On the duality of topological Boolean algebras

Matthew de Brecht¹

Graduate School of Human and Environmental Studies, Kyoto University

Workshop on Mathematical Logic and its Applications 2016

¹This work was supported by JSPS Core-to-Core Program, A. Advanced Research Networks and by JSPS KAKENHI Grant Number 15K15940.

- Stone's representation of Boolean algebras (in Set) as the set of clopen subsets of a compact zero-dimensional Hausdorff space is well known.
- It is slightly less well known that every compact zero-dimensional Hausdorff Boolean algebra is the powerset of a discrete space.
- Both dualities are based on character theories (in the same way as Pontraygin duality), where the two point discrete Boolean algebra 2 plays a pivotal role.
- The role of 2 can be highlighted by showing how the Boolean algebra structure arises naturally from a monad induced by 2.

Introduction

The material in this talk comes from the following sources:

- "The Pontryagin Duality of Compact 0-Dimensional Semilattices and its Applications" by K. Hofmann, M. Mislove, and A. Stralka
- "Topological Lattices" by D. Papert Strauss
- "Continuous lattices and domains" by G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, and D. Scott
- "Stone Spaces" by P. Johnstone (particularly Chapter VI)
- "Sober spaces and continuations" by P. Taylor

Zero-dimensional Locally compact Polish spaces (ZLCP)

We construct a few subcategories of \mathbf{ZLCP} by starting with the empty subcategory and closing under certain limits/colimits

- \emptyset : Empty subcategory
- \mathcal{F} : Finite Hausdorff spaces (= $\mathcal{D} \cap \mathcal{C}$)
 - Ex: 0 (empty space), 1 (singleton space), 2 := 1 + 1
- \mathcal{D} : Countable discrete spaces
 - Ex: $\mathbb{N} := \mu X \cdot X + 1$ (inductive types)
- \mathcal{C} : 0-dim compact Polish spaces
 - Ex: $\mathbb{N}_{\infty} := \nu X.X + 1$ and $2^{\mathbb{N}} := \nu X.X \times 2$ (coinductive types)

The contravariant functor(s) $2^{(-)}$

- For X in D or C, the space 2^X is the space of all continuous functions from X to 2 (i.e., the clopen subsets of X) endowed with the compact-open topology.
 - If X is in \mathcal{D} then 2^X is in \mathcal{C}
 - If X is in \mathcal{C} then 2^X is in \mathcal{D}
 - Caution: $2^{(-)}$ is not defined on all of ZLCP. The space $\mathbb{N} \times 2^{\mathbb{N}}$ is in ZLCP, but $2^{(\mathbb{N} \times 2^{\mathbb{N}})} \cong \mathbb{N}^{\mathbb{N}}$ is not in ZLCP.

The contravariant functor(s) $2^{(-)}$

- A continuous function f: X → Y is mapped (contravariantly) to 2^f: 2^Y → 2^X defined as 2^f := λφ.λx.φ(f(x)).
 - Intuitively, 2^f maps a clopen $\phi \subseteq Y$ to the clopen $f^{-1}(\phi) \subseteq X.$

Topological Boolean algebras

- The discrete space $2 = \{\bot, \top\}$ is a Boolean algebra:
 - Disjunction (join) $\lor: 2 \times 2 \rightarrow 2$
 - Conjunction (meet) $\wedge: 2 \times 2 \rightarrow 2$
 - Negation $\neg\colon 2\to 2$
- 2^X is a topological Boolean algebra:
 - $\top := \lambda x. \top$

