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revions Resuls e Girard’s proof of the strong normalization of his system F requires
the third-order arithmetic on the meta-level.

e Natural question: can we have a more predicative proof of the
normalization for fragments of F?

e predicative proof = proof without circular reasoning.
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Aim of This Talk

e In this talk, we present a predicative proof of the strong
normalization for F%, by studying Buchholz’ Q-rule.

e F%: a parameter-free polymorphic lambda calculus allowing
n-times nested second-order quantifier.

e We transfer an important method in proof theory called the
Q-rule into computer science.

e Moreover, we give a proof-theoretic bound of the strong
normalization for it.

Akiyoshi and Terui, “Strong normalization for the parameter-free
polymorphic lambda calculus based on the Omega-rule”, First
International Conference on Formal Structures for Computation and
Deduction (FSCD), 2016.
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Definition of Syntax

Definition (Cf. Aehlig08)
For each n € NU{—1}, we define Tp,, as

Ap,B, = a|A,=B,|Ya.A, ;.

where FV(A,-1) C {a} in the last clause.

We write TPgimp = TP_1-
Types in this set are “parameter-free”.

N = Va(a=a)= (0= )
T = Va(o=a=o0)=(a=a)
0O = Va((N=ao)=a)=(a=a)=(a=a)

Remark
An important property: A,B € Tp,, implies A[B/a] € Tp,,.

€Tpy
€Tpy
€Tp,
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Terms (Tm) and Conversions of FP are defined in the standard way:

Our Results

B
(con) M” € Tm (abs)

(var) _
A cTm (AxA M)A=B c Tm

¥ eTm

MA*=Bcx NAcTm M* € TmnEc(a)
a
(MN)B ¢ Tm (Ao.M)"*4 € Tm

M4 ¢ Tm
(MB)AB/%) ¢ Tm

(App)

(AxA. M)N — M|N/x"], (Ao.M)B — M[B/c].

Definition
F}, is obtained by restricting types to Tp,,.
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Previous Results by Alternkirch, Coquand, and Aehlig
e Girard’s proof of SN(F) requires the third-order arithmetic on the
meta-level.

e Question: can we have a more predicative proof of the
normalization for fragments of system F?
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Previous Results by Alternkirch, Coquand, and Aehlig

e Girard’s proof of SN(F) requires the third-order arithmetic on the
meta-level.

e Question: can we have a more predicative proof of the
normalization for fragments of system F?

e Alternkirch and Coquand: a proof of weak normalization
(WN) of Ff) for specific terms;
Provably total in HA = representable in Ff).

e Aehlig: an indirect predicative proof of WN for F%, for a
specific terms;
Provably total in ID,, = representable in F%,.
(The problem of SN was left open in his Ph.D thesis)

e Our aim is to improve the situation by giving a direct predicative
proof of the strong normalization of such fragments for all terms.

Altenkirch and Coquand, “A Finitary Subsystem of the Polymorphic
A-calculus”, TLCA 2001.

Aehlig, “Parameter-free polymorphic types”, APAL, 2008.
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Our Results

e Systems of inductive definitions:

@ ID; = PA+ the least fixed points for PA-definable monotone
operators.
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e Systems of inductive definitions:

@ ID; = PA+ the least fixed points for PA-definable monotone
operators.

® ID, | = ID,+ the least fixed points for ID,-definable
monotone operators with 1 < n.

© ID_ ., :=U,cuIDn.
@ ID,: a proper extension of ID .

Theorem
ID, .1+ SN(F%) forall n < o.

Theorem
ID, - SN(FP) with FP :=J,c,, Fh.

Theorem (Aehlig 08)

Every representable function in F%, is provably total in ID,,.
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What is the Q-Rule?

e The Q-rule: infinitary rule introduced by Buchholz (1977) for
ordinal analysis of iterated inductive definitions.

e Schiitte’s @w-rule: branching over natural numbers.
e The Q-rule: branching over arithmetical cut-free proofs.

e Main theorems by Buchholz:

Embedding: BI (parameter free H}—CA) is embedded to BI?.
Collapsing: weak normalization for arithmetical formulas for
BI®.
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e The Q-rule: infinitary rule introduced by Buchholz (1977) for
Our Resuts ordinal analysis of iterated inductive definitions.

e Schiitte’s @w-rule: branching over natural numbers.
S e The Q-rule: branching over arithmetical cut-free proofs.

e Main theorems by Buchholz:

Embedding: BI (parameter free H}—CA) is embedded to BI?.

Collapsing: weak normalization for arithmetical formulas for
BI®.

e Recent developments:
1. For a stronger system (u-calculus): H.Towsner (2008).
2. modal u-calculus like IDy: G. Jiager and T. Studer (2010).

