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Motivation

• Girard’s proof of the strong normalization of his system F requires
the third-order arithmetic on the meta-level.

• Natural question: can we have a more predicative proof of the
normalization for fragments of F?

• predicative proof = proof without circular reasoning.
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Aim of This Talk

• In this talk, we present a predicative proof of the strong
normalization for Fp

n by studying Buchholz’ Ω-rule.

• Fp
n: a parameter-free polymorphic lambda calculus allowing

n-times nested second-order quantifier.

• We transfer an important method in proof theory called the
Ω-rule into computer science.

• Moreover, we give a proof-theoretic bound of the strong
normalization for it.

Akiyoshi and Terui, “Strong normalization for the parameter-free
polymorphic lambda calculus based on the Omega-rule”, First
International Conference on Formal Structures for Computation and
Deduction (FSCD), 2016.
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Definition of Syntax

Definition (Cf. Aehlig08)
For each n ∈ N∪{−1}, we define Tpn as

An,Bn ::= α | An ⇒ Bn | ∀α.An−1.

where FV(An−1) ⊆ {α} in the last clause.
We write Tpsimp = Tp−1.
Types in this set are “parameter-free”.

N := ∀α .(α ⇒ α) ⇒ (α ⇒ α) ∈ Tp0
T := ∀α .(α ⇒ α ⇒ α) ⇒ (α ⇒ α) ∈ Tp0
O := ∀α .((N ⇒ α) ⇒ α) ⇒ (α ⇒ α) ⇒ (α ⇒ α) ∈ Tp1

Remark
An important property: A,B ∈ Tpn implies A[B/α] ∈ Tpn.
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Term Rules and Conversions
Definition
Terms (Tm) and Conversions of Fp are defined in the standard way:

xA ∈ Tm
(var)

cA ∈ Tm
(con)

MB ∈ Tm
(λxA.M)A⇒B ∈ Tm

(abs)

MA⇒B ∈ X NA ∈ Tm
(MN)B ∈ Tm

(app)
MA ∈ Tm∩Ec(α)

(Λα.M)∀α.A ∈ Tm
(Abs)

M∀α.A ∈ Tm
(MB)A[B/α] ∈ Tm

(App)

(λxA.M)N → M[N/xA], (Λα.M)B → M[B/α].

Definition
Fp

n is obtained by restricting types to Tpn.
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Previous Results by Alternkirch, Coquand, and Aehlig

• Girard’s proof of SN(F) requires the third-order arithmetic on the
meta-level.

• Question: can we have a more predicative proof of the
normalization for fragments of system F?

• Alternkirch and Coquand: a proof of weak normalization
(WN) of Fp

0 for specific terms;
Provably total in HA = representable in Fp

0.
• Aehlig: an indirect predicative proof of WN for Fp

n for a
specific terms;
Provably total in IDn = representable in Fp

n.
(The problem of SN was left open in his Ph.D thesis)

• Our aim is to improve the situation by giving a direct predicative
proof of the strong normalization of such fragments for all terms.

Altenkirch and Coquand, “A Finitary Subsystem of the Polymorphic
λ -calculus”, TLCA 2001.

Aehlig, “Parameter-free polymorphic types”, APAL, 2008.
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Our Results

• Systems of inductive definitions:

.

.1 ID1 = PA+ the least fixed points for PA-definable monotone
operators.

.

.

2 IDn+1 = IDn+ the least fixed points for IDn-definable
monotone operators with 1 ≤ n.

.

.

3 ID<ω :=
∪

n∈ω IDn.

.

.

4 IDω : a proper extension of ID<ω .

Theorem
IDn+1 ` SN(Fp

n) for all n < ω .

Theorem
IDω ` SN(Fp) with Fp :=

∪
n∈ω Fp

n.

Theorem (Aehlig 08)
Every representable function in Fp

n is provably total in IDn.
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What is the Ω-Rule?

• The Ω-rule: infinitary rule introduced by Buchholz (1977) for
ordinal analysis of iterated inductive definitions.

• Schütte’s ω-rule: branching over natural numbers.
• The Ω-rule: branching over arithmetical cut-free proofs.

• Main theorems by Buchholz:

Embedding: BI (parameter free Π1
1-CA) is embedded to BIΩ.

Collapsing: weak normalization for arithmetical formulas for
BIΩ.