•
$$\bot := \lambda x. \bot$$

 $\bullet \ \lor \colon 2^X \times 2^X \to 2^X$ is the union of clopen sets

$$\phi \lor \psi := \lambda x. (\phi(x) \lor \psi(x))$$

• $\wedge \colon 2^X \times 2^X \to 2^X$ is the intersection of clopen sets

$$\phi \wedge \psi := \lambda x.(\phi(x) \wedge \psi(x))$$

• $\neg\colon 2^X\to 2^X$ is the complement of clopen sets

$$\neg\phi:=\lambda x.\neg\phi(x)$$

Stone Duality

- Let $(A,\top,\bot,\vee,\wedge,\neg)$ be a Boolean algebra in ${\mathcal D}$
 - ${\ \bullet\ }$ (A has the discrete topology, so the operations are continuous)
- Then 2^A is a space in C.
- Consider the subspace X of 2^A consisting of all Boolean algebra homomorphisms from A to 2:

$$X \stackrel{e}{\longrightarrow} 2^A \stackrel{\ell}{\longrightarrow} 2^{A \times A} \times 2^A \times 2^A$$

X is the equalizer of the (continuous) maps ℓ and r:

• $\ell := \lambda f. \langle \lambda \langle a, b \rangle. f(a \wedge b), \ \lambda c. f(\neg c), \ f(\top) \rangle$

• $r := \lambda f \cdot \langle \lambda \langle a, b \rangle \cdot f(a) \wedge f(b), \ \lambda c \cdot \neg f(c), \ \top \rangle$

(ℓ and r also imply that every $f \in X$ preserves finite joins)

• Therefore, X is a space in C because it is the equalizer of a pair of maps between spaces in C.

Stone Duality

- There is a bijection between ultrafilters of a Boolean algebra A and Boolean algebra homomorphisms from A to 2.
- So X can equivalently be viewed as the set of ultrafilters of A.
- X inherits the subspace topology from 2^A , which is generated by the clopen sets

$$U_a := \{ f \in X \mid f(a) = \top \}$$

for $a \in A$.

- $X \in C$ is the Stone space associated to $A \in D$, and Stone's representation theorem shows that 2^X and A are isomorphic Boolean algebras.
 - The isomorphism $h: A \to 2^X$ is defined as $h(a) = \lambda f.f(a)$, but the proof that it is an isomorphism is non-constructive.

- Next consider a Boolean algebra $(A,\top,\bot,\lor,\land,\neg)$ in $\mathcal C$
 - (A has a non-trivial topology, and we will assume that the operations are continuous)
- Applying Stone duality directly to A will yield a Stone space C which is compact and Hausdorff.
- However, in general C is "too big" to be in **ZLCP**.
 - The Stone dual of $2^{\mathbb{N}}$ is $\beta \mathbb{N}$, the Stone-Cech compactification of the natural numbers.
- Instead, we can just repeat the equalizer construction to get a more reasonably sized dual space.

- Let $(A, \top, \bot, \lor, \land, \neg)$ be a (topological) Boolean algebra in C
- Then 2^A is a (discrete) space in \mathcal{D} .
- Consider the subspace X of 2^A consisting of all continuous Boolean algebra homomorphisms from A to 2:

$$X \stackrel{e}{\longrightarrow} 2^A \xrightarrow[r]{\ell} 2^{A \times A} \times 2^A \times 2^A$$

X is the equalizer of the (continuous) maps ℓ and r:

• $\ell := \lambda f. \langle \lambda \langle a, b \rangle. f(a \wedge b), \ \lambda c. f(\neg c), \ f(\top) \rangle$

• $r := \lambda f. \langle \lambda \langle a, b \rangle. f(a) \wedge f(b), \ \lambda c. \neg f(c), \ \top \rangle$

(ℓ and r also imply that every $f \in X$ preserves finite joins)

• Therefore, X is in \mathcal{D} because \mathcal{D} is closed under subspaces.

- X can be viewed as the set of clopen ultrafilters of A.
- Proving that A and 2^X are isomorphic requires a little topological algebra.
- The crucial observation (D. Papert Strauss, 1968, see also G. Bezhanishvili & J. Harding, 2015) is that every compact Hausdorff Boolean algebra is complete and atomic.
 - a is an atom if $a \neq \bot$ and for all $b \leq a$ either $b = \bot$ or b = a.
 - $\bullet~A$ is atomic if every element is the join of the atoms below it.
 - Complete atomic Boolean algebras are isomorphic to the powerset of its atoms with the usual set-theoretical join and meet operations.
- The main work remaining is to show that every $f \in X$ is of the form $\uparrow a := \{b \in A \mid a \leq b\}$ for some atom $a \in A$.

