset A is
upper-closed (or down-closed) when TA = A (or JA = A). We say that a pair of elements
d and e are bounded if d and e have an upper bound, and write d 1p e, or d T e when P
is obvious.

A subset A of a poset P is directed if it is nonempty and each pair of elements of
P has an upper bound in A. A directed complete partial order (depo) is a partial order
(D, <) where every directed subset A has a least upper bound (lub) LA, also called the
supremum of A. A poset P is pointed if it has a least element. A finite element of a dcpo
D is an element d € D such that for every directed subset A, if d < LUA then d < a for
some element a € A. We write K (D) for the set of finite elements of D. An element of D
is called a limit element when it is not finite. We write L(D) for the set of limit elements
of D. We write K, for K(D)N Jx. A dcpo D is algebraic if K, is directed and UK, = =
for each z € D, and it is w-algebraic if D is algebraic and K (D) is countable. In this
paper, we use the word domain for an w-algebraic pointed dcpo. See, for example, (AJ94;
Plo81; SLG94) for expositions of the theory of domains.

An ideal of D is a directed down-closed subset. When P is a countable poset with
least element, Idl(P), the set of ideals of P ordered by set inclusion, becomes a domain
called the ideal completion of P, and satisfies K(Idl(P)) = P. On the other hand, when
D is a domain, we have Idl(K (D)) 2 D. Therefore, K (D), the set of finite elements of
D, determines the structure of D. We say that an ideal of K (D) is principal (or non-
principal) if its supremum is in K (D) (or L(D)). When D is a domain and a1 < a2 < ...
is an infinite strict increasing sequence in K (D), it determines a non-principal ideal
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{r € K(D) | z < a; for some i} of K(D) and thus determines a point of L(D). A
domain D is bounded complete if every bounded pair has a supremum.

The Scott topology of a dcpo P is defined so that a subset O is open iff it is upper-closed
and for each directed subset S of P with LIS € O, s € O for some s € S. When D is an
algebraic dcpo, the set {1d | d € K(D)} forms a base of the Scott topology on D.

When (D, <) is a domain, we call E C D a subdomain if (E, <) is a domain, K(E) C
K (D), and the embedding of E in D preserves the least element and the supremums of
directed sets. In this case, the Scott topology of (E, <) is the subspace topology of that
of (D, <).

Two Domains of Bottomed Sequences

The set ¥*° = £ U X* is a domain with K(¥*°) = £* and L(E¥>®) = ¥¥. ¥¥ is
called Cantor space and the topology on ¥ induced as the subspace topology of the
Scott topology of ¥°° is called the Cantor topology. The set of bottomed sequences
(24,<) also forms a domain with z < y iff z[k] < y[k] for all & = 0,1,.... Here, the
order on ¥ is defined as L < a for a € . In (X¢,<), d is a finite element iff d is a
finite bottomed sequence. Domains which are subdomains of ¥4 and thus composed of
bottomed sequences will play an important role in this paper.

Topology

When O is a subset of a topological space X, we write clx(O) and intx(O) for the
closure and interior of O in X, respectively, and Bx (O) for the boundary of O in X, that
is, clx(0O) — intx(0). We write ¢l(O), int(O), and B(O) when these are unambiguous.
A space X is said to be a retract of a space Y if thereisapairs: X —-Y,r: Y - X
of continuous functions such that r o s is the identity on X. When X is a subspace of
Y, we say that X is a retract of Y if r and the embedding of X in Y form a retract. In
this paper, we say that a topological space is compact when each open cover has a finite
subcover and we do not assume the Hausdorff property. See, for example, (Smy92) and
(Eng89) for topological notions.

Filter and Filter-base
A filter in a topological space X is a non-empty family F of subsets of X which satisfies
the following conditions:
1 if Ae F and A C B, then B € F,
2 if Ay € Fand Ay € F, then A, NAy € F,
3 0gF.
A filter-base in X is a non-empty family B of subsets of X which satisfies
1 if A; € B and A> € B, then there exists an A3 € B such that A3 C A1 N As,
2 0¢B.
When B is a filter-base, the family

Fg ={A C X | there exists a B € B such that B C A}

is a filter. A point z is called a limit of a filter F if every neighbourhood of z belongs to
F, and z is called a limit of a filter-base B if = is a limit of Fz. When z is a limit of a
filter (or a filter-base) F, then we say that F converges to x. A point x is called a cluster
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point of a filter F (or a filter base B) if = belongs to the closure of every element of F (or
B). We say that a filter (or a filter-base) F1 refines F» if F1 O F». We say that a filter (or
a filter-base) F is infinite when F is an infinite family. See, for example, (Eng89) about
filters.

The Real Line
A dyadic number is a rational number of the form m x 27" for integers m and n. We
write Z for the unit closed interval [0, 1].

3. Domains with property M

In this section, we give some fundamental properties of domains with property M.

We use domains to represent topological structures; we embed a topological space X
in L(D) and consider K (D) as a topological base of X through the identification of
d € K(D) with the subset 1d N X of X. Therefore, when 1d N L(D) is empty, d does not
contribute in defining the topology of X. It is easy to show the following;:

Lemma 3.1. When D is a domain, the followings are equivalent.
(1) tddN L(D) # 0 for all d € K(D).

(2) L(D) is dense in D.

(3) D has no maximal finite element.

In the following, we will refer to this property as D has no mazimal finite element. In
this paper, we are particularly interested in domains without maximal finite elements.
However, most of the theorems hold without this condition and thus we do not assume it
in general. We will write D for the domain D — {d € K(D) | d # L and tdNL(D) = 0}.

Lemma 3.2. When D is a domain and L(D) # 0, D is a domain without maximal finite
elements. When D is a domain, L(D) = L(D).

The notion of the set of minimal elements appears frequently in this paper.

Definition 3.3. Let P be a poset.

1) x € P is a minimal element if y < x implies y = z for all y € P.

We write Mp for the set of all minimal elements of P.

2) We say that P has enough minimal elements if, for all y € P, there exists z € Mp
such that x < y.

Many of the results of this paper are based on the following completeness condition,
which is more general than bounded completeness.

Definition 3.4. 1) We say that a poset P is mub-complete if for every finite subset
X C P, the set of upper bounds of X has enough minimal elements. That is, when y is
an upper bound of X, there exists a minimal upper bound 3’ of X such that y' < y.

2) We say that a domain (i.e. w-algebraic pointed dcpo) D has property M if K(D) is
mub-complete and each finite subset X C K (D) has a finite set of minimal upper bounds.
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Property M is equivalent to Lawson-compactness for w-algebraic domains by the 2/3
SFP Theorem (Plo81), and domains with property M are studied in (Jun89). Though
only w-algebraic domains are considered in this paper, the results of this section and
Section 6 can be generalized to Lawson-compact continuous domains, as discussed in
Section 9.