• Recent developments:

1. For a stronger system (µ-calculus): H.Towsner (2008).
2. modal µ-calculus like ID1: G. Jäger and T. Studer (2010).
3. Complete cut-elimination theorem: R.Akiyoshi and G.Mints

(2016, AML).
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Buchholz’ Ω-Rule

• Idea of the Ω-rule: BHK-reading of ∀XA → B.

• Meaning of ∀XA → B: some transformation f (function) from
any (cut-free) proof of ∀XA to a proof of B (BHK-reading).

• So, if we have a proof f(d) of B for any (cut-free) proof d of ∀XA,
then we have a proof of ∀XA → B.

{d : ∀XA(X)}....
. . .B . . .

∀XA(X) → B Ω

Remark
The Ω-rule works well not only for a formal system based on
intuitionistic logic, but for one based on classical logic as well.
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Mints’ Question

• Around 2008, Mints asked the following question:

• There should be the connection between the computability
predicate and the Ω-rule.

• We can prove the strong normalization by the following argument:

.

.

1 Every reducible terms is S.N.

.

.

2 All terms are reducible (Reducibility Theorem).

• The difficulty in F comes from the impredicativity of ∀X:

• t : ∀XA is reducible iff for any type B, tB is reducible of type
A[X/B].

• The definition by induction on type breaks down.
(Girard’s solution: “Reducibility Candidate”)

• Indeed, the Ω-rule uses the substitution in the embedding. It avoids
“induction on type” as well.
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Analogy between Embedding and Reducibility Theorems

Buchholz’ embedding of ∀2E via the Ω-rule:

....
A(T) → B

∀XA(X) → B
⇒

[d : A(X)]

A(T)
SX

T

....
A(T) → B

. . .B . . .
→ E

∀XA(X) → B Ω

• Idea: Embedding corresponds to Reducibility:

• T 3 d ` Γ ⇒ T∞ 3 d∞ ` Γ.
• All terms are reducible.

• We extend the JM method using the Ω-rule.

Joachimski and Matthes, “Short Proofs of Normalization for the simply-typed

lambda-calculus, permutative conversions and Gödel’s T”, AML, 2003.
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Towards Strong Normalization Theorem

Our strategy is to find a suitable set X such that

.

.
1 Prove Tm ⊆ X by showing that X is closed under the term rules

(Embedding).

.

.

2 Prove X ⊆ SN (Collapsing).

Remark
In proof-theory, X is a suitable infinitary proof system, say PA(ω).

• To consider the strong normalization, explicit bound variables are
replaced by constant.

• These variables are unchanged in the process of the
normalization.

• If M is a term, then M◦ := Mt is a term of a suitable atomic type.

Cf. Akiyoshi and Mints, “An extension of the Omega-rule”, AML, 2016.
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JM Rules
First, we define a suitable set of terms JMsimp ⊆ SN. In this case, we
essentially follow Joachimski and Matthes’ way.

Definition
JMsimp is defined to be the least set X (⊆ Domsimp) closed under the
following rules:

M ∈ X
xM ∈ X

(vap−)
T◦ ∈ X
cT ∈ X

(cap◦)
M ∈ X

λxA.M ∈ X
(abs)

M ∈ X∩Ec(α)
Λα .M ∈ X

(Abs)
M[N/xA]T ∈ X N◦ ∈ X

(λxA.M)NT ∈ X
(β ◦)

M[B/α]T ∈ X
(Λα.M)BT ∈ X

(B)

with

Domsimp := {M ∈ Tm : type(fv(M)) ⊆ Tpsimp, type(M) ∈ ∀Tpsimp},

where ∀Tpsimp := Tpsimp ∪{∀α.A : A ∈ Tpsimp}.
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Inductive Case: the Ω-Rule
As to JM Rules, we can show Embedding (Tmsimp ⊆ JMsimp).
Next, we extend Buchholz’ Ω-rule for the strong normalization proof. In
this talk, we focus on the simplest case JM0.

Definition
JM0 is defined to be the least set X(⊆ Dom0) closed under the JM rules
and Ω0 :.

M∀α.A ∈ X { K[B/α]T ∈ X }KA∈JMsimp∩Ec(α)

MBT ∈ X
Ω0

This rule is a “hidden-redex”. In a proof-figure notation, this is
visualized as:

A[γ/α]
∀α.A ∀2I

{K : A}....
. . .A[B/α] . . .