- For every atom $a \in A$, the set $\uparrow a$ is a clopen ultrafilter:
 - <u>Ultrafilter</u>: $a \leq b \lor \neg b$ hence $a = (a \land b) \lor (a \land \neg b)$ which implies $a \leq b$ or $a \leq \neg b$.
 - <u>Closed</u>: $\uparrow a$ is the preimage of the closed singleton $\{a\}$ under the continuous map $\lambda b.(b \land a)$.
 - Open: $\downarrow(\neg a)$ is closed and equals the complement of $\uparrow a$ because if $a \not\leq b$ then $a \leq \neg b$ hence $b = \neg \neg b \leq \neg a$.

Therefore, $\uparrow a$ is in X.

- For the converse, fix $f \in X$. Note that f is a clopen subset of A, hence compact.
 - Since f is a filter, the family of closed sets $\{\downarrow b \mid b \in f\}$ has the finite intersection property.
 - Using compactness of f, this implies there is a unique minimal element $a \in f$.
 - Clearly a ≠ ⊥ because ⊥ ∉ f, and if b < a then a ≤ ¬b (f is an ultrafilter) hence b = b ∧ a ≤ b ∧ ¬b = ⊥.

Therefore, $f = \uparrow a$ for some atom $a \in A$.

- Wrapping up, we again define an isomorphism $h\colon A\to 2^X$ as $h(b)=\lambda f.f(b).$
 - Each $f \in X$ is of the form $\uparrow a$ for some atom in A, and $f(b) = \top$ iff $a \leq b$. Therefore, we can interpret h(b) as the set of atoms below b.
 - The result of D. Papert Strauss guarantees that h is an isomorphism of Boolean algebras
 - *h* is continuous by definition, and every continuous bijection between compact Hausdorff spaces is a homeomorphism.

Therefore, 2^X and A are isomorphic topological Boolean algebras in C.

Summary so far

- For every topological Boolean algebra A in D there is a space pt(A) in C such that A ≅ 2^{pt(A)}.
- For every topological Boolean algebra A in C there is a space pt(A) in D such that A ≅ 2^{pt(A)}.

$$\mathbf{pt}(A) \longrightarrow 2^A \xrightarrow[r]{\ell} 2^{A \times A} \times 2^A \times 2^A$$

 $\begin{array}{lll} \ell & := & \lambda f. \left\langle \lambda \langle a, b \rangle. f(a \wedge b), \ \lambda c. f(\neg c), \ f(\top) \right\rangle \\ r & := & \lambda f. \left\langle \lambda \langle a, b \rangle. f(a) \wedge f(b), \ \lambda c. \neg f(c), \ \top \right\rangle \end{array}$

Morphisms

- Clearly, the functor $2^{(-)}$ sends a continuous map $f: X \to Y$ (in either \mathcal{D} or \mathcal{C}) to a Boolean algebra homomorphism $2^f: 2^Y \to 2^X$ (in the other category).
- Furthermore, a (continuous) Boolean algebra homomorphism $h: A \to B$ uniquely determines a map $u: \mathbf{pt}(B) \to \mathbf{pt}(A)$
 - For $f \in \mathbf{pt}(B)$ we have that $2^{h}(f) = \lambda a.f(h(a)) = f \circ h$ is a Boolean algebra homormorphism from A to 2, hence in $\mathbf{pt}(A)$.

