Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz[†] Ω-Rule

Strong normalization for the parameter-free polymorphic lambda calculus based on the Ω -rule

Ryota Akiyoshi¹ Kazushige Terui²

¹Waseda Institute for Advanced Study, Waseda University

²Research Institute for Mathematical Sciences, Kyoto University

17th., September 2016

Akiyoshi and Terui

Introduction

Our Results

Strong Normalizatior Theorem

Previous Results

Buchholz Ω-Rule

Motivation

- Girard's proof of the strong normalization of his system *F* requires the third-order arithmetic on the meta-level.
- Natural question: can we have a more predicative proof of the normalization for fragments of *F*?
 - predicative proof = proof without circular reasoning.

Akiyoshi and Terui

Introduction

Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Aim of This Talk

- In this talk, we present a predicative proof of the strong normalization for F_n^p by studying Buchholz' Ω -rule.
 - F_n^p : a parameter-free polymorphic lambda calculus allowing *n*-times nested second-order quantifier.
 - We transfer an important method in proof theory called the Ω -rule into computer science.
 - Moreover, we give a proof-theoretic bound of the strong normalization for it.

Akiyoshi and Terui, "Strong normalization for the parameter-free polymorphic lambda calculus based on the Omega-rule", *First International Conference on Formal Structures for Computation and Deduction (FSCD)*, 2016.

Akiyoshi and Terui

Introduction

Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Definition of Syntax

Definition (Cf. Aehlig08) For each $n \in \mathbb{N} \cup \{-1\}$, we define **Tp**_{*n*} as

 $A_n, B_n ::= \alpha | A_n \Rightarrow B_n | \forall \alpha. A_{n-1}.$

where $FV(A_{n-1}) \subseteq \{\alpha\}$ in the last clause.

We write $\mathbf{Tp}_{simp} = \mathbf{Tp}_{-1}$. Types in this set are "parameter-free".

$$N := \forall \alpha. (\alpha \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha) \in \mathsf{Tp}_0$$

$$T := \forall \alpha. (\alpha \Rightarrow \alpha \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha) \in \mathsf{Tp}_0$$

$$\boldsymbol{\textit{O}} \hspace{0.1 in} := \hspace{0.1 in} \forall \alpha.((N \Rightarrow \alpha) \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha) \hspace{0.1 in} \in \textbf{Tp}_1$$

Remark

An important property: $A, B \in \mathsf{Tp}_n$ implies $A[B/\alpha] \in \mathsf{Tp}_n$.

Akiyoshi and Terui

Introduction

Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Term Rules and Conversions

Definition

Terms (\mathbf{Tm}) and Conversions of \mathbf{F}^{p} are defined in the standard way:

$$\frac{1}{x^A \in \mathsf{Tm}} \ ^{(\mathsf{var})} \qquad \frac{d^B \in \mathsf{Tm}}{c^A \in \mathsf{Tm}} \ ^{(\mathsf{con})} \qquad \frac{d^B \in \mathsf{Tm}}{(\lambda x^A . M)^{A \Rightarrow B} \in \mathsf{Tm}} \ ^{(\mathsf{abs})}$$

$$\begin{array}{l} \underline{M^{A\Rightarrow B}\in X} \quad \underline{N^{A}\in\mathsf{Tm}} \\ (MN)^{B}\in\mathsf{Tm} \end{array} \stackrel{(\mathsf{app})}{(A\alpha.M)^{\forall\alpha.A}\in\mathsf{Tm}} \stackrel{(\mathsf{Abs})}{(\Lambda\alpha.M)^{\forall\alpha.A}\in\mathsf{Tm}} \\ \\ \\ \frac{\underline{M^{\forall\alpha.A}\in\mathsf{Tm}}}{(MB)^{A[B/\alpha]}\in\mathsf{Tm}} \stackrel{(\mathsf{App})}{(\mathsf{App})} \end{array}$$

 $(\lambda x^A . M) N \to M[N/x^A], \quad (\Lambda \alpha . M) B \to M[B/\alpha].$

Definition \mathbf{F}_n^p is obtained by restricting types to \mathbf{Tp}_n .