Lemma 3.5. When D has property M, D also has property M.

Proposition 3.6. Suppose that D is a domain with property M.
l)atpfora,feDiff dteforalde K, and e € Kp.

2) clp(td) = {a € D | d1 a} (=l1d) for d € K(D).

3) If L(D) is a T} space, then L(D) is a Hausdorff space.

4) Suppose also that L(D) has enough minimal elements. If My, (p) is a retract of L(D)
then Mp,(p) is a Hausdorff space.

Proof. 1) If part: let v be an upper bound of a and 8. Then, ~ is also an upper bound
of e and f. Only if part: first, note that when d 1 e for d,e € K (D), an upper bound of
d and e exists in K (D) because if ¥ € L(D) is an upper bound of d and e, then K, is
directed. Let L =dy < dy <...and L =eyp < e; < ... be strictly increasing sequences
in K(D) with the least upper bounds a and 3, respectively. Choose an upper bound
fi € K(D) of d; and e; for every i. Now, we will form an infinite increasing sequence
go < g1 < ...such that d; < g;, e; < g; and the set Ny, = {f; | fi > gk, > k} is infinite
for every k. First, take go = L. Suppose that go,...,gr are defined. Consider the set
G = {9k, dk+1,er+1}. Note that Ny, is an infinite set of upper bounds of G,. Since the
set of minimal upper bounds of Gy, is finite, we can choose a minimal upper bound gj41
of G} so that Ny, is infinite. The least upper bound of such a sequence is greater than
both a and §.

2) We need to show clp(td) 3 a iff d T . elp(1d) > o means that tdN e # O for all
e € Ky tdN te £ O iff d 1 e, and it is equivalent to f 1 e for all f € K4 because d is
finite. Therefore, by applying (1), we have the result.

3) First, consider the case that D has no maximal finite elements. If L(D) is a T} space
and z,y € L(D) are different elements, then z and y do not have an upper bound in
L(D), and therefore they do not have an upper bound in D because if a finite element is
an upper bound, there is also an upper bound which is a limit element. Therefore, from
(1), for some d,e € K(D) such that d < z and e < y, d and e do not have an upper
bound in D. This means that 1d and e do not intersect.

For the case that D has a maximal finite element and L(D) # (), z and y may have
an upper bound in D even when L(D) is a T} space, as Figure 2 shows. Therefore, we
consider D instead of D. D comes to be a domain with property M and with no maximal
finite element, and we have L(D) = L(D) by Lemma 3.5 and 3.2.

4) As in (3), we only need to show this theorem for the case D has no maximal finite
elements. Let r be the retract map from L(D) to My p). Since r is monotonic and
L(D) has enough minimal elements, we have r~!(z) =tz. This means that every pair
of different elements of My py do not have an upper bound in L(D), and neither in D.
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Fig. 1. An w-algebraic domain which does Fig. 2. An w-algebraic dom.aln WhI.Ch has
not have property M property M and has a maximal finite
' element.

Therefore, they are separated by open sets in D by (1), and thus they are separated by
open sets in Mp,(p). O

Example 3.7. A counterexample to Proposition 3.6 (1) and (2), when D does not
have property M is given in Figure 1. Note that there is no order relation between d;
(1=0,1,...).

Example 3.8. As a counterexample to Proposition 3.6 (3) and (4), one can add, to
each d; in Figure 1, a strictly increasing sequence d; = e; 9 < e;,1 < ... and its limit p;
(it =0,1,...). Then, L(D) = {z,y,po, p1,---} is flat in that whenever ¢t,u € L(D) and
t < u, we have t = u. Thus L(D) is a T} space. However, L(D) is not Hausdorff because
every open neighbourhood of z (and also y) contains all p, (n > k) for some k.

Note that Proposition 3.6 (1) can also be stated as z and y are separated by open
sets iff ¢ ¥ y. In addition, when D has no maximal finite element, we can take an upper
bound of z and y in L(D). Therefore, in this case, we can restate (1) in the following
form, connecting the order structures of L(D) and K (D).

Proposition 3.9. Suppose that D is a domain with property M and with no maximal
finite element. = T1(p) y iff d Tk (p) e for all d € K, and e € K.

Figure 2 shows a counterexample when D has a maximal finite element.
4. Embeddings in minimal-limit sets of domains

When D is a domain, we can consider L(D) as a topological space and K (D) as its
approximation structure. That is, through the identification of d € K (D) with the open
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set P[dNL(D), K (D) forms a base of the topology of L(D), which is the subspace topology
of the Scott topology of D. Through this identification, each y € L(D), viewed as the
ideal K, C K(D), defines a filter-base F(K,) = {td NL(D) | d € K,} of L(D) which
converges as follows.

Proposition 4.1. The set of limits of F(K) is Jy N L(D).

Proof. A point z is a limit of F(K) iff, for every d € K, there exists e € K, such
that 1d N L(D) Dte N L(D), which is equivalent to d < e. Therefore, z is a limit of
F(Ky) iff z <y. 0

When X is a subspace of L(D), K (D) also forms a base of the topology of X, through
the identification of d € K (D) with the open set 1dNX. Through this identification, each
y € L(D), viewed as the ideal K, C K (D), defines a family Fx (K,) = {td NX | d € K,}
of subsets of L(D). It is easy to show that Fx (/) becomes a filter-base for all y € L(D)
iff X is dense in D; X is dense in D iff 1d N X is not empty for each d € K (D) and the
first condition of the definition of a filter-base holds because K, is an ideal.

Now, suppose that X is dense in D, and consider the condition that for each y € L(D),
the filter-base Fx (K,) converges to a unique point of X. When this holds, each infinite
strictly increasing sequence in K (D), which identifies an element of L(D) and determines
a non-principal ideal of K (D), specifies an element of X as the limit of the corresponding
filter-base.

The uniqueness of such a point, if it exists, is guaranteed when X is a Hausdorff space
because each filter-base converges to at most one point in a Hausdorff space. The converse
is also true when D has property M:

Proposition 4.2. Suppose that D is a domain with property M and X is a dense subset
of L(D). All the filter-bases of the form Fx (K,) (y € L(D)) have at most one limit point
iff X is Hausdorff.

