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Targets: Existence Statements

Many theorems in ordinary mathematics (Analysis, Algebra,
Combinatorics etc.) can be formalized as Π1

2 sentences having
a form

∀f (φ(f ) → ∃gψ(f , g)) ,

where f and g are (possibly tuples of) functions on natural
numbers.
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In computable (recursive) mathematics, effective contents
of classical theorems have been investigated.

In particular, there are many “effectivized” results of
classical theorems in combinatorics, e.g.,

Brooks’s theorem (Schmerl 1982, Carstens/Päppinghaus
1983, Tverberg 1984),
Marriage theorem (Kierstead 1983),
Dilworth’s theorem (Kierstead 1981).

Two Kinds of Effectivization

Non-uniform computability:
For any computable f , there exists a computable g .

Uniform computability:
There exists a uniform algorithm to obtain a witness g for
each (computable) f .
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Correspondence in Reverse Mathematics

Non-uniform computability

≈ RCA0

(For any computable f , there exists a
computable g .)

Uniform computability

≈ ??

(There exists a uniform algorithm to ob-
tain a witness g for each f .)

Constructive provability

≈ EL0

Toward an axiomatization of uniform computability

Investigate how uniform computability for existence statements
can be captured by (semi-)intuitionistic provability in
(many-sorted) arithmetic!
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Formalization of Uniform Computability (F. 2015)
Hilbert-type system E-HAω (resp. E-PAω) is the finite
type extension of HA (resp. PA), of which T is the terms.

Ê-HA
ω
↾ (resp. Ê-PA

ω
↾) is the restrictions of E-HAω (resp.

E-PAω) to primitive recursion of type 0 and
quantifier-free induction, of which T0 is the terms.

Intuitionistic Logic Classical Logic

0 HA PA

1 EL0 EL RCA0 RCA

ω Ê-HA
ω
↾+QF-AC1,0 E-HAω +QF-AC1,0 RCAω

0 RCAω

Fact. (Kohlenbach 2005)

RCAω
0 is a conservative extension of RCA0.

That is also the case for WKLω0 (:= RCAω
0 +WKL) and

ACAω
0 (:= RCAω

0 + ACA).
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Uniform Provability in Γ:

1 There exists a term t1 s.t.

Γ ⊢ ∀f (φ(f ) → t|f ↓ ∧ψ(f , t|f )) ,
where

α(β) :=

{
α(β̄n)− 1 where n is the least n′ s.t. α(β̄n′) ̸= 0.

↑ if there is no such n′.

α|β := λn. α(⟨n⟩⌢β).

2 There exists a (Gödel prim. rec.) term t1→1 ∈ T s.t.

Γ ⊢ ∀f (φ(f ) → ψ(f , tf )) .

3 There exists a (Kleene prim. rec.) term t1→1 ∈ T0 s.t.

Γ ⊢ ∀f (φ(f ) → ψ(f , tf )) .
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Proposition 1. (F. 2015)

Let ∀f (φ(f ) → ∃gψ(f , g)) be a L(EL0)-formula such that
φ(f ) is purely universal and ψ(f , g) is equivalent to some
formula ∀wρ∃s0ψqf (f , g ,w , s) over EL0.
There exists a term t1 such that

RCA0(+WKL) ⊢ ∀f (φ(f ) → t|f ↓ ∧ψ(f , t|f ))

if and only if

EL0 ⊢ ∀f (φ(f ) → ∃gψ(f , g)) .

On the Proof.

IF direction is by the function realizability (Dorais 2014).

ONLY IF direction is by Kuroda’s negative translation and
the (monotone) Dialectica interpretation.
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Application.

For example, Kierstead’s effective marriage theorem EMT has
the required syntactical form in Proposition 1 and uniformly
provable in RCA0, then it follows that EMT is provable in EL0.

Remark.

It is known that many existence theorems are formalized
as a Π1

2 formula of the syntactical form in Proposition 1.

The analogous results for EL, RCA instead of EL0, RCA0

also hold.
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The Next Step

Most of discussion in ordinary mathematics is carried out
in the presence of Arithmetical Comprehension Axiom.

Π0
1-AC

0,0 :

∀α1(∀x0∃y 0∀z0α(x , y , z) = 0 → ∃β1∀x , z α(x , β(x), z) = 0)

classically derives ACA.

