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Introduction

Stone’s representation of Boolean algebras (in Set) as the set
of clopen subsets of a compact zero-dimensional Hausdorff
space is well known.

It is slightly less well known that every compact
zero-dimensional Hausdorff Boolean algebra is the powerset of
a discrete space.

Both dualities are based on character theories (in the same
way as Pontraygin duality), where the two point discrete
Boolean algebra 2 plays a pivotal role.

The role of 2 can be highlighted by showing how the Boolean
algebra structure arises naturally from a monad induced by 2.
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Introduction

The material in this talk comes from the following sources:

“The Pontryagin Duality of Compact 0-Dimensional
Semilattices and its Applications” by K. Hofmann, M.
Mislove, and A. Stralka

“Topological Lattices” by D. Papert Strauss

“Continuous lattices and domains” by G. Gierz, K. Hofmann,
K. Keimel, J. Lawson, M. Mislove, and D. Scott

“Stone Spaces” by P. Johnstone (particularly Chapter VI)

“Sober spaces and continuations” by P. Taylor
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Zero-dimensional Locally compact Polish spaces (ZLCP)

We construct a few subcategories of ZLCP by starting with the
empty subcategory and closing under certain limits/colimits

∅

F

D C

Finite limits &

Finite colimits

Countable colimits Countable limits

∅ : Empty subcategory
F : Finite Hausdorff spaces (=D ∩ C)

Ex: 0 (empty space), 1 (singleton space), 2 := 1 + 1

D : Countable discrete spaces
Ex: N := µX.X + 1 (inductive types)

C : 0-dim compact Polish spaces
Ex: N∞ := νX.X +1 and 2N := νX.X × 2 (coinductive types)
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The contravariant functor(s) 2(−)

D C
2(−)

2(−)

For X in D or C, the space 2X is the space of all continuous
functions from X to 2 (i.e., the clopen subsets of X) endowed
with the compact-open topology.

If X is in D then 2X is in C
If X is in C then 2X is in D
Caution: 2(−) is not defined on all of ZLCP. The space

N× 2N is in ZLCP, but 2(N×2
N) ∼= NN is not in ZLCP.
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The contravariant functor(s) 2(−)

D C
2(−)

2(−)

A continuous function f : X → Y is mapped (contravariantly)
to 2f : 2Y → 2X defined as 2f := λφ.λx.φ(f(x)).

Intuitively, 2f maps a clopen φ ⊆ Y to the clopen
f−1(φ) ⊆ X.
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Topological Boolean algebras

The discrete space 2 = {⊥,>} is a Boolean algebra:

Disjunction (join) ∨ : 2× 2→ 2
Conjunction (meet) ∧ : 2× 2→ 2
Negation ¬ : 2→ 2

2X is a topological Boolean algebra:

> := λx.>
⊥ := λx.⊥
∨ : 2X × 2X → 2X is the union of clopen sets

φ ∨ ψ := λx.(φ(x) ∨ ψ(x))

∧ : 2X × 2X → 2X is the intersection of clopen sets

φ ∧ ψ := λx.(φ(x) ∧ ψ(x))

¬ : 2X → 2X is the complement of clopen sets

¬φ := λx.¬φ(x)
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Stone Duality

Let (A,>,⊥,∨,∧,¬) be a Boolean algebra in D
(A has the discrete topology, so the operations are continuous)

Then 2A is a space in C.

Consider the subspace X of 2A consisting of all Boolean
algebra homomorphisms from A to 2:

X 2A 2A×A × 2A × 2e `

r

X is the equalizer of the (continuous) maps ` and r:

` := λf.
〈
λ〈a, b〉.f(a ∧ b), λc.f(¬c), f(>)

〉
r := λf.

〈
λ〈a, b〉.f(a) ∧ f(b), λc.¬f(c), >

〉
(` and r also imply that every f ∈ X preserves finite joins)

Therefore, X is a space in C because it is the equalizer of a
pair of maps between spaces in C.
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Stone Duality

There is a bijection between ultrafilters of a Boolean algebra
A and Boolean algebra homomorphisms from A to 2.