Proof. We only need to show this for domains with no maximal finite element because,
in the domains D and b, the sets of limit elements are the same and the filter-bases of
the forms Fx (K, ) are the same. If part: as mentioned above. Only if part: Suppose that
X is not Hausdorff. Then, there are two points x and y which are not separated by open
sets. That is, for all pairs of finite elements d < z and e < y, 1d and fe intersect in X
and thus d and e have an upper bound in K (D). Therefore, from Proposition 3.9, x and
y have an upper bound z in L(D). Then, Fx(K.) converges to both z and y. [

For the existence of such a limit, if ly N X # 0, then Fx (K,) converges to every point
of ly N X. However, when |y N X is empty, there may be no limit of Fx (K).

Example 4.3. Consider the domain D in Figure 3. Let Y be the subset {y, 2z} of L(D).
Then, the filter-base Fy (K ;) does not converge to a point.

When |y N X is empty, there are also cases in which a limit of Fx (K,) exists but is
not a limit of F(K).
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Fig. 3. An example that there is no limit Fig. 4. A counterexample to Proposition
of Fy(Ky). 4.6 (1) for the non-dense case.

Example 4.4. In Example 4.3, consider the set Y = {y} and the filter-base Fy (K). It
converges to y whereas F(K,) converges only to .

In order to exclude these cases, we consider the condition that Fx(Ky) (y € L(D))
converges to a unique point which is among the limits of F(K,). It is immediate that
under this condition, D has enough minimal limit elements and X is the minimal-limit
set of D defined as follows:

Definition 4.5. Let D be a domain. z € L(D) is a minimal limit element of D if it is a
minimal element in L(D). We say that D has enough minimal limit elements if L(D) has

enough minimal elements (Definition 3.4). In this case, My, p) is called the minimal-limit
set of L(D).

On the other hand, these conditions on D and X are sufficient for the above condition:

Proposition 4.6. Suppose that D is a domain which has enough minimal limit elements
and that X = My, (p) is a Hausdorff dense subspace of D.

1) X is a retract of L(D).

Let y € L(D).

2) The filter-base Fx (I,) converges to a unique point r(y) for r the retract map from
L(D) to X.

3) NFx(Ky)={y}ifye X.

HNFx(Ky)=0ify ¢ X.

5) N{cl(s) | s € Fx(Ky)} = {r(y)}. That is, 7(y) is the unique cluster point of Fx (k).

Proof. 1) From the minimality, for every y € L(D), there is an element = in X such
that < y. Suppose that there is another element z # x in X such that z < y. Since X
is Hausdorff, we have ¢ € K, and d € K, such that tc¢nN tdNX = (). Since teN 1d includes
y and thus is non-empty, from the density of X in D, we have u € X which is in this
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set, and thus contradicts. Therefore, there is only one element x in X such that x < y.
We define this element as r(y). r is a continuous function from L(D) to X; r~!(z) =tz
for each z € X, and r='(1d N X) =td N L(D) for each d € K (D). Thus, X is a retract of
L(D).

2) Since r(y) < y and thus d € K, for all d € K, every neighbourhood 1d N X
of r(y) is a member of Fx (kK,). Uniqueness of the limit is guaranteed by the Hausdorff
property of X.

3) NFx(K,) is a subset of the set of limits of Fx (k). Thus, we have NFx (K,)
{r(y)}. Since each element of Fx (i) contains y = r(y) wheny € X, we have N\Fx (K)
{y}.

4) y ¢ X means that y > r(y) and therefore, there is an element d € K,, such that 1d
does not contain r(y).

5) Let d € K. For all e € K, (), y is an upper bound of d and e. Therefore, an upper
bound f € K(D) of d and e exists and since X is dense, 1f N X is not empty. Therefore,
(tenNX)N(PdNX) =teNn tdN X D 1f NX is not empty. Therefore, r(y) € cl(td N X).
On the other hand, when z € X and = # r(y), since X is Hausdorff, there exists f € K,
and e € K, such that 1N feN X is empty. Therefore, z € cl(teN X) fore € K,. U

<
2

Example 4.7. A counterexample to Proposition 4.6 (1) for the non-dense case is given
in Figure 4. In this example, My, p) is a Hausdorff subspace of D, but is not a retract of
D.

As we have noted, our idea is to consider an infinite increasing sequence in K (D) as
giving a code for a point of X. This proposition suggests two interpretations of such
sequences when D and X satisfy the conditions of this proposition. One is to consider
that d € K (D) has the information that the point is in c/(tdNX), and consider a strictly
increasing sequence 7 = dy < dy < ... as specifying the point N;cl(1d; N X), which
is actually the only limit of the filter-base Fx (K ), and is equal to the unique cluster
point of Fx (K,), where K, is the ideal corresponding to Z. In this case, all the infinite
increasing sequences have meaning as a unique point of X. However, the representation
is not unique in that when = € X, all the ideals K, with y €tz specify the same point
x. This kind of interpretation is used in (Gia99) and many other calculi of real numbers.
The other one is to consider that d € K (D) has the information that the point is in
TdN X, and that Z = dy < d; < ... is specifying the point N; 1d;. In this case, only
those infinite increasing sequences with the limits in X have meanings. However, the
representation becomes unique in that the ideal representing a point is unique. This kind
of interpretation is used in (Tsu02). In this paper, we do not care which interpretation
is used, and find, for each Hausdorff space X, a domain D with enough minimal limit
elements such that X is homeomorphically and densely embed in D as the minimal-limit
set.

Many of the domains studied in computer science do not have enough minimal limit
elements. For instance, P, = {u | u C N} and ¢ do not have minimal limit elements. We
consider a condition on a domain (Definition 4.11 below) which guarantees the existence
of enough minimal limit elements.
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Definition 4.8. When P is a poset, we define the level of d € P as the maximal length
of a chain Lp =ag < ay < ... < a, = d, when it exists. A poset P is stratified if each
e € P has a level. When P is a stratified poset, we write K, (P) for the set of level-n
elements of P. A domain D is stratified if K (D) is a stratified poset. We write K, (D) for
the set K, (K (D)) of level-n finite elements of D. We call K, (D) N K, the set of level-n
approximations of x.

Thus, when D is a stratified domain, K (D) is stratified as K (D) = Ko(D)UK;(D)U. ..
and Ko(D) = {Lp}.

Example 4.9. All the domains P,,, £%, £*, and Figure 1, 3, 4 are stratified domains,
whereas Figure 2 is not.

Lemma 4.10. When D is a stratified domain,
(1) every subset of K (D) has enough minimal elements,

(2) no finite element is bigger than a limit element. In particular, it has no maximal finite
element if L(D) # 0.

In a poset P, when d < d’' and there is no element e such that d < e < d’, we say that
d' is an immediate successor of d and call the pair (d,d’) a successor pair or an edge from
d to d'. We write succ(d) for the set of immediate successors of d.