∀α .A → A[B/α] →Ω I

A[B/α ]
→ E

14 / 21
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Inductive Case: the Ω-Rule

• To eliminate Ω0 is to eliminate the second-order redex (collapsing).

Remark

• In Buchholz’ original Ω-rule, the domain (to which K belongs) is
the set of normal arithmetical terms.

• In fact, JMsimp ⊆ SN. So, we quantify over the set of strongly
normalizable terms. To define the domain in a suitable way is the
key for defining the Ω-rule.

• Iterating this definition, we can define JMn with Ωn for n ≥ 1.
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Key Lemma for Embedding

Lemma
JM0 is closed under (App0):

M∀α .A ∈ X B ∈ Tp0
MB ∈ X

(App0)

Proof. Suppose that M∀α .A ∈ JM0 and B ∈ Tp0. We use

M∀α.A ∈ X {K[B/α] ∈ X }KA∈JMsimp∩Ec(α)

MB ∈ X Ω0

Take any KA ∈ JMsimp ∩Ec(α), then we have KA ∈ JM0.
Moreover, we can show K[B/α] ∈ JM0 .
Hence, we obtain MB ∈ JM0 by Ω0. �

Remark
This lemma is the crucial case of Embedding in proof-theory, that is,
Π1

1-CA is interpreted into inifinitary system using the Ω-rule.
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Key Lemma for Collapsing (Normalization)

Lemma (Collapsing)
JMsimp satisfies Ω0:

M∀α.A ∈ JMsimp { K[B/α]T ∈ JMsimp }KA∈JMsimp∩Ec(α)

MBT ∈ JMsimp

Proof. By induction on the derivation of M∀α.A ∈ JMsimp.

If M ≡ Λα.N ∈ JMsimp is derived by (Abs), then
NA ∈ JMsimp ∩Ec(α).
Let K := N to obtain N[B/α]T ∈ JMsimp.
Thus MBT ∈ JMsimp by (B).

M[B/α]T ∈ JMsimp

(Λα.M)BT ∈ JMsimp
(B)

�
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Main Result

By iterating the arguments, we have:

Theorem
For each n ∈ N∪{simp}, Fp

n admits strong normalization. Hence Fp

admits strong normalization too.

Proof. Consider a term t in Fp. Then t belongs to Fp
n for some n < ω .

So, by Embedding, t is in JMn.
By the previous lemma (Collapsing), we see that
t ∈ JMn ⊆ JMn−1, . . . ,⊆ JMsimp ⊆ SN. �
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Global Formalization in IDn+1 and IDω

To formalize our argument, the only strong method needed is the
Ωn-rule:

M∀α.A ∈ X { K[B/α ]T ∈ X }KA∈JMn−1∩Ec(α)

MBT ∈ X
Ωn

This definition is by iterated inductive definitions. So, our arguments
using Ωn are formalized in IDn+1.

Theorem
IDn+1 ` SN(Fp

n) for all n.

Remark
This gives a sharp bound since IDn 0 SN(Fp

n).
In IDω , we can “speak” about any IDn at once, so we have

Theorem
IDω ` SN(Fp).
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Local Formalization in IDn

• In general, the computability argument is by non-monotonic
inductive definition.
Cf. Martin-Löf, “Hauptsatz for the intuitionistic theory of iterated
inductive definitions”, 1971.

• But, if we consider a specific term, then Gödel-Tait method (the
computability argument) works well.

Theorem (Aehlig 08)
Every representable function in Fp

n is provably total in IDn.

Proof. We refer to Section 4.2 of our paper. �
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Summary

• Girard’s proof of SN(F) requires the third-order arithmetic.

• If we consider a parameter-free subsystem Fp
n, we can give a

predicative proof of SN(Fp
n).

• Instead of “Reducibility candidate”, we used the idea of the Ω-rule.

Theorem
IDn+1 ` SN(Fp

n) for all n.

This gives the sharp bound since IDn 0 SN(Fp
n).

Theorem
IDω ` SN(Fp).

Theorem (Aehlig 08)
Every representable function in Fp

n is provably total in IDn.

Akiyoshi and Terui, “Strong normalization for the parameter-free
polymorphic lambda calculus based on the Omega-rule”, FSCD 2016.
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