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Previous Results

Buchholz' Ω-Rule

Previous Results by Alternkirch, Coquand, and Aehlig

- Girard's proof of *SN*(*F*) requires the third-order arithmetic on the meta-level.
- Question: can we have a more predicative proof of the normalization for fragments of system F?

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Previous Results

Buchholz Ω-Rule

Previous Results by Alternkirch, Coquand, and Aehlig

- Girard's proof of *SN*(*F*) requires the third-order arithmetic on the meta-level.
- Question: can we have a more predicative proof of the normalization for fragments of system F?
 - Alternkirch and Coquand: a proof of weak normalization (WN) of F_0^p for specific terms; Provably total in HA = representable in F_0^p .

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Previous Results

Buchholz Ω-Rule

Previous Results by Alternkirch, Coquand, and Aehlig

- Girard's proof of *SN*(*F*) requires the third-order arithmetic on the meta-level.
- Question: can we have a more predicative proof of the normalization for fragments of system F?
 - Alternkirch and Coquand: a proof of weak normalization (WN) of F_0^p for specific terms; Provably total in HA = representable in F_0^p .
 - Aehlig: an indirect predicative proof of $\stackrel{\circ}{WN}$ for F_n^p for a specific terms;

Provably total in ID_n = representable in F_n^p .

(The problem of SN was left open in his Ph.D thesis)

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Previous Results

Buchholz Ω-Rule

Previous Results by Alternkirch, Coquand, and Aehlig

- Girard's proof of *SN*(*F*) requires the third-order arithmetic on the meta-level.
- Question: can we have a more predicative proof of the normalization for fragments of system F?
 - Alternkirch and Coquand: a proof of weak normalization (WN) of F_0^p for specific terms; Provably total in HA = representable in F_0^p .
 - Aehlig: an indirect predicative proof of WN for F^p_n for a specific terms;
 Provably total in ID_n = representable in F^p_n.
 (The problem of SN was left open in his Ph.D thesis)
- Our aim is to improve the situation by giving a direct predicative proof of the strong normalization of such fragments for all terms.

Altenkirch and Coquand, "A Finitary Subsystem of the Polymorphic λ -calculus", *TLCA 2001*.

Aehlig, "Parameter-free polymorphic types", APAL, 2008.

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Previous Results

Buchholz Ω-Rule

Our Results

- Systems of inductive definitions:
 - 1 $ID_1 = PA +$ the least fixed points for *PA*-definable monotone operators.

Akiyoshi and Terui

Introduction Our Results

Strong Normalizatior Theorem

Previous Results

Buchholz' Ω-Rule

Our Results

- Systems of inductive definitions:
 - 1 $ID_1 = PA +$ the least fixed points for *PA*-definable monotone operators.
 - 2 *ID_{n+1} = ID_n*+ the least fixed points for *ID_n*-definable monotone operators with 1 ≤ n.

Akiyoshi and Terui

Introduction Our Results

Strong Normalizatior Theorem

Previous Results

Buchholz Ω-Rule

Our Results

- Systems of inductive definitions:
 - **1** $D_1 = PA +$ the least fixed points for *PA*-definable monotone operators.
 - 2 ID_{n+1} = ID_n + the least fixed points for ID_n-definable monotone operators with 1 ≤ n.
 - **3** $ID'_{<\omega} := \bigcup_{n \in \omega} ID_n.$
 - **4** ID_{ω} : a proper extension of $ID_{<\omega}$.

Theorem $ID_{n+1} \vdash SN(F_n^p)$ for all $n < \omega$.

Theorem $ID_{\omega} \vdash SN(F^p)$ with $F^p := \bigcup_{n \in \omega} F_n^p$.

Theorem (Aehlig 08)

Every representable function in F_n^p is provably total in ID_n .

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Previous Results

Buchholz Ω-Rule

What is the Ω -Rule?