Definition 4.11. A stratified poset P is finite-branching if succ(d) C K,11(P) and
succ(d) is finite for every d € K,,(P). A finite-branching domain (fb-domain in short) is
a domain D such that K (D) is a finite-branching poset.

Each element of L(D) may have infinite number of immediate successors for a fb-
domain D. An example is the fb-domain RD® in Proposition 7.7 corresponding to the
Hilbert cube. When D is a fb-domain, K, (D) is a finite set for each n.

Proposition 4.12. When D is a fb-domain, L(D) is compact.

Proof. Suppose that {1d | d € S} forms an open cover of L(D) for S C K (D). The
set S has enough minimal elements by Lemma 4.10 (1), and define T' = Mg. Then,
T ={tdNL(D) | de T} is an open subcovering of L(D). Suppose that T is an infinite
set. Let J = {j € K(D) | 1jNT isinfinite}. We have L € J, and when j € J, at
least one member of succ(j) is also in J. Therefore, we have an infinite strictly increasing
sequence L = jo < j1 < ...in J. Let € L(D) be the limit of this sequence. Since J
is down-closed by definition, we have K, C J. Since T is a covering, we have x > d for
some d € T. Then d € K,, and d ¢ J because 1d NT = {d} by the minimality of T,
which is a contradiction. 0

From the compactness of a space Y, we can show the existence of enough minimal
elements of Y with respect to the specialization order (NIW98; KW). We will show the
proof for the case Y = L(D).

Proposition 4.13. When L(D) is compact,
(1)L(D) has enough minimal limit elements,
(2) Mp(p) is compact.
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Proof. (1) Let y € L(D). By Zorn’s lemma, we have a maximal co-directed set A C
L(D) containing y. Then, {Ja N L(D) | a € A} is a family of closed sets in L(D)
with the finite intersection property. Since L(D) is compact, this family has non-empty
intersection, and let = be in this intersection. Since A is maximal, x € A. Therefore, x is
the least element of A, which is minimal in L(D) because A is maximal. Thus, we have
a minimal limit element less than or equal to y.

(2) Since L(D) is compact and every open covering of My (py also covers L(D), this
result is immediate. 0

From Proposition 4.12 and 4.13, we have a condition for the existence of enough min-
imal limit elements.

Theorem 4.14. (1) A fb-domain D has enough minimal limit elements.
(2) Mp(p) is compact.

Thus, finite-branchingness is a sufficient condition for the existence of enough minimal
limit elements. In addition, in this case, the set M (p) is a compact set. Therefore, in the
sequel, we restrict our attention to the case X is compact, and we find, for each compact
metric space X, a finite-branching domain D such that X = M py and My (p) is dense
in D.

Note that My, py may not be dense in D even when D is finite-branching. For example,
the fb-domain in Example 4.3 has {z} as the minimal-limit set, which is not dense in D.
However, we can have a subdomain which contains Mp,py as a dense subset by simply
taking the closure of Mp,(p). Therefore, we will consider the construction of a fb-domain
D such that Mp,p) contains X in the following sections, and then obtain the desired
fb-domain by taking the closure of X (Theorem 8.5 and Theorem 8.8).

5. fb-domains composed of bottomed sequences
In this section, we give examples of fb-domains composed of bottomed sequences.

Definition 5.1. A domain D is a domain of bottomed sequences if it is a subdomain of
Y4 and the embedding of D in X% preserves the level.

In this case, each element of K, (D) has n filled cells and an edge corresponds to filling
one unfilled cell with a character in X.

When D is a domain of bottomed sequences, we introduce a labelling of edges of D by
the character set I' = {a” | a € {0,1},i € {0,1,...}} so that the label a(?) is assigned
to an edge filling the i-th (counting from 0) unfilled cell with a. For example, the edge
from 1% to L11¢ is labeled with 1), and the edges from 111% to 110L% and from
110L¥ to 010L¥ are labeled with 0(") and 0(%), respectively. Let T'("™) be the finite set
{a® | a € {0,1},i € {0,1,...,n}}. When D is a fb-domain of bottomed sequences,
K, (D) is a finite set for all n = 0,1,2, ..., Therefore, there is a number [/ such that all
the edges from level-n finite elements are labeled with T (n =0,1,...).

We write X |, for the set of infinite bottomed sequences in which at most n undefined
cells are allowed to exist. Therefore, for example, ¥ ; = ¥ and 9 | =X UEX*1X¥.
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1111...
- limit
bli1l... 1b111... 11bl11...

Fig. 5. The structure of BD; for the case ¥ = {1} . Here, L is expressed as ’'b’.

We write £, for the sets of finite bottomed sequences in which at most n undefined
cells are allowed to exist. More precisely, Y aisa subset of ¥4 such that all the cells
are L after the (n + 1)-th L cell.

Definition 5.2. 1)Let P be a poset and d € P. The co-level of d is the maximal length
n of a chain (i.e., strictly increasing sequence) d = a9 < a1 < ... < a,, in P. If there is
an arbitrary long chain starting with d, then we define the co-level of d is oco.

2) The upper-n subset of P is the set of elements whose co-level is not greater than n.

The upper-n subset of ¢ is ¥4 . Now, we define BD,, = ¥7 , UX{ | (n=0,1,...).
It is obviously a subdomain of ¢ with K(BD,) =%7 , and L(BD,) =%4 . BD, are
obviously bounded-complete fb-domains of bottomed sequences. As a special case, BD
is the domain ¥*°.

We study more carefully the structures of BDy,. In BD;, the least element of ¥7 ,,
which is the empty string, has 4 successors:“0”, “1”7, “10”, and “L1”. It is also the case
for other elements; every finite element has 4 outgoing edges labeled with 0(9), 1(® o)
and 11, Therefore, BD; is the subdomain of Y% in which the edges are restricted to
'V, In the same way, each finite element of BD,, has 2n successors. Figure 5 shows the
order structure of BD; for the case ¥ = {1}. Note that the open sets 1d (d € K(D)) are
all isomorphic to each other.

Definition 5.3. A fb-domain D is homogeneous if 1d is isomorphic to D for each d €
K(D).

Proposition 5.4. BD,, is homogeneous.

