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Aim:

Constructive analysis, with constructions ∼ good algorithms.

Errett Bishop 1967: “Foundations of Constructive Analysis”

The modulus of continuity ω is an indispensable part of
the definition of a continuous function on a compact
interval, although sometimes it is not mentioned
explicitly. In the same way, the moduli of continuity of
the restrictions of f to each compact subinterval are
indispensable parts of the definition of a continuous
function f on a general interval.
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A continuous function f : (X , ρ,Q)→ (Y , σ,R) for separable
metric spaces is given by

h : Q → N→ R approximating map

plus α, ω, γ, δ depending on w , r (center and radius of a ball):
I α : Q → Z+ → Z+ → N such that (h(u, n))n (for
ρ(u,w) ≤ 1

2r ) is a Cauchy sequence with modulus αw ,r (p);
I a modulus ω : Q → Z+ → Z+ → Z+ of (uniform) continuity,

such that for n ≥ αw ,r (p) and ρ(u,w), ρ(v ,w) ≤ 1
2r

ρ(u, v) ≤ 2

2ωw,r (p)
→ σ(h(u, n), h(v , n)) ≤ 1

2p
;

I maps γ : Q → Z+ → R, δ : Q → Z+ → Z+ such that γ(w , r)
and δ(w , r) are center and radius of a ball containing all
h(u, n) (for ρ(u,w) ≤ 1

2r ):

ρ(u,w) ≤ 1

2r
→ σ(h(u, n), γ(w , r)) ≤ 1

2δ(w ,r)
.

α, ω, γ, δ are required to have monotonicity properties.

f given by type-1 data only.
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Example: Inverse map (0,∞)→ R

Let 0 < c < d , and q be minimal such that 1
2q ≤ c . Then inv is

given by

I the approximating map h(a, n) := 1
a

I the Cauchy modulus α(c , d , p) := 0

I the modulus ω(c , d , p) := p + 2q + 1 of uniform continuity, for

|a− b| ≤ 1

2p+2q
→

∣∣∣1

a
− 1

b

∣∣∣ =
∣∣∣b − a

ab

∣∣∣ ≤ 1

2p
,

because ab ≥ 1
22q

I the center γ(c, d) := c
c2−d2 and radius δ(c , d) := d

c2−d2 of a

ball containing all 1
a for |a− c | ≤ d .
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I Application f (x) must (and can) be defined separately, since
the approximating map operates on approximations only.

I f (x) is independent from w , r .

I Application is compatible with equality on real numbers:

x = y → f (x) = f (y).

I f has ω as a modulus of uniform continuity:

|x − y | ≤ 1

2ω(p)
→ |f (x)− f (y)| ≤ 1

2p
.

I Composition can be defined.
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Algorithms in constructive proofs?

Theorem. Every totally bounded set A ⊆ R has an infimum y .

Proof.
Given ε = 1

2p , let a0 < a1 < · · · < an−1 be an ε-net:
∀x∈A∃i<n(|x − ai |<ε). Let bp = min{ ai | i<n }. y := limp bp.

Corollary. infx∈[a,b] f (x) exists, for f : [a, b]→ R continuous.

Proof.
Given ε, pick a = a0 < a1 < · · · < an−1 = b s.t. ai+1 − ai < ω(ε).
Then f (a0), f (a1), . . . , f (an−1) is an ε-net for f ’s range.

Many f (ai ) need to be computed.

Aim: Get x with f (x) = infy∈[a,b] f (y) and a better algorithm,
assuming convexity.
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Intermediate value theorem
Let a < b be rationals. If f : [a, b]→ R is continuous with
f (a) ≤ 0 ≤ f (b), and with a uniform modulus of increase

1

2p
< d − c → 1

2p+q
< f (d)− f (c),

then we can find x ∈ [a, b] such that f (x) = 0.

Proof (trisection method).

1. Approximate Splitting Principle. Let x , y , z be given with
x < y . Then z ≤ y or x ≤ z .

2. IVTAux. Assume a ≤ c < d ≤ b, say 1
2p < d − c , and

f (c) ≤ 0 ≤ f (d). Construct c1, d1 with d1 − c1 = 2
3(d − c),

such that a ≤ c ≤ c1 < d1 ≤ d ≤ b and f (c1) ≤ 0 ≤ f (d1).