Duality

- Let Bool(D) and Bool(C) denote the subcategories of (topological) Boolean algebras and (continuous) Boolean algebra homomorphisms in D and C, respectively.
- The contravariant functors $2^{(-)}$ and **pt** define a dual equivalence between \mathcal{D} and $\mathbf{Bool}(\mathcal{C})$ (also \mathcal{C} and $\mathbf{Bool}(\mathcal{D})$)

In either \mathcal{D} or \mathcal{C} we have:

- The trivial Boolean algebra 1 is the terminal object (in both categories)
- 2 is the initial object
- Products \otimes of Boolean algebras are given as $2^X \otimes 2^Y = 2^X \times 2^Y = 2^{X+Y}$
- Coproducts \oplus of Boolean algebras are given as $2^X \oplus 2^Y = 2^{X \times Y}$
- 2^{2^X} is the free topological Boolean algebra on X
- $\bullet~\mathbf{Bool}(\mathcal{D})$ is closed under countable colimits
- $\bullet~\mathbf{Bool}(\mathcal{C})$ is closed under countable limits

The monad $2^{2^{(-)}}$

$$_{2^{2^{(-)}}} \subset \mathcal{D} \qquad \quad \mathcal{C} \succcurlyeq_{2^{2^{(-)}}}$$

Applying 2⁽⁻⁾ twice yields a monad (for both D and C). f: X → Y maps to 2^{2^f} := λF.λφ.F(λx.φ(f(x))). The unit η_X : X → 2^{2^X} is defined as η_X := λx.λφ.φ(x). η_X(x) can be thought of as the set {φ ∈ 2^X | x ∈ φ} The multiplication μ_X : 2^{2^{2^X}} → 2^{2^X} is defined as μ_X := 2^{η₂x} = λ𝔅.λφ.𝔅(λF.F(φ))

Monad algebras

Every Boolean algebra $A\cong 2^{\mathbf{pt}(A)}$ is an algebra for the monad $2^{2^{(-)}}$ with structure map $h\colon 2^{2^A}(\cong 2^{2^{2^{\mathbf{pt}(A)}}})\to A(\cong 2^{\mathbf{pt}(A)})$ defined as

$$h = 2^{\eta_{\mathbf{pt}(A)}} = \lambda \mathcal{F}.\lambda x.\mathcal{F}(\lambda \phi.\phi(x))$$

You can retrieve the Boolean algebra structure from a monad algebra $\left(A,h\right)$ as follows:

- We provide an example of how to prove this really makes (A, h) a Boolean algebra.
- The associative law $h \circ 2^{2^h} = h \circ \mu_A$ yields

$$h(\lambda\phi.\mathfrak{A}(\lambda F.\phi(h(F))))=h(\lambda\phi.\mathfrak{A}(\lambda F.F(\phi)))$$
 for $\mathfrak{A}\colon 2^{2^{2^A}}.$

• The unit law $h \circ \eta_A = 1_A$ gives

$$h(\lambda\phi.\phi(b))=b$$

for $b \in A$.

For $a, b, c \in A$, we show that

$$a \wedge_h (b \vee_h c) = (a \wedge_h b) \vee_h (a \wedge_h c).$$

• Plugging $\mathfrak{A}_1 := \lambda \mathcal{F}.\mathcal{F}(\lambda \psi.\psi(a)) \wedge \mathcal{F}(\lambda \psi.(\psi(b) \lor \psi(c)))$ into the associative law reduces to

$$\begin{aligned} & h \big(\lambda \phi. \phi(a) \land \phi(h(\lambda \psi. (\psi(b) \lor \psi(c)))) \big) \\ &= h \big(\lambda \phi. \phi(a) \land (\phi(b) \lor \phi(c)) \big) \end{aligned}$$

The left hand side is the definition of $a \wedge_h (b \vee_h c)$.