Proof. Let d € K(D), K = {k | d[k] € £}, and e €1d. Since all the bottom cells of e
have an index not in K, the number of bottoms in e does not change if we omit the cells
with index in K. Therefore, by deleting K from the index set w and re-indexing, we can
make an isomorphism between 1d and BD,,. ]

As for the limit elements, 29 has 2 levels of elements. The upper level is isomorphic
to X¢, and the lower level, which is the minimal-limit set of 34 ,, consists of infinite



Hideki Tsuiki 14
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Fig. 6. Binary Expansion and Gray code Expansion of real numbers.

sequences with one bottom. Each lower level element is smaller than two upper level
elements obtained by specifying the value of the bottom cell as 0 or 1, and each upper
level element is bigger than countably many lower level elements obtained by substituting
the value of each cell with L. Similarly, ¥4 | has (n+1)-level structures (n =0, 1,...).

Proposition 5.5. My (pp,) is not Hausdorff when n > 1.

Proof. If it is Hausdorff, then it is a retract of L(BD,,) by Proposition 4.6 (1). This
means that for each maximal element x € L(BD,,), there is only one y € My (gp,) such
that y < z. It contradicts with the structure of ¥  mentioned above. U

Next, we consider a more important example of a domain of bottomed sequences whose
minimal-limit set is Hausdorff and homeomorphic to Z = [0, 1]. The Gray code embedding
G ((Tsu02), Definition 5.6 below) is an embedding of Z = [0, 1] in the set £ ;. It is based
on the Gray code expansion, which is another expansion of real numbers. Figure 6 shows
the usual binary expansion and the Gray-code expansion of Z. Here, a horizontal line
means that the corresponding bit has value 1 on the line and value 0 otherwise. In the
usual binary expansion of z, the head h of the expansion indicates whether z is in [0,
1/2] or [1/2, 1], and the tail is the expansion of f(z,h) for f the following function:

[ 2 (h=0)
f(w’h)_{m«—l (h=1)

Note that the value of f depends not only on x but also on the choice of h when z = 1/2.

On the other hand, the head of the Gray-code expansion is the same as that of the
binary expansion, whereas the tail is the expansion of ¢(z) for ¢ the so-called tent function.
Note that ¢ is continuous at 1/2.

(2 0<z<1/2)
t(m)_{ 21—z)  (1/2<z<1)

As is the case for the usual binary expansion, we have two expansions for dyadic
numbers. For example, we have two Gray code expansions 111000... and 101000... for
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Fig. 7. The structure of RD. Here, b means L.

3/4, corresponding to the two binary expansions 11000... and 10111.... However, the two
expansions differ only at one digit (in this case the second digit). This means that the
second digit does not contribute to the fact that this number is 3/4. Therefore, it is
natural not to select a {0, 1} value for such a digit, but instead to leave it unspecified as
L. In this way, we define the Gray code embedding G as follows.

Definition 5.6. Let P: 7 — ¥ be the map

0 (z<1/2)
Pz)y=< L1 (z=1/2)
1 (z>1/2)

and t : Z — 7 be the tent function defined above. The Gray code embedding G is a
function from Z = [0,1] to X¢ ;| defined as G(z)[n] = P(t"(2)).

Note that G is an injective function from 7 to ¥ ; with the image im(G) = ¥ U
3*110¥ — ¥*¥10¥. Next, we consider a fb-domain RD of bottomed sequences which
corresponds to im(G). Let L(RD) be the set ¥¥ U ¥*110¥ and K(RD) be the set
¥* U X*110*. Then, RD = L(RD) U K(RD) is a bounded complete fb-domain with
K(RD) and L(RD) the sets of finite and limit elements, respectively. The structure of
RD is represented in Figure 7. RD was introduced in (Gia99) as a domain correspond-
ing to the signed digit representation of Z, and as a fb-domain of bottomed sequences
in (Tsu02). This domain corresponds to the way an IM2-machine manipulates Gray-
code; K (RD) represents finite-time states of the input/output tapes of an IM2-machine
(Tsu02). Comparing im(G) with L(RD), one can see that G is a bijection to Mpgrp).

We consider how the function G interacts with the topological structure. For each finite
element d of RD, G~!(1d) has the form (m /2%, (m+1)/2%) or ((2m—1)/2%, (2m+1)/2¥)
depending on whether d € ¥* or d € ¥*110*, with the exception that G=(t¢) =
[0,1], G1(10¥) = [0,1/2F), and G~1(1+10%"1) = ((2¥ — 1)/2%,1] (k = 1,2,...). Since
these intervals form a base of Z, G gives a correspondence between bases of Z and RD.
Therefore, G is a topological embedding of Z in RD. Since the set of real numbers R is
homeomorphic to (0,1), R can also be embedded in My gp).
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Proposition 5.7. 1) 7 is homeomorphic to My (rp), and My (gp) is dense in L(RD).
2) 7 is a retract of L(RD).
3) R can be embedded in My, (gp).

As we have said in Section 4, we have two interpretations of finite elements of RD
as information about a point in Z. One is to interpret d € K(RD) as G~'(1d) and
T € Mprp) as expressing G~!(z). Thus, for example, 0,1, L1 are expressing the open
intervals [0,1/2), (1/2,1], and (1/4,3/4), and only 11000... represents 1/2. The other
one is to interpret d as cl(G7'(1d)), and x € L(RD) as expressing G~!(r(x)). Thus,
0,1, L1 are expressing the closed intervals [0,1/2], [1/2, 1], and [1/4,3/4], and the three
sequences 1.1000..., 11000..., 01000. .. are representing 1/2.

Since the embeddings of RD in BD; and BD; in ¥4 are topological ones, G can be
considered as topological embeddings also in BD; and in X¥.

6. The dimension of L(D)

Dimension is one of the most important invariants of topological spaces, which is useful
in proving, for instance, the non-existence of an embedding of a space into another space.
In this section, we calculate the dimension of L(D) for the case D has property M, and
induce a requirement for the existence of an embedding of X in L(D).

There are three major definitions of the dimension of a topological space X, the small
(or weak) inductive dimension ind X, the large (or strong) inductive dimension Ind X,
and the covering dimension dim X . The three dimension functions coincide and have good
properties in the class of separable metric spaces. However, they diverge in Ty spaces in
general. Actually, ind ¥ ; = 1 as we will show whereas one can calculate dim £ ; = oc.
In this paper, we will consider the small inductive dimension, since it has good properties
even for such a general class of spaces.

Definition 6.1. The small inductive dimension ind X of a topological space X is defined
to be

i) ind X = —1if X =0,

ii) ind X < n if for every neighbourhood U of a point p € X there exists an open set
V such that x € V C U and ind B(V) < n — 1, where B(V) is the boundary of V, see
Section 2.

Ifind X <n and ind X € n — 1, then we define ind X = n. If ind X £ n for every n,
then ind X = oo.

The following proposition is straightforward and we use this in calculating the dimension.

Proposition 6.2. If X has a base O such that every element U € O satisfies ind B(U) <
n — 1, then ind X < n.