Question.

How is uniform provability in classical systems with Π0
1-AC

0,0

characterized?

Fact.

The negative translation of Π0
1-AC

0,0 is intuitionistically
derived from Π0

1-AC
0,0 and Σ0

2-DNS
0:

∀α1(∀x0¬¬∃y 0∀z0α(x , y , z) = 0 → ¬¬∀x∃y∀zα(x , y , z) = 0).
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Uniform ⇒ Intuitionistic

Proposition 2.

Let ∀f (φ(f ) → ∃gψ(f , g)) be a L(EL0)-formula such that
φ(f ) ∈ A and ψ(f , g) ∈ B.
If there exists a term t1→1 ∈ T0 such that

Ê-PA
ω
↾+ Π0

1-AC
0,0 ⊢ ∀f (φ(f ) → ψ(f , tf )) ,

then EL0 + Π0
1-AC

0,0 + Σ0
2-DNS

0 ⊢ ∀f (φ(f ) → ∃gψ(f , g)) .

The classes A, B of formulas are defined simultaneously by

P , A1 ∧ A2, A1 ∨ A2, ∀xA1, ∃xA1, B1 → A1 are in A;

P , B1 ∧ B2, ∀xB1, A1 → B1 are in B;
where P , Ai , Bi range over prime formulas, formulas in A, B
respectively.
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Uniform ⇐ Intuitionistic

Proposition. (Hirst/Mummer 2011)

Let ∀f (φ(f ) → ∃gψ(f , g)) be a L(Ê-HA
ω
↾)-formula such that

φ(f ) is ∃-free and ψ(f , g) ∈ Γ1. If

Ê-HA
ω
↾+ AC+ IPω

ef ⊢ ∀f (φ(f ) → ∃gψ(f , g)),

then there exists a term t1→1 ∈ T0 such that

Ê-HA
ω
↾ ⊢ ∀f (φ(f ) → ψ(f , tf )) .

AC: the axiom of choice in all finite types.

IPω
ef : independence of premise scheme for ∃-free formulas.

The proof is by the modified realizability interpretation.
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Uniform ⇐ Intuitionistic

Lemma.

The modified realizability interpretation of Σ0
2-DNS

0 is
intuitionistically derived from Σ0

2-DNS
0 and Π0

1-AC
0,0.

Proposition 3.
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Combining Proposition 2 and 3

Lemma.

1 ∃-free = A ∩ B.
2 B ∩ Γ1 = C.
3 C = ∃-free.

The class C of formulas is defined by

P , C1 ∧ C2, ∀xC1, Q → C1 are in C
where P , Q, Ci range over prime formulas, ∃-free formulas,
formulas in C respectively.

Proposition.

A ∩ ∃-free = ∃-free.
B ∩ Γ1 = ∃-free.
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Theorem.

Let ∀f (φ(f ) → ∃gψ(f , g)) be a L(EL0)-formula such that
φ(f ) and ψ(f , g) are ∃-free.
There exists exists a term t1→1 ∈ T0 such that

Ê-PA
ω
↾+ Π0

1-AC
0,0 ⊢ ∀f (φ(f ) → ψ(f , tf ))

if and only if

EL0 + AC0,0 + Σ0
2-DNS

0 ⊢ ∀f (φ(f ) → ∃gψ(f , g)) .

Remark.

The analogous result for T, E-PAω, EL instead of T0, Ê-PA
ω
↾,

EL0 also holds.
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Appendix

Proposition.

Let ∀f (φ(f ) → ∃gψ(f , g)) be a L(EL0)-formula such that
φ(f ) is purely universal and ψ(f , g) is equivalent to
∀wρ∃sτψqf (f , g ,w , s) over EL0 (ρ, τ ∈ {0, 1}).
There exists a term t1→1 ∈ T0 + B0,1 such that

Ê-PA
ω
↾+ Π0

1-AC
0,0 + BR0,1 ⊢ ∀f (φ(f ) → ψ(f , tf ))

if and only if

EL0+AC0,0+MP+Σ0
2-DNS

0+BR0,1 ⊢ ∀f (φ(f ) → ∃gψ(f , g)) .

Fact. (Kohlenbach 1999)

t1→1 ∈ T0 + BR0,1 ⇔ t1→1 ∈ T.
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Thank you for your attention!
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