- Next plug in $\mathfrak{A}_2 := \lambda \mathcal{F}.\mathcal{F}(\lambda \psi.(\psi(a) \land \psi(b))) \lor \mathcal{F}(\lambda \psi.(\psi(a) \land \psi(c))) \text{ and } get$
 - $h(\lambda\phi.\phi(h(\lambda\psi.(\psi(a)\vee\psi(b))))\vee\phi(h(\lambda\psi.(\psi(a)\vee\psi(c))))))$ = $h(\lambda\phi.(\phi(a)\wedge\phi(b))\vee(\phi(a)\wedge\phi(c)))$

The left hand side is the definition of $(a \wedge_h b) \vee_h (a \wedge_h c)$. The right hand side equals $h(\lambda \phi. \phi(a) \wedge (\phi(b) \vee \phi(c)))$ because \wedge distributes over \vee in 2. The previous slide showed this is equal to $a \wedge_h (b \vee_h c)$.

• As another example, $\mathfrak{A} := \lambda \mathcal{F}.\mathcal{F}(\lambda \psi.\psi(b)) \vee \mathcal{F}(\lambda \psi.\neg\psi(b))$ can be used to show that $(b \vee_h \neg_h b) = \top_h$.

Monad algebra morphisms

Similarly, you can show that monad algebra morphisms correspond to Boolean algebra morphisms.

We obtain that the subcategory of $2^{2^{(-)}}$ algebras (in \mathcal{D} or \mathcal{C}) is precisely the subcategory of Boolean algebras (in \mathcal{D} or \mathcal{C}).

Vietoris space and modal logic

- When X is in \mathcal{D} or \mathcal{C} , we have that $X \hookrightarrow 2^{2^X}$ embeds as the subspace of Boolean algebra homomorphisms $(X = \mathbf{pt}(2^X))$.
- If instead we take the subspace of 2^{2^X} of meet semilattice morphisms (maps preserving ∧ and ⊤, but not necessarily ¬) then we get the Vietoris space V(X).
 - $\mathcal{V}(X)$ is defined as the space of compact subsets of X with topology generated by the clopen sets:

$$\begin{aligned} \Box \phi &:= \{ \kappa \in \mathcal{V}(X) \mid \kappa \subseteq \phi \}, \text{ and} \\ \Diamond \phi &:= \{ \kappa \in \mathcal{V}(X) \mid \kappa \cap \phi \neq \emptyset \} \end{aligned}$$

for $\phi \in 2^X$. Note that $\Box \phi = \neg \Diamond \neg \phi$ and $\Diamond \phi = \neg \Box \neg \phi$.

• Using the homeomorphism $\lambda F.\lambda\phi.\neg F(\neg\phi): 2^{2^X} \rightarrow 2^{2^X}$ we can see that taking join semilattice morphisms instead would yield a space homeomorphic to $\mathcal{V}(X)$.

• $\mathcal{V}(X)$ is the free topological semilattice on X (in \mathcal{D} or \mathcal{C})

Vietoris space and modal logic

- There is a bijection between continuous maps f: X → V(X) in D (resp., C) and continuous meet semilattice morphisms f: 2^X → 2^X in C (resp., D)
 - \widehat{f} is the double transpose of f.
- A map $f: X \to \mathcal{V}(X)$ can be viewed as a non-deterministic transition system, or Kripke frame
- A meet semilattice morphism $\hat{f}: 2^X \to 2^X$ can be viewed as a modal operator \Box on the Boolean algebra.

• We have looked at the following dualities:

- The objects of Bool(C) and Bool(D) are topological Boolean algebras, and are the algebras of the monad 2^{2⁽⁻⁾}
- Can the correspondence between A and $\mathbf{pt}(A)$ be made more constructive if we have inductive/coinductive definitions of the spaces?
 - Replace the coproduct and terminal object (from \mathcal{D}) in $\mathbb{N} = \mu X.X + 1$ with the product and initial object (from $\mathbf{Bool}(\mathcal{C})$) to get $2^{\mathbb{N}} = \nu X.X \times 2$
 - In general, can we convert a coinductive definition interpreted in Bool(C) into a coinductive definition for the same space in C (or similarly convert inductive definitions in Bool(D) to D)?