Proposition 6.3 (heredity property of ind ). 1) If ind X <n and Y is a subspace
of X, then ind Y <n.
2) When ind X < ind Y, Y has no topological embedding in X.



Compact metric spaces as minimal-limit sets in domains of bottomed sequences 17

Proof. 1) By induction on n. It is trivial for the case n = —1. Assume it for n— 1. Since
ind X <n,forallz € Y and O > z, there exists x € O’ C O such that ind B(O') < n—1.
Since By (0O’ NY) C B(0'), by induction hypothesis, we have ind By (O'NY) <n —1.

2) Immediate from (1). 0

This heredity property does not hold for Ty spaces in general when we consider the
covering dimension or the large inductive dimension. See Appendix of (HW48) for details.
Below by dimension we mean small inductive dimension.

Definition 6.4. The height of a poset P (denoted by height P) is the maximal length
of a chain in P. If P is empty, then we define height P = —1.

Proposition 6.5. 1) height {ap < a1 < ... < ap}=n.
2) height ¥¥ = 0.

3) height ¥4 | =n.

4) height ¥4 = oco.

Proposition 6.6. For a poset P, the height of P and the dimension of P with the
Alexandroff topology coincide. Here, the Alexandroff topology of P has as open sets the
upper-closed subsets of P.

However, when P is a subspace of a domain, with the subspace topology of the Scott
topology, the height of P and the dimension of P does not coincide. For example, the
image of the Gray code embedding im(G) C X4 | has height 0 because there is no order
relation among elements of im/(G), whereas it has dimension 1 because it is homeomorphic
to 7.

Proposition 6.7. When P is a subspace of a domain D with the subspace topology of
the Scott topology of D, ind P > height P.

Proof. Let n = height P. A chain of length n has dimension n by Proposition 6.5 (1),
and is embedded in P as a subspace. By heredity (Proposition 6.3), we have the result. []

Lemma 6.8. (1) If D is a domain and A is a closed subset of D, then A is also a domain
such that K(A) = An K(D).
(2) In addition, when D has property M, A also has property M.

Proposition 6.9. Let D be a domain with property M and with no maximal finite
element. Let d € K (D).

1) ClL(D) (td N L(D)) = clp(fd) N L(D).

2) Bp(1d) ={a € D | d1 a and d £ a}, and Bp(1d) is a domain with property M such
that L(Bp(1d)) = Br(p)(1dN L(D)).

3) When L(D) is not empty, height L(Bp(1d)) < height L(D) — 1.

Proof. 1) Since the right hand side is a closed subset of L(D) including 1d N L(D), we
have the C direction. Let € ¢lp(1d) N L(D). Since D has no maximal finite element, d
and z have an upper bound z € L(D) by Proposition 3.6 and 3.9. Therefore, z € clpp)(1
dnN L(D)) and, since this set is down-closed,  must also belong to this set.

2) By Lemma 6.8, Bp(1d) is a domain with property M such that L(Bp(1d)) = Bp (1
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d) N L(D). On the other hand, from (1), Brp)(Td N L(D)) = clyp)(td N L(D))- 1
dN L(D) = clp(1d) N L(D)— 1d N L(D) = (clp(td)— 1d) N L(D) = Bp(1d) N L(D).

3) Let ap < a1 < ... < a, be a chain in L(Bp(1d)). Then, by (2), a, 1 d. So there
exists z with a,, < z > d. As D has no maximal finite element, we can assume z € L(D).
Also, by (2), z € Bp(1d). So a,, < z. Therefore, ap < a1 < ... < ap < z is a chain in
L(D). U

Proposition 6.10. When D is a domain with property M, ind L(D) < height L(D).

Proof. Induction on height L(D). It is obvious when L(D) is empty. Suppose that
height L(D) = n > 0. Then, consider the domain D. Since L(D) = L(D), L(D) also
has height n. From Proposition 6.9 (3), we have height L(Bp(1d)) < n — 1 for any
finite element d of D. We apply the induction hypothesis to the domain B, (1d) to have

ind L(Bp(1d)) < n — 1. Therefore, by Proposition 6.2, we have ind L(D) < n. Therefore,
ind L(D) < n. U

From Proposition 6.7 and 6.10, we have our result.
Theorem 6.11. When D is a domain with property M, ind L(D) = height L(D).

Since we view a domain D as the space L(D) with the approximation structure given
by K (D), we refer to the dimension of L(D) also as the dimension of the domain D, and
write ind D for it.

This theorem, with the heredity property, derives the main result of (Tsu0la):

Corollary 6.12. 1) ind ¥¢ , =n.

2) There are no embeddings of n-dimensional topological spaces in ¥4, whenn >m.In
particular, there are no embeddings of Z" in DDy g for any character set ¥ of countable
cardinality.

3) There are no embeddings of infinite-dimensional topological spaces in ¥9 ,, for any n.

Proof. 1) From Proposition 6.5 (3).
2) ind Z" = n. See (Eng78). 0

The domain in Example 3.8, which does not have property M, satisfies ind L(D) = 1
whereas height L(D) = 0. Therefore, it gives a counterexample to Theorem 6.11 when
D does not have property M.

7. The synchronous product of stratified domains

We have shown that 7 is homeomorphic to My, gp) and the real line R can be embedded
in My rp)- To consider corresponding results for higher dimensional spaces like the n-
dimensional Euclidean cube Z" (n = 0,1,2,...) and the Hilbert cube Z%, we define a new
product of stratified domains. When we use the usual product, we have ind D{ x D> = oo
ifind Dy > 0 and ind D> > 0, because any pair of a finite element and an infinite element
is an infinite element of Dy x D,. Therefore, we use the following definition.
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Definition 7.1. Let D; and D- be stratified domains. The synchronous product D1 x° D,
of Dy and D is the stratified domain defined by the following set of finite elements

Kn(D1 x* Do) = {(a,b) | a € Kn(D1),b € Kn(D2)} (n=0,1,...),

with the pointwise order.

Proposition 7.2. Let Dy and D> be stratified domains.

1) Dy x® Dy is a subdomain of Dy x Ds such that L(D; x® Ds) is homeomorphic to
L(Dl) X L(DQ)

2) When D; and D- are finite-branching, D; x® D5 is also finite-branching.

3) ML(D1><5D2) is homeomorphic to ML(Dl) X ML(Dz)-

4) When D and D5 have property M, D x® D5 also has property M and ind D; x® Dy =
ind Dy 4+ ind Ds.

Proof. 1) Dy x® D5 is obviously a subdomain of D; x D»; the embedding maps a finite
element of Dy x°® D5 to a finite element of D; x Ds.