- The Ω -rule: infinitary rule introduced by Buchholz (1977) for ordinal analysis of iterated inductive definitions.
 - Schütte's ω -rule: branching over natural numbers.
 - The Ω -rule: branching over arithmetical cut-free proofs.
- Main theorems by Buchholz:

Embedding: BI (parameter free Π_1^1 -*CA*) is embedded to BI^{Ω}. Collapsing: weak normalization for arithmetical formulas for BI^{Ω}.

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Previous Results

Buchholz' Ω-Rule

What is the Ω **-Rule**?

- The Ω -rule: infinitary rule introduced by Buchholz (1977) for ordinal analysis of iterated inductive definitions.
 - Schütte's ω -rule: branching over natural numbers.
 - The Ω -rule: branching over arithmetical cut-free proofs.
- Main theorems by Buchholz:

Embedding: BI (parameter free Π_1^1 -*CA*) is embedded to BI^{Ω}. Collapsing: weak normalization for arithmetical formulas for BI^{Ω}.

- Recent developments:
 - 1. For a stronger system (μ -calculus): H.Towsner (2008).
 - 2. modal μ -calculus like ID_1 : G. Jäger and T. Studer (2010).
 - 3. Complete cut-elimination theorem: R.Akiyoshi and G.Mints (2016, AML).

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Buchholz' Ω-Rule

• Idea of the Ω -rule: BHK-reading of $\forall XA \rightarrow B$.

• Meaning of $\forall XA \rightarrow B$: some transformation *f* (function) from any (cut-free) proof of $\forall XA$ to a proof of *B* (BHK-reading).

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Buchholz' Ω-Rule

- Idea of the Ω -rule: BHK-reading of $\forall XA \rightarrow B$.
 - Meaning of $\forall XA \rightarrow B$: some transformation *f* (function) from any (cut-free) proof of $\forall XA$ to a proof of *B* (BHK-reading).
- So, if we have a proof *f*(*d*) of *B* for any (cut-free) proof *d* of ∀*XA*, then we have a proof of ∀*XA* → *B*.

$$\{ \boldsymbol{d} : \forall \boldsymbol{X} \boldsymbol{A}(\boldsymbol{X}) \} \\ \vdots \\ \boldsymbol{\partial} \boldsymbol{B} \dots \\ \forall \boldsymbol{X} \boldsymbol{A}(\boldsymbol{X}) \to \boldsymbol{B} \ \boldsymbol{\Omega}$$

Remark

The Ω -rule works well not only for a formal system based on intuitionistic logic, but for one based on classical logic as well.

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Mints' Question

- Around 2008, Mints asked the following question:
 - There should be the connection between the computability predicate and the Ω -rule.
- We can prove the strong normalization by the following argument:
 - Every reducible terms is S.N.
 - 2 All terms are reducible (Reducibility Theorem).
- The difficulty in *F* comes from the impredicativity of $\forall X$:
 - $t: \forall XA$ is reducible iff for any type B, tB is reducible of type A[X/B].
- The definition by induction on type breaks down. (Girard's solution: "Reducibility Candidate")
- Indeed, the Ω -rule uses the substitution in the embedding. It avoids "induction on type" as well.

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Analogy between Embedding and Reducibility Theorems

Buchholz' embedding of $\forall^2 E$ via the Ω -rule:

- Idea: Embedding corresponds to Reducibility:
 - $T \ni d \vdash \Gamma \Rightarrow T^{\infty} \ni d^{\infty} \vdash \Gamma$.
 - All terms are reducible.
- We extend the JM method using the Ω -rule.

Joachimski and Matthes, "Short Proofs of Normalization for the simply-typed lambda-calculus, permutative conversions and Gödel's T", AML, 2003.

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Towards Strong Normalization Theorem

Our strategy is to find a suitable set X such that

- Prove $\mathbf{Tm} \subseteq X$ by showing that X is closed under the term rules (*Embedding*).
- **2** Prove $X \subseteq$ **SN** (*Collapsing*).

Remark

In proof-theory, **X** is a suitable infinitary proof system, say $PA(\omega)$.