3. Complete cut-elimination theorem: R.Akiyoshi and G.Mints
(2016, AML).

8/21



Strong
Normalization

Akiyoshi and
Terui

Our Results

evious Results

Buchholz’
Q-Rule

Buchholz’ Q-Rule

e Idea of the Q-rule: BHK-reading of VXA — B.

e Meaning of VXA — B: some transformation f (function) from

any (cut-free) proof of VXA to a proof of B (BHK-reading).
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Buchholz’ Q-Rule

e Idea of the Q-rule: BHK-reading of VXA — B.

e Meaning of VXA — B: some transformation f (function) from
any (cut-free) proof of VXA to a proof of B (BHK-reading).

e So, if we have a proof f(d) of B for any (cut-free) proof d of VXA,
then we have a proof of VXA — B.

{d: vXA(X)}

VXA(X) — B

Remark
The Q-rule works well not only for a formal system based on
intuitionistic logic, but for one based on classical logic as well.
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Mints’ Question

Around 2008, Mints asked the following question:

e There should be the connection between the computability
predicate and the Q-rule.

We can prove the strong normalization by the following argument:

© Every reducible terms is S.N.
@® All terms are reducible (Reducibility Theorem).

The difficulty in F comes from the impredicativity of VX:

e t:VXA is reducible iff for any type B, ¢B is reducible of type

A[X/B.

The definition by induction on type breaks down.
(Girard’s solution: “Reducibility Candidate”)

Indeed, the Q-rule uses the substitution in the embedding. It avoids

“induction on type” as well.

10/21
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Analogy between Embedding and Reducibility Theorems

Buchholz’ embedding of V2E via the Q-rule:

d:AX)] :
: A(T) T A(T)—B
A(T)—B N _B... —E
VXA(X) — B VXA(X) — B

e Idea: Embedding corresponds to Reducibility:

e To3d+-I'=T">3d”+T.
e All terms are reducible.

e We extend the JM method using the Q-rule.

Joachimski and Matthes, “Short Proofs of Normalization for the simply-typed
lambda-calculus, permutative conversions and Godel’s T, AML, 2003.
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Towards Strong Normalization Theorem

Our strategy is to find a suitable set X such that

@ Prove Tm C X by showing that X is closed under the term rules
(Embedding).

® Prove X C SN (Collapsing).

Remark
In proof-theory, X is a suitable infinitary proof system, say PA(®).

e To consider the strong normalization, explicit bound variables are
replaced by constant.

e These variables are unchanged in the process of the
normalization.

e If M is a term, then M° := Mt is a term of a suitable atomic type.

Cf. Akiyoshi and Mints, “An extension of the Omega-rule”, AML, 2016.
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JM Rules

First, we define a suitable set of terms JMgjmp C SN. In this case, we
essentially follow Joachimski and Matthes’ way.

Definition

JMsimp is defined to be the least set X (€ DOMgjmp) closed under the

following rules:

McX
xMcX

(vap™)

M e XnEc(a)

AoaMeX

TocX McX
— (cap°®) ————— (abs)
cTeX At MeX

MIN/xAITeX N°eX

Abs) (AxA M)NT € X
M[B/a]T € X

(Aa.M)BT € X
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JM Rules

First, we define a suitable set of terms JMgjmp C SN. In this case, we
essentially follow Joachimski and Matthes’ way.

Definition
JMsimp is defined to be the least set X (€ DOMgjmp) closed under the
following rules:

McX T°ecX McX

— (vap~) — (cap®) ———— (abs)
xMecX cTeX AAMeX
M e XNEc(a) MIN/xATeX N°cX
——— X (Abs) —
Ao.M <X (AxA M)NT € X
MB/o|T € X 5
(Aa.M)BT € X

with
Domgjmp := {M € Tm: type(fv(M)) C Tpsimp-, type(M) € Wpsimp}7

where YTPsimp := TPsimp U{Va.A : A € TPgimp}-
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Inductive Case: the Q-Rule

As to JM Rules, we can show Embedding (TMgjmp € JMsimp)-
Next, we extend Buchholz’ Q-rule for the strong normalization proof. In
this talk, we focus on the simplest case JM.

Definition
JM) is defined to be the least set X(C Domy) closed under the JM rules
and Q :.

MY*A cx {K[B/a}? eXx }KAeJMSimmec(a)
MBT c X

0

This rule is a “hidden-redex”. In a proof-figure notation, this is
visualized as:

{K:A}
Aly/ o] ...A[B:/oc]...
vaa "1 Yaa—aB/a 1
A[B/a] -
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Inductive Case: the Q-Rule

e To eliminate Qy is to eliminate the second-order redex (collapsing).

Remark

e In Buchholz’ original Q-rule, the domain (to which K belongs) is
the set of normal arithmetical terms.