Let p; and p2 be projection functions from D x® D5 to Dy and D5, respectively, defined
in the obvious way for finite elements and continuously extended to limit elements. Let
I be an ideal of D1 x® Dy. Then, p;I and p2I are obviously ideals of D; and D,. Let
x1 and xy be the limits of p;I and p»I, respectively. Let a1 € K, and as € K, such
that a; and as have the same level. Then, for some by and by, we have (a1, b2) € I and
(b1,a2) € I. Since I is directed, we have {(c1, c2) such that ¢; > a; and ¢; > b; for i = 1, 2.
Since I is lower closed, we have (a1, a2) € I. Therefore, each non-principal ideal I has
the following form for some x € L(D;) and y € L(D,)

I ={{(a,b) | a € K;,b € K,, a and b have the same level}.

Thus, there is a one-to-one correspondence between L(D;) x L(D-) and the set of non-
principal ideals of D; x® Ds. It is obviously a homeomorphism.

2) We have succ((a, b)) = succ(a) x succ(b).

3) Immediate from (1), because M (p,) x Mp(p,) is the set of minimal elements of
L(D;) x L(Dy).

4) Let N = {(a1,b1),...,(ai,b;)} be a finite subset of K(D; x® Dy) and S; and
Sy be the sets of minimal upper bounds of {ai,...,a;} and {b1,...,b}, respectively.
Let n be the maximal level of the elements of S; U S2. Define T; =15; N K, (D;) for
i=1,2. Ty x Ty is a finite subset of K (D x® Dy), which is the set of minimal elements
of {d € K(Dy x® D3) | level(d) > n,d is an upper bound of N}. Therefore, take T =
Ty xToU{d € K(Dy x® D) | level(d) < n,d is an upper bound of N}. Since T is a finite
set, the set of minimal elements of T is also finite and is the set of minimal upper bounds
of N. Thus, Dy x% D5 has property M.

The height of L(D; x*® D) is equal to the height of L(D;) x L(D3) by (1), and is equal
to the sum of the heights of L(D;) and L(D3). 0

The domain D x°® Dy can be extended to a domain of bottomed sequences when D,
and D5 are themselves domains of bottomed sequences. Let in : ¥4 x ¥4 — X% be the
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interleaving function defined as

in(a,b)[2n] = a[n],
in(a,b)[2n+1] = b[n].

Through in, ¥4 x ¥4 and ¥4 become order-isomorphic. Thus, D; x® Dy becomes a
subdomain of ¥4 by Proposition 7.2(1). Since this embedding is not level-preserving, we
add to the set of finite elements of D; x® Dy the following sets

K'(Dy x* Dy) = {{a,b) | @ € Kps1(D1),b € Kn(D3)} (n=0,1,...)

so that K,(Dy x® Ds) and K] (Dy; x® D3) become the set of 2n-level and (2n + 1)-
level finite elements, respectively. We write Dy x5 D, for the domain thus constructed
embedded in X% by ¢n. This insertion of intermediate finite elements does not change
the structure of the space of limit elements:

Proposition 7.3. When D; and D, are domains of bottomed sequences, Dy x5 Dj is a
domain of bottomed sequences such that L(D; x5 D,) is homeomorphic to L(Dq x* D).

Proof. When I is an ideal of K (D1 x§ D), INK(Dy x° D5) is also a directed set of
K (D: x5 D) with the same limit. To see this, it is enough to show that when e < f in
K(Dy x5 Ds), there is g € K(D; x* D») such that e < g < f. [

We can also define the synchronous product x9 of arity n, by adding n — 1 levels of
intermediate finite elements between K, and K,;1, and using the interleaving function
of arity n. We write D™ for the n-arity synchronous product D x5 D x9 ... x% D of n
copies of D.

Corollary 7.4. 1) RD" is an n-dimensional finite-branching domain of bottomed se-
quences with property M.

2) L(RD") is an upper-closed subset of X¢ .

3) I" is homeomorphic to M, gpn).

4) I™ is a retract of L(RD™).

5) R™ can be embedded in My, gpn).

We write G" for the homeomorphism from Z" to My grpn)-
Next, we consider infinite products.

Definition 7.5. Let D; (i = 1,2,...) be stratified domains. We can define a stratified
domain H;’ilsDi as the ideal completion of the following stratified poset.

Ko(I] Di) = {(ar,a2,-.,an) | a € Kn_gy1(Dy) (k=1,...,n)},
i=1

with the order (ay,as,...,a,) < (b1,b2,...,by) if n < m and ap < by in K(Dy) (k =
1,2,...,n).

Proposition 7.6. Let D; (i =1,2,...) be stratified domains.
1) [12,°D; is a subdomain of [[;2 D; such that L([[;2, D;) is homeomorphic to

i=1
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H;'); L(D;).
2) When D; (i = 1,2,...) are finite-branching, [T5,°D; is also finite-branching.
3) ML(HzlsDi) is homeomorphic to [];2, My,(p,).
4) When D; (i = 1,2,...) have property M, [T, ° D; also has property M and ind ([;2,°D;) =
>izy ind (Dj).
Proof. Similar to Proposition 7.2. [

[12,°D; can also be extended to a domain of bottomed sequences when D; (i =
1,2,...) are. Let in® : [[;2, 5% — ¥ be the isomorphism defined as

in> (a1, a2, ...)[(n, k)] = a[n] (1)

for (n,k) = (n+k—1)(n+k)/24+k—1withn =0,1,... and k = 1,2,.... Through
in>, H;’ilsDi becomes a subdomain of ¥4 by Proposition 7.6(1). Since this embedding
is not level-preserving, we add n levels of finite elements between K,, and K, 1:

ar € Kn_pi2(Dr)(1 <k <t) } (

0o 8§
Kt D;) = t=1,2,... .
n(g Z) {<a17a27 :an> ‘ ak c Kn7k+1(Dk)(t < k? S n) 94y 7”)

We define the domain H?;iDi of bottomed sequences as the ideal completion of this do-
main embedded in X% by in°°, and we denote by D*° the synchronous product H?;iD-

Corollary 7.7. 1) RD® is an oco-dimensional finite-branching domain of bottomed se-
quences with property M.

2) L(RD®) is an upper-closed subset of X4 .

3) The Hilbert cube 7+ is homeomorphic to My gpee).

4) 7% is a retract of L(RD®).

5) R can be embedded in M gpe).

8. Embeddings of compact metric spaces

Now, we consider embeddings of separable metric spaces. For finite-dimensional cases,
our construction is based on the universality of Nobeling’s universal n-dimensional space.