So X can equivalently be viewed as the set of ultrafilters of A.

X inherits the subspace topology from 2A, which is generated
by the clopen sets

Ua := {f ∈ X | f(a) = >}

for a ∈ A.

X ∈ C is the Stone space associated to A ∈ D, and Stone’s
representation theorem shows that 2X and A are isomorphic
Boolean algebras.

The isomorphism h : A→ 2X is defined as h(a) = λf.f(a),
but the proof that it is an isomorphism is non-constructive.
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Topological (?) Stone Duality

Next consider a Boolean algebra (A,>,⊥,∨,∧,¬) in C
(A has a non-trivial topology, and we will assume that the
operations are continuous)

Applying Stone duality directly to A will yield a Stone space
C which is compact and Hausdorff.

However, in general C is “too big” to be in ZLCP.

The Stone dual of 2N is βN, the Stone-Cech compactification
of the natural numbers.

Instead, we can just repeat the equalizer construction to get a
more reasonably sized dual space.
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Topological (?) Stone Duality

Let (A,>,⊥,∨,∧,¬) be a (topological) Boolean algebra in C
Then 2A is a (discrete) space in D.

Consider the subspace X of 2A consisting of all continuous
Boolean algebra homomorphisms from A to 2:

X 2A 2A×A × 2A × 2e `

r

X is the equalizer of the (continuous) maps ` and r:

` := λf.
〈
λ〈a, b〉.f(a ∧ b), λc.f(¬c), f(>)

〉
r := λf.

〈
λ〈a, b〉.f(a) ∧ f(b), λc.¬f(c), >

〉
(` and r also imply that every f ∈ X preserves finite joins)

Therefore, X is in D because D is closed under subspaces.
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Topological (?) Stone Duality

X can be viewed as the set of clopen ultrafilters of A.

Proving that A and 2X are isomorphic requires a little
topological algebra.

The crucial observation (D. Papert Strauss, 1968, see also
G. Bezhanishvili & J. Harding, 2015) is that every compact
Hausdorff Boolean algebra is complete and atomic.

a is an atom if a 6= ⊥ and for all b ≤ a either b = ⊥ or b = a.
A is atomic if every element is the join of the atoms below it.
Complete atomic Boolean algebras are isomorphic to the
powerset of its atoms with the usual set-theoretical join and
meet operations.

The main work remaining is to show that every f ∈ X is of
the form ↑a := {b ∈ A | a ≤ b} for some atom a ∈ A.
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Topological (?) Stone Duality

For every atom a ∈ A, the set ↑a is a clopen ultrafilter:

Ultrafilter: a ≤ b ∨ ¬b hence a = (a ∧ b) ∨ (a ∧ ¬b) which
implies a ≤ b or a ≤ ¬b.
Closed: ↑a is the preimage of the closed singleton {a} under
the continuous map λb.(b ∧ a).
Open: ↓(¬a) is closed and equals the complement of ↑a
because if a 6≤ b then a ≤ ¬b hence b = ¬¬b ≤ ¬a.

Therefore, ↑a is in X.

For the converse, fix f ∈ X. Note that f is a clopen subset of
A, hence compact.

Since f is a filter, the family of closed sets {↓b | b ∈ f} has
the finite intersection property.
Using compactness of f , this implies there is a unique minimal
element a ∈ f .
Clearly a 6= ⊥ because ⊥ 6∈ f , and if b < a then a ≤ ¬b (f is
an ultrafilter) hence b = b ∧ a ≤ b ∧ ¬b = ⊥.

Therefore, f =↑a for some atom a ∈ A.
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Topological (?) Stone Duality

Wrapping up, we again define an isomorphism h : A→ 2X as
h(b) = λf.f(b).

Each f ∈ X is of the form ↑a for some atom in A, and
f(b) = > iff a ≤ b. Therefore, we can interpret h(b) as the set
of atoms below b.
The result of D. Papert Strauss guarantees that h is an
isomorphism of Boolean algebras
h is continuous by definition, and every continuous bijection
between compact Hausdorff spaces is a homeomorphism.