- To consider the strong normalization, *explicit* bound variables are replaced by constant.
 - These variables are unchanged in the process of the normalization.
- If M is a term, then $M^{\circ} := M\bar{t}$ is a term of a suitable atomic type.

Cf. Akiyoshi and Mints, "An extension of the Omega-rule", AML, 2016.

Akiyoshi and Terui

Introduction

Strong

Normalization Theorem

Buchholz' Ω-Rule

JM Rules

First, we define a suitable set of terms $JM_{simp} \subseteq SN$. In this case, we essentially follow Joachimski and Matthes' way.

Definition

 JM_{simp} is defined to be the least set $X (\subseteq Dom_{simp})$ closed under the following rules:

$$\begin{array}{ll} \displaystyle \frac{\overline{M} \in X}{x\overline{M} \in X} \ (\mathsf{vap}^-) & \displaystyle \frac{\overline{T^\circ} \in X}{c\overline{T} \in X} \ (\mathsf{cap}^\circ) & \displaystyle \frac{M \in X}{\lambda x^A \cdot M \in X} \ (\mathsf{abs}) \\ \\ \displaystyle \frac{M \in X \cap \mathsf{EC}(\alpha)}{\Lambda \alpha \cdot M \in X} \ (\mathsf{Abs}) & \displaystyle \frac{M[N/x^A]\overline{T} \in X \ N^\circ \in X}{(\lambda x^A \cdot M)N\overline{T} \in X} \ (\beta^\circ) \\ \\ \displaystyle \frac{M[B/\alpha]\overline{T} \in X}{(\Lambda \alpha \cdot M)B\overline{T} \in X} \ (\mathsf{B}) \end{array}$$

Akiyoshi and Terui

Introduction

Strong Normalization Theorem

Buchholz' Ω-Rule

JM Rules

First, we define a suitable set of terms $JM_{simp} \subseteq SN$. In this case, we essentially follow Joachimski and Matthes' way.

Definition

 JM_{simp} is defined to be the least set $X (\subseteq Dom_{simp})$ closed under the following rules:

$$\begin{array}{ll} \displaystyle \frac{\overline{M} \in X}{x\overline{M} \in X} \ (\mathsf{vap}^-) & \displaystyle \frac{\overline{T^\circ} \in X}{c\overline{T} \in X} \ (\mathsf{cap}^\circ) & \displaystyle \frac{M \in X}{\lambda x^A . M \in X} \ (\mathsf{abs}) \\ \\ \displaystyle \frac{M \in X \cap \mathsf{EC}(\alpha)}{\Lambda \alpha . M \in X} \ (\mathsf{Abs}) & \displaystyle \frac{M[N/x^A]\overline{T} \in X}{(\lambda x^A . M)N\overline{T} \in X} \ (\beta^\circ) \\ \\ \displaystyle \frac{M[B/\alpha]\overline{T} \in X}{(\Lambda \alpha . M)B\overline{T} \in X} \ (\mathsf{B}) \end{array}$$

with

$$\begin{split} \mathbf{Dom}_{\mathsf{simp}} &:= \{ M \in \mathsf{Tm} : \mathsf{type}(\mathsf{fv}(M)) \subseteq \mathsf{Tp}_{\mathsf{simp}}, \ \mathsf{type}(M) \in \forall \mathsf{Tp}_{\mathsf{simp}} \}, \\ \text{where } \forall \mathsf{Tp}_{\mathsf{simp}} := \mathsf{Tp}_{\mathsf{simp}} \cup \{ \forall \alpha A : A \in \mathsf{Tp}_{\mathsf{simp}} \}. \end{split}$$

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω -Rule

Inductive Case: the Ω-Rule

As to JM Rules, we can show Embedding ($\mathsf{Tm}_{\mathsf{simp}} \subseteq \mathsf{JM}_{\mathsf{simp}}$). Next, we extend Buchholz' Ω -rule for the strong normalization proof. In this talk, we focus on the simplest case JM_0 .