* In fact, JMgimp € SN. So, we quantify over the set of strongly
normalizable terms. To define the domain in a suitable way is the
key for defining the Q-rule.

e [terating this definition, we can define JM,, with Q, forn > 1.
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Key Lemma for Embedding

Lemma
JMy is closed under (Appy):

M"*A cX BcTp,

MBCX (ApPo)

Proof. Suppose that M"*4 ¢ JMy and B € Tp,. We use

M4 eX {KB/aleX } KA €M gimpEc(@) o

MBcX

0
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Key Lemma for Embedding

Lemma
JMy is closed under (Appy):

M"*A cX BcTp,

MBCX (ApPo)

Proof. Suppose that M"*4 ¢ JMy and B € Tp,. We use

M"AcX (K[B/a]eX }KAGJMsimmec(a)
MB e X

Take any K4 € JMgimp NEc(), then we have K4 € JM,.

Q
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Proof. Suppose that M"*4 ¢ JMy and B € Tp,. We use
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Key Lemma for Embedding

Lemma
JMy is closed under (Appy):

M"*A cX BcTp,
MB cX

(ApPo)

Proof. Suppose that M"*4 ¢ JMy and B € Tp,. We use

M"AcX (K[B/a]eX }KAGJMsimmec(a)
MB e X

Q

Take any K* € JMgimp NEC(), then we have K* € JM,.
Moreover, we can show K[B/ ] € JMj .
Hence, we obtain MB € JM, by Q. O

Remark
This lemma is the crucial case of Embedding in proof-theory, that is,
Hi—CA is interpreted into inifinitary system using the Q-rule.
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Key Lemma for Collapsing (Normalization)

Lemma (Collapsing)
JMgimp satisfies Qq:

MYeA ¢ JMsimp { K[B/OC}T S JMsimp }KAGJMsimmecW‘)

MBT ¢ JMsimp

Proof. By induction on the derivation of M"*4 ¢ JMsimp-
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Lemma (Collapsing)
JMgimp satisfies Qq:
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Proof. By induction on the derivation of M"*4 ¢ JMsimp-
If M = Aa.N € JMgjmp is derived by (Abs), then
N4 € JMgimp NEc(a).
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Lemma (Collapsing)
JMgimp satisfies Qq:
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Proof. By induction on the derivation of M"*4 ¢ JMsimp-
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Key Lemma for Collapsing (Normalization)

Lemma (Collapsing)
JMgimp satisfies Qq:

MYeA ¢ JMsimp { K[B/OC]T S JMsimp }KAGJMsimmecW‘)

MBT ¢ JMsimp

Proof. By induction on the derivation of M"*4 ¢ JMsimp-
If M = Aa.N € JMgjmp is derived by (Abs), then

N4 € JMgimp NEc(a).

Let K := N to obtain N[B/a|T € JMgimp.

Thus MBT € JMgjmp by (B).

M[B/a]T € IMsimp
(Ac.M)BT € JMsimp
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Main Result

By iterating the arguments, we have:

Theorem

For each n € NU {simp}, F,, admits strong normalization. Hence F?
admits strong normalization too.

Proof. Consider a term ¢ in F?. Then ¢ belongs to F, for some n < o.
So, by Embedding, # is in JM,,.

By the previous lemma (Collapsing), we see that

tcJM, CIM, 1,...,C JMsimp € SN. O
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Global Formalization in ID,, . { and ID,

To formalize our argument, the only strong method needed is the
Q,-rule:

M4 cX {K[B/a]T €X }gacym, rEc(a)
MBT € X

Qp

This definition is by iterated inductive definitions. So, our arguments
using Q,, are formalized in ID,, ;1.

Theorem
ID, .1 - SN(F%) for all n.

Remark
This gives a sharp bound since ID,, ¥ SN (F¥).

In IDy, we can “speak’ about any ID,, at once, so we have

Theorem
ID, - SN(FP).

19/21
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Local Formalization in ID,,

e In general, the computability argument is by non-monotonic
inductive definition.

Cf. Martin-Lo6f, “Hauptsatz for the intuitionistic theory of iterated
inductive definitions”, 1971.

e But, if we consider a specific term, then Godel-Tait method (the
computability argument) works well.

Theorem (Aehlig 08)
Every representable function in F¥, is provably total in ID,.
Proof. We refer to Section 4.2 of our paper. O
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Summary

e Girard’s proof of SN(F) requires the third-order arithmetic.

e If we consider a parameter-free subsystem F%, we can give a
predicative proof of SN (F%).

e Instead of “Reducibility candidate”, we used the idea of the Q-rule.

Theorem
ID, .1 - SN(F%) for all n.

This gives the sharp bound since ID,, ¥ SN (F%).

Theorem
ID, - SN(FP).

Theorem (Aehlig 08)

Every representable function in F¥, is provably total in ID,,.

Akiyoshi and Terui, “Strong normalization for the parameter-free
polymorphic lambda calculus based on the Omega-rule”, FSCD 2016.
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