Therefore, 2X and A are isomorphic topological Boolean
algebras in C.
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Summary so far

D C
2(−)

2(−)

For every topological Boolean algebra A in D there is a space
pt(A) in C such that A ∼= 2pt(A).

For every topological Boolean algebra A in C there is a space
pt(A) in D such that A ∼= 2pt(A).

pt(A) 2A 2A×A × 2A × 2
`

r

` := λf.
〈
λ〈a, b〉.f(a ∧ b), λc.f(¬c), f(>)

〉
r := λf.

〈
λ〈a, b〉.f(a) ∧ f(b), λc.¬f(c), >

〉
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Morphisms

Clearly, the functor 2(−) sends a continuous map f : X → Y
(in either D or C) to a Boolean algebra homomorphism
2f : 2Y → 2X (in the other category).

Furthermore, a (continuous) Boolean algebra homomorphism
h : A→ B uniquely determines a map u : pt(B)→ pt(A)

For f ∈ pt(B) we have that 2h(f) = λa.f(h(a)) = f ◦ h is a
Boolean algebra homormorphism from A to 2, hence in pt(A).

pt(B) 2B

pt(A) 2A

u 2h
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Duality

Let Bool(D) and Bool(C) denote the subcategories of
(topological) Boolean algebras and (continuous) Boolean
algebra homomorphisms in D and C, respectively.

The contravariant functors 2(−) and pt define a dual
equivalence between D and Bool(C) (also C and Bool(D))

D Bool(C)op

Bool(D) Cop

2(−)

pt

pt

2(−)
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Boolean algebras

In either D or C we have:

The trivial Boolean algebra 1 is the terminal object (in both
categories)

2 is the initial object

Products ⊗ of Boolean algebras are given as
2X ⊗ 2Y = 2X × 2Y = 2X+Y

Coproducts ⊕ of Boolean algebras are given as
2X ⊕ 2Y = 2X×Y

22
X

is the free topological Boolean algebra on X

Bool(D) is closed under countable colimits

Bool(C) is closed under countable limits
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The monad 22
(−)

D C22
(−)

22
(−)

Applying 2(−) twice yields a monad (for both D and C).

f : X → Y maps to 22
f

:= λF.λφ.F (λx.φ(f(x))).

The unit ηX : X → 22
X

is defined as ηX := λx.λφ.φ(x).
ηX(x) can be thought of as the set {φ ∈ 2X | x ∈ φ}

The multiplication µX : 22
22

X

→ 22
X

is defined as

µX := 2η2X = λF.λφ.F(λF.F (φ))

T 3 T 2

T 2 T

µT

Tµ

µ

µ

T T 2

T 2 T

Tη

ηT

1 µ

µ

T (X) := 22
X
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Monad algebras

Every Boolean algebra A ∼= 2pt(A) is an algebra for the monad

22
(−)

with structure map h : 22
A
(∼= 22

2pt(A)

)→ A(∼= 2pt(A))
defined as

h = 2ηpt(A) = λF .λx.F(λφ.φ(x))

T 2(A) T (A)

T (A) A

µA

T (h)

h

h

A T (A)

A

ηA

1
h
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Monad algebras are Boolean algebras

You can retrieve the Boolean algebra structure from a monad
algebra (A, h) as follows:

A×A 22
A

A

λ〈a,b〉.λφ.(φ(a)∧φ(b))

∧h
h

1 22
A

A

λφ.>

>h
h

A 22
A

A

λa.λφ.¬φ(a)

¬h
h

A×A 22
A

A

λ〈a,b〉.λφ.(φ(a)∨φ(b))

∨h
h

1 22
A

A

λφ.⊥

⊥h
h
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Monad algebras are Boolean algebras

We provide an example of how to prove this really makes
(A, h) a Boolean algebra.

The associative law h ◦ 22h = h ◦ µA yields

h(λφ.A(λF.φ(h(F )))) = h(λφ.A(λF.F (φ)))

for A : 22
22

A

.