Definition

 JM_0 is defined to be the least set $X(\subseteq Dom_0)$ closed under the JM rules and Ω_0 :.

$$\frac{M^{\forall \alpha.A} \in X \quad \{ K[B/\alpha]\overline{T} \in X \}_{K^A \in \mathsf{JM}_{\mathsf{simp}} \cap \mathsf{Ec}(\alpha)}}{MB\overline{T} \in X} \ \Omega_0$$

This rule is a "hidden-redex". In a proof-figure notation, this is visualized as:

$$\frac{ \begin{cases} K:A \\ \vdots \\ \vdots \\ \hline \frac{\forall \alpha.A}{\forall \alpha.A} \forall^2 I \quad \frac{\dots A[B/\alpha] \dots}{\forall \alpha.A \to A[B/\alpha]} \to^{\Omega} I \\ \hline A[B/\alpha] \quad \to E \end{cases}$$

Akiyoshi and Terui

Introduction

Strong Normalizatior Theorem

Previous Results

Buchholz' Ω -Rule

Inductive Case: the Ω-Rule

• To eliminate Ω_0 is to eliminate the second-order redex (collapsing).

Remark

- In Buchholz' original Ω -rule, the domain (to which **K** belongs) is the set of normal arithmetical terms.
 - In fact, JM_{simp} ⊆ SN. So, we quantify over the set of strongly normalizable terms. To define the domain in a suitable way is the key for defining the Ω-rule.
 - Iterating this definition, we can define \mathbf{JM}_n with Ω_n for $n \ge 1$.

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω -Rule

Key Lemma for Embedding

Lemma JM₀ is closed under (App₀):

$$rac{M^{orall lpha.A} \in X \quad B \in \mathsf{Tp}_0}{MB \in X} \ \ (\mathsf{App}_0)$$

Proof. Suppose that $M^{\forall \alpha A} \in \mathbf{JM}_0$ and $B \in \mathbf{Tp}_0$. We use

$$\frac{M^{\forall \alpha.A} \in X \quad \{K[B/\alpha] \in X \ \}_{K^A \in \mathsf{JM}_\mathsf{simp}} \cap \mathsf{Ec}(\alpha)}{MB \in X} \ \Omega_0$$

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω -Rule

Key Lemma for Embedding

Lemma JM₀ is closed under (App₀):

$$rac{M^{orall lpha.A} \in X \quad B \in \mathsf{Tp}_0}{MB \in X} \ \ (\mathsf{App}_0)$$

Proof. Suppose that $M^{\forall \alpha. A} \in \mathbf{JM}_0$ and $B \in \mathbf{Tp}_0$. We use

$$\frac{M^{\forall \alpha.A} \in X \quad \{K[B/\alpha] \in X \ \}_{K^A \in \mathsf{JM}_\mathsf{simp}} \cap \mathsf{Ec}(\alpha)}{MB \in X} \ \Omega_0$$

Take any $K^A \in JM_{simp} \cap EC(\alpha)$, then we have $K^A \in JM_0$.

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω -Rule

Key Lemma for Embedding

Lemma JM₀ is closed under (App₀):

$$rac{M^{orall lpha.A} \in X \quad B \in \mathsf{Tp}_0}{MB \in X} \ \ (\mathsf{App}_0)$$

Proof. Suppose that $M^{\forall \alpha. A} \in \mathbf{JM}_0$ and $B \in \mathsf{Tp}_0$. We use

$$\frac{M^{\forall \alpha.A} \in X \quad \{K[B/\alpha] \in X \mid_{K^A \in \mathsf{JM}_{\mathsf{simp}} \cap \mathsf{Ec}(\alpha)}}{MB \in X} \ \Omega_0$$

Take any $K^A \in JM_{simp} \cap Ec(\alpha)$, then we have $K^A \in JM_0$. Moreover, we can show $K[B/\alpha] \in JM_0$. Hence, we obtain $MB \in JM_0$ by Ω_0 . \Box

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω -Rule

Key Lemma for Embedding

Lemma JM₀ is closed under (App₀):

$$rac{M^{orall lpha.A} \in X \quad B \in \mathsf{Tp}_0}{MB \in X} \ \ (\mathsf{App}_0)$$