3. IVTcds. Iterate the step c, d 7→ c1, d1 in IVTAux.

Let x = (cn)n and y = (dn)n with the obvious modulus. As f is
continuous, f (x) = 0 = f (y) for the real number x = y .
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x < y . Then z ≤ y or x ≤ z .

2. IVTAux. Assume a ≤ c < d ≤ b, say 1
2p < d − c , and

f (c) ≤ 0 ≤ f (d). Construct c1, d1 with d1 − c1 = 2
3(d − c),

such that a ≤ c ≤ c1 < d1 ≤ d ≤ b and f (c1) ≤ 0 ≤ f (d1).

3. IVTcds. Iterate the step c, d 7→ c1, d1 in IVTAux.

Let x = (cn)n and y = (dn)n with the obvious modulus. As f is
continuous, f (x) = 0 = f (y) for the real number x = y .
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Extracted term

[k0]

left((cDC rat@@rat)(1@2)

([n1]

(cId rat@@rat=>rat@@rat)

([cd3]

[let cd4

((2#3)*left cd3+(1#3)*right cd3@

(1#3)*left cd3+(2#3)*right cd3)

[if (0<=(left cd4*left cd4-2+

(right cd4*right cd4-2))/2)

(left cd3@right cd4)

(left cd4@right cd3)]]))

(IntToNat(2*k0)))

where cDC is a form of the recursion operator.
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Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

I View a formula A as a computational problem, of type τ(A),
the type of a potential solution or “realizer” of A.

I Example: ∀n∃m>nPrime(m) has type N→ N.

Express this view as invariance under relizability axioms

InvA : A↔ ∃z(z r A).

Consequences are choice and independence of premise (Troelstra):

∀x∃yA(y)→ ∃f ∀xA(fx) for A n.c.

(A→ ∃xB)→ ∃x(A→ B) for A,B n.c.

All these are realized by identities.
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Derivatives

Let f , g : I → R be continuous. g is called derivative of f with
modulus δf : Z+ → N of differentiability if for x , y ∈ I with x < y ,

y ≤ x +
1

2δf (p)
→

∣∣f (y)− f (x)− g(x)(y − x)
∣∣ ≤ 1

2p
(y − x).

A bound on the derivative of f serves as a Lipschitz constant of f :

Lemma (BoundSlope)

Let f : I → R be continuous with derivative f ′. Assume that f ′ is
bounded by M on I . Then for x , y ∈ I with x < y,∣∣f (y)− f (x)

∣∣ ≤ M(y − x).
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Infimum of a convex function

Let f , f ′ : [a, b]→ R (a < b) be continuous and f ′ derivative of f .
Assume that f is strictly convex with witness q, in the sense that
f ′(a) < 0 < f ′(b) and

1

2p
< d − c → 1

2p+q
< f ′(d)− f ′(c).

Then we can find x ∈ (a, b) such that f (x) = infy∈[a,b] f (y).

Proof.

I To obtain x , apply the intermediate value theorem to f ′.

I To prove ∀y∈[a,b](f (x) ≤ f (y)) (this is “non-computational”,
i.e., a Harrop formula) one can use the standard arguments in
classical analysis (Rolle’s theorem, mean value theorem).
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Conclusion

Aim: constructive analysis, with constructions ∼ good algorithms.
Then extract these algorithms from proofs (realizability).

I Use order locatedness: given c < d , for all u

∀v∈V (c ≤ ρ(u, v)) ∨ ∃v∈V (ρ(u, v) ≤ d).

I Avoid total boundedness (existence of ε-nets).

Generally

I View constructive analysis as an extension of classical analysis.

I Formalize proofs in TCF (based on the Scott-Ershov model of
partial continuous functionals), extract algorithms (in Minlog).

I Data are important (real number, continuous function . . . ).

I Low type levels: continuous f : R→ R determined by its
values on the rationals Q.
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