The unit law h ◦ ηA = 1A gives

h(λφ.φ(b)) = b

for b ∈ A.
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Monad algebras are Boolean algebras

For a, b, c ∈ A, we show that

a ∧h (b ∨h c) = (a ∧h b) ∨h (a ∧h c).

Plugging A1 := λF .F(λψ.ψ(a)) ∧ F(λψ.(ψ(b) ∨ ψ(c))) into
the associative law reduces to

h
(
λφ.φ(a) ∧ φ(h(λψ.(ψ(b) ∨ ψ(c))))

)
= h

(
λφ.φ(a) ∧ (φ(b) ∨ φ(c))

)
The left hand side is the definition of a ∧h (b ∨h c).
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Monad algebras are Boolean algebras

Next plug in
A2 := λF .F(λψ.(ψ(a) ∧ ψ(b))) ∨ F(λψ.(ψ(a) ∧ ψ(c))) and
get

h
(
λφ.φ(h(λψ.(ψ(a) ∨ ψ(b)))) ∨ φ(h(λψ.(ψ(a) ∨ ψ(c))))

)
= h

(
λφ.(φ(a) ∧ φ(b)) ∨ (φ(a) ∧ φ(c))

)
The left hand side is the definition of (a ∧h b) ∨h (a ∧h c).
The right hand side equals h

(
λφ.φ(a) ∧ (φ(b) ∨ φ(c))

)
because ∧ distributes over ∨ in 2. The previous slide showed
this is equal to a ∧h (b ∨h c).
As another example, A := λF .F(λψ.ψ(b)) ∨ F(λψ.¬ψ(b))
can be used to show that (b ∨h ¬hb) = >h.
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Monad algebra morphisms

Similarly, you can show that monad algebra morphisms correspond
to Boolean algebra morphisms.

22
A

22
B

A B

h

22
f

h′

f

We obtain that the subcategory of 22
(−)

algebras (in D or C) is
precisely the subcategory of Boolean algebras (in D or C).
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Vietoris space and modal logic

When X is in D or C, we have that X ↪→ 22
X

embeds as the
subspace of Boolean algebra homomorphisms (X = pt(2X)).

If instead we take the subspace of 22
X

of meet semilattice
morphisms (maps preserving ∧ and >, but not necessarily ¬)
then we get the Vietoris space V(X).

V(X) is defined as the space of compact subsets of X with
topology generated by the clopen sets:

�φ := {κ ∈ V(X) | κ ⊆ φ}, and

♦φ := {κ ∈ V(X) | κ ∩ φ 6= ∅}

for φ ∈ 2X . Note that �φ = ¬♦¬φ and ♦φ = ¬�¬φ.

Using the homeomorphism λF.λφ.¬F (¬φ) : 22X → 22
X

we
can see that taking join semilattice morphisms instead would
yield a space homeomorphic to V(X).

V(X) is the free topological semilattice on X (in D or C)
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Vietoris space and modal logic

There is a bijection between continuous maps f : X → V(X)
in D (resp., C) and continuous meet semilattice morphisms

f̂ : 2X → 2X in C (resp., D)

f̂ is the double transpose of f .

A map f : X → V(X) can be viewed as a non-deterministic
transition system, or Kripke frame

A meet semilattice morphism f̂ : 2X → 2X can be viewed as a
modal operator � on the Boolean algebra.
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Conclusion

We have looked at the following dualities:

D Bool(C)op

Bool(D) Cop

2(−)

pt

pt

2(−)

The objects of Bool(C) and Bool(D) are topological

Boolean algebras, and are the algebras of the monad 22
(−)

Can the correspondence between A and pt(A) be made more
constructive if we have inductive/coinductive definitions of
the spaces?

Replace the coproduct and terminal object (from D) in
N = µX.X + 1 with the product and initial object (from
Bool(C)) to get 2N = νX.X × 2
In general, can we convert a coinductive definition interpreted
in Bool(C) into a coinductive definition for the same space in
C (or similarly convert inductive definitions in Bool(D) to D)?
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