Proof. Suppose that $M^{\forall \alpha. A} \in \mathbf{JM}_0$ and $B \in \mathbf{Tp}_0$. We use

$$\frac{M^{\forall \alpha.A} \in X \quad \{K[B/\alpha] \in X \mid_{K^A \in \mathsf{JM}_{\mathsf{simp}} \cap \mathsf{Ec}(\alpha)}}{MB \in X} \ \Omega_0$$

Take any $K^A \in JM_{simp} \cap Ec(\alpha)$, then we have $K^A \in JM_0$. Moreover, we can show $K[B/\alpha] \in JM_0$. Hence, we obtain $MB \in JM_0$ by Ω_0 . \Box

Remark

This lemma is the crucial case of Embedding in proof-theory, that is, Π_1^1 -CA is interpreted into inifinitary system using the Ω -rule.

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Key Lemma for Collapsing (Normalization)

Lemma (Collapsing) JM_{simp} satisfies Ω_0 :

 $\frac{M^{\forall \alpha.A} \in \mathbf{J}\mathbf{M}_{\mathsf{simp}} \quad \{ \ K[B/\alpha]\overline{T} \in \mathbf{J}\mathbf{M}_{\mathsf{simp}} \ \}_{K^A \in \mathbf{J}\mathbf{M}_{\mathsf{simp}} \cap \mathsf{Ec}(\alpha)}}{MB\overline{T} \in \mathbf{J}\mathbf{M}_{\mathsf{simp}}}$

Proof. By induction on the derivation of $M^{\forall \alpha A} \in \mathbf{JM}_{simp}$.

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Key Lemma for Collapsing (Normalization)

Lemma (Collapsing) JM_{simp} satisfies Ω_0 :

 $\frac{M^{\forall \alpha.A} \in \mathbf{J}\mathbf{M}_{\mathsf{simp}} \quad \{ \ K[B/\alpha]\overline{T} \in \mathbf{J}\mathbf{M}_{\mathsf{simp}} \ \}_{K^A \in \mathbf{J}\mathbf{M}_{\mathsf{simp}} \cap \mathsf{Ec}(\alpha)}}{MB\overline{T} \in \mathbf{J}\mathbf{M}_{\mathsf{simp}}}$

Proof. By induction on the derivation of $M^{\forall \alpha . A} \in \mathbf{JM}_{simp}$. If $M \equiv \Lambda \alpha . N \in \mathbf{JM}_{simp}$ is derived by (**Abs**), then $N^A \in \mathbf{JM}_{simp} \cap \mathbf{Ec}(\alpha)$.

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Key Lemma for Collapsing (Normalization)

Lemma (Collapsing) JM_{simp} satisfies Ω_0 :

 $\frac{M^{\forall \alpha.A} \in \mathbf{J}\mathbf{M}_{\mathsf{simp}} \quad \{ \ K[B/\alpha]\overline{T} \in \mathbf{J}\mathbf{M}_{\mathsf{simp}} \ \}_{K^A \in \mathbf{J}\mathbf{M}_{\mathsf{simp}} \cap \mathsf{Ec}(\alpha)}}{MB\overline{T} \in \mathbf{J}\mathbf{M}_{\mathsf{simp}}}$

Proof. By induction on the derivation of $M^{\forall \alpha . A} \in \mathbf{JM}_{simp}$. If $M \equiv \Lambda \alpha . N \in \mathbf{JM}_{simp}$ is derived by (**Abs**), then $N^A \in \mathbf{JM}_{simp} \cap \mathbf{Ec}(\alpha)$. Let K := N to obtain $N[B/\alpha]\overline{T} \in \mathbf{JM}_{simp}$.