Definition 8.1. We define a subspace N of I" as follows.
NZ = {(z1,...,2,) € I" | at most k of z1,...,x, are dyadic}.

It is known that NJ* has dimension k (Eng78). The space N2"*! is essentially the same
as Nobeling’s universal n-dimensional space, and it has the following universality.

Proposition 8.2. For any n-dimensional separable metric space X, there is a topological
embedding of X in N2"+1.

Proof. See (Eng78), for example. [

Consider the embedding G™ of I™ in Mpgpm) C ¥¢. Since it is an interleaving of
the Gray code, the number of L which appear in G™(z) is equal to the number of dyadic
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coordinates z € Z™ has. Therefore,
G™(Ny') C X1, N My (rpm)-

Theorem 8.3. Let n be a finite number. When X is an n-dimensional separable metric
space, X has an embedding in Mp gpen+1). The image is in the upper-n subspace of
RD™.

Proof. From Proposition 8.2. [
Next, we consider the case that X is compact.

Lemma 8.4. When D is a fb-domain with property M and Y is a closed subset of
Mp,(py, cIp(Y') is a fb-domain with property M such that My, (v)) =Y.

Proof. Being a closed subset, Y = E'N My p) for some closed subset E of D. Since
cp(Y) C E, we have Y = clp(Y) N Mp). From Lemma 6.8, cIp(Y’) is a domain with
property M, which is also finite-branching because ¢lp(Y) is down-closed. ]

Theorem 8.5. Let n be a finite number. For each n-dimensional compact metric space
X, there is an n-dimensional fb-domain D of bottomed sequences with property M such
that

1) Mp,p)y is homeomorphic to X and My p) is dense in D.

2) X is a retract of L(D).

3) D is a subdomain of BD,,.

Proof. 1) It is known that a compact metric space is separable. Therefore, X has an
embedding in N2, and then in My, (gp2n+1) by Theorem 8.3. Let Y be the image of the
embedding. Y C B9 N My (gp2n+1y. Since My (gpzn+1) is Hausdorff, Y is a closed subset
of My gpen+1). Therefore, by Lemma 8.4, clgp2n+1(Y) is a fb-domain with property M
which we denote by D. Since Mpp) =Y and Y C XY , L(D) C ¥ , and therefore
L(D) is n-dimensional. Since D is the closure of My (py, Mp(p) is dense in D.

2) from (1) and Proposition 4.6.
3) Obvious from the construction. O

For the infinite-dimensional case, we can use the universality of the Hilbert cube.

Proposition 8.6. Every separable metric space X can be embedded in the Hilbert cube
.

Proof. See (Eng78), for example. [
Theorem 8.7. Every separable metric space X can be embedded in My, gpee)-
Proof. From Proposition 8.6 and Corollary 7.7. ]
Also from Lemma 8.4 and Theorem 8.7, we have
Theorem 8.8. Theorem 8.5 ((1) and (2)) holds also for the case of n = oo.

As a corollary to Theorem 6.11, 8.5, and 8.8, we have
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Theorem 8.9. The dimension of a compact metric space X is equal to the minimal
height of L(D) such that D is a domain with property M and X is homeomorphic to

ML(D)-

9. Concluding remarks

In Theorem 6.11, we showed that the dimension of L(D) is equal to the height of L(D)
when D is an w-algebraic domain with property M. It is not hard to show that this
theorem is true also for Lawson-compact continuous domains in general. Proposition
3.6(2) can be proved for Lawson-compact continuous domains, and from which algebraic-
domain case of Theorem 6.11 is derived. Since the height of L(D) is always oo for non-
algebraic continuous domains, this theorem trivially holds for the non-algebraic case.

We have shown that every n-dimensional compact metric space can be realized as the
minimal-limit set of an n-dimensional fb-domain of bottomed sequences. This means that
we can view every compact metric space as a kind of space of infinite sequences. The
minimality of the subspace elements means that, through this embedding, each strictly
increasing sequence in K (D), which can be realized as a process of filling a tape infinitely,
can be interpreted as a point of X. In addition, because D is finite-branching, we have
only finite number of candidates to fill at every finite stage. When X is n-dimensional,
D can be constructed as a subdomain of BD,,, and thus the candidates for the next cell
are the first n + 1 unfilled cells.

In (Tsu02), the author presented the notion of an IM2-machine, which has, on each
input/output tape, n+1 heads that move so that they are always located at the first n+1
undefined cells, and thus can input/output sequences in BD,,. Therefore, an IM2-machine
can be used to input/output representations of n-dimensional spaces. As a special case,
when the Gray-code embedding is used to represent 7 in RD, some algorithms like
addition are expressed with an IM2-machine (Tsu02), and it is shown that the rules
of an IM2-machine can easily be translated into a parallel logic programming language
GHC, and executed on many platforms(Tsu01b).

In this paper, we proved the existence of a domain D representing an n-dimensional
separable metric space X via a classical theorem in dimension theory. In order to apply
IM2-machines to give algorithms on a space X, we need to select a concrete structure of
D and an embedding of X in D as we did for Z. It is an interesting open problem how
to define such a concrete structure when some effective structure of X is given.

When X is embedded in the space L(D) of limit elements of a domain D, K (D) gives
a base of the topology of X. To conclude this paper, we will express properties of this
base in topological terms. When B is a base of X, we denote by F(B) the set of infinite
filter-bases which are composed of elements of B. We can consider F(B) as a poset by
defining F; < Fs iff F; refines F;. When we combine Theorem 8.5, 8.8 and Proposition
4.6, we have the following.

Theorem 9.1. When X is a compact metric space of dimension n (n < 00), there is a
base B of X such that
1) The poset (B, D) is finite-branching.
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1/2 1 - 1/2 1 " 1/2 1 g

Fig. 8. The structure of infinite filters-bases converging to (1/2,1/2) on Z2. (a) is the
lower level element (unique), (a) + (b) is a middle level element (4 of this kind exist),
(a) + 2 copies of type (b) + (c) is the upper level element (4 of this kind exist). Only the
first one contains the point (1/2,1/2).

2) Every infinite filter-base F € F(B) converges to a unique point of X (denoted by
lim F).

3) lim F is the unique cluster point of F.

4) F(B) is a poset of height n.

5) If F is a minimal element of F(B), then NF = {lim F}.

6) If F is not a minimal element of F(B), then NF = {.

Such a base is given by the Gray-code expansion for the case of Z, by the synchronized
product of the base of Z for 7" (n =0,1,2,...,00), and as a subspace of Z?"*! (or >
when n = oo) for general cases. Figure 8 depicts the structure of the filters-bases in F(B)
which are converging to (1/2,1/2), for the case of Z2.
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