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Key Lemma for Collapsing (Normalization)

Lemma (Collapsing) JM_{simp} satisfies Ω_0 :

 $\frac{M^{\forall \alpha.A} \in \mathbf{J}\mathbf{M}_{\mathsf{simp}} \quad \{ \ K[B/\alpha]\overline{T} \in \mathbf{J}\mathbf{M}_{\mathsf{simp}} \ \}_{K^A \in \mathbf{J}\mathbf{M}_{\mathsf{simp}} \cap \mathsf{Ec}(\alpha)}}{MB\overline{T} \in \mathbf{J}\mathbf{M}_{\mathsf{simp}}}$

Proof. By induction on the derivation of $M^{\forall \alpha . A} \in \mathbf{JM}_{simp}$. If $M \equiv \Lambda \alpha . N \in \mathbf{JM}_{simp}$ is derived by (**Abs**), then $N^A \in \mathbf{JM}_{simp} \cap \mathbf{Ec}(\alpha)$. Let K := N to obtain $N[B/\alpha]\overline{T} \in \mathbf{JM}_{simp}$. Thus $MB\overline{T} \in \mathbf{JM}_{simp}$ by (**B**).

$$\frac{M[B/\alpha]T\in \mathbf{JM}_{simp}}{(\Lambda\alpha.M)B\overline{T}\in \mathbf{JM}_{simp}} \ \, (\mathbf{B})$$

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Previous Results

Buchholz' Ω -Rule

Main Result

By iterating the arguments, we have:

Theorem

For each $n \in \mathbb{N} \cup \{\text{simp}\}, \mathbf{F}_n^p$ admits strong normalization. Hence \mathbf{F}^p admits strong normalization too.

Proof. Consider a term *t* in \mathbf{F}^p . Then *t* belongs to \mathbf{F}_n^p for some $n < \omega$. So, by Embedding, *t* is in \mathbf{JM}_n .

By the previous lemma (Collapsing), we see that

 $t \in JM_n \subseteq JM_{n-1}, \ldots, \subseteq JM_{simp} \subseteq SN. \Box$

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Global Formalization in ID_{n+1} and ID_{ω}

To formalize our argument, the only strong method needed is the Ω_n -rule:

$$\frac{M^{\forall \alpha.A} \in X \quad \{ \ K[B/\alpha]\overline{T} \in X \ \}_{K^A \in \mathsf{JM}_{n-1} \cap \mathsf{Ec}(\alpha)}}{MB\overline{T} \in X} \ \Omega_n$$

This definition is by iterated inductive definitions. So, our arguments using Ω_n are formalized in ID_{n+1} .

Theorem $ID_{n+1} \vdash SN(F_n^p)$ for all n.

Remark This gives a sharp bound since $ID_n \nvDash SN(F_n^p)$.

In ID_{ω} , we can "speak" about any ID_n at once, so we have

Theorem $ID_{\omega} \vdash SN(F^p)$.

Akiyoshi and Terui

Introduction

Strong Normalization Theorem

Buchholz' Ω-Rule

Local Formalization in *ID_n*

• In general, the computability argument is by non-monotonic inductive definition.

Cf. Martin-Löf, "Hauptsatz for the intuitionistic theory of iterated inductive definitions", 1971.

• But, if we consider a specific term, then Gödel-Tait method (the computability argument) works well.

Theorem (Aehlig 08)

Every representable function in F_n^p is provably total in ID_n .

Proof. We refer to Section 4.2 of our paper. \Box

Akiyoshi and Terui

Introduction Our Results

Strong Normalization Theorem

Buchholz' Ω-Rule

Summary

- Girard's proof of SN(F) requires the third-order arithmetic.
- If we consider a parameter-free subsystem F_n^p , we can give a predicative proof of $SN(F_n^p)$.
- Instead of "Reducibility candidate", we used the idea of the Ω -rule.

Theorem $ID_{n+1} \vdash SN(F_n^p)$ for all n. This gives the sharp bound since $ID_n \nvDash SN(F_n^p)$. Theorem $ID_{\omega} \vdash SN(F^p)$.

Theorem (Aehlig 08)

Every representable function in F_n^p is provably total in ID_n .

Akiyoshi and Terui, "Strong normalization for the parameter-free polymorphic lambda calculus based on the Omega-rule", *FSCD 2016*.