Verification in Real Computation

Norbert Preining*

(joint work with Norbert Miiller, Sewon Park, Martin Ziegler)

/N Accelia

Workshop on Mathematical Logic and its Application,
September 2016, Kyoto

'norbert@preining.info

norbert@preining.info

VERIFICATION ON DISCRETE STRUCTURES

well established

VERIFICATION ON DISCRETE STRUCTURES

well established

» specification and verification

v

models of computation

» cost analysis

v

formal correctness proofs

VERIFICATION ON CONTINUOUS STRUCTURES

just starting

VERIFICATION ON CONTINUOUS STRUCTURES

just starting

» heuristics, numeric methods (very successful!)

VERIFICATION ON CONTINUOUS STRUCTURES

just starting

>

>

heuristics, numeric methods (very successful!)

recursive analysis
approximation via sequences of dense rationals, Turing
machine, sound foundation, but not programmer friendly

exact geometric computation
nice idea, but hard to program, not compositionally

reliable/interval numerics
user is responsible for details, not programmer friendly

validated numerics
IEEE standard, axiomatized floating point, complex

Real-PCF/Shrad
strong theoretical foundation based on A-calculus, good for
declarative programming

OUR APPROACH

Interval semantics for Floyd-Hoare Logic

OUR APPROACH

Interval semantics for Floyd-Hoare Logic

» usability by relying on iRRAM

» verification power by well established Floyd-Hoare Logic

IRRAM

» C++ library

» new datatype REAL

» operator overloading = default behaviour

» interval semantics, automatic precision computation

» in development since 15+ years

FLOYD-HOARE LOGIC

» deductive proof system based on triples:
{PyC{Q}
where P is pre-condition, Q post-condition, and C command

» command examples
» empty command: {P}¢{Q}

» assignment: {Pla/x]} x := a {P}

» conditional: {PADb}co{Q}, {P A—-b}c;{Q}
= {P} if b then ¢ else c; {Q}

» while loop: {P ADb}c{P}

= {P} while b do c {P}

WHAT IS THE PROBLEM?

WHAT IS THE PROBLEM?

You shall not test for equality!

(Exact Real Scrolls 1:1)

WHAT IS THE PROBLEM?

You shall not test for equality!

(Exact Real Scrolls 1:1)

» equivalent to the halting problem

» forbids also comparison operators x < y etc.

TwWO SOUND SEMANTICS FOR COMPARISON
partial comparison
X >y,

1
x>y =10 1 x<y,
L ix=y

TWO SOUND SEMANTICS FOR COMPARISON

partial comparison

1 x>y,
x>y =10 1 x<y,
L ix=y

multivalued comparison
{1} x =y +2k
(x> y) = 0} :x=<y-2k
{0,1} else

both supported in iRRAM

MULTIVALUED SEMANTICS

{1} x =1y +2k
(x> y) = 0} :x=<y-2k
{0,1} else
(x > v) can be understood as evaluating x > y — 2~% and

X < y + 2% in parallel and return one the value for one that has
evaluated to true.

(actual implementation via choose function)

THREE EXAMPLE VERIFICATIONS
» ilog>
» Gaussian elimination

» simple root finding

BINARY LOGARITHM - TRIVIAL IMPLEMENTATION

ilog, : (0;0) © x — {keZ:281 <x <2K1} e N

BINARY LOGARITHM - TRIVIAL IMPLEMENTATION

ilog, : (0;0) © x — {keZ:281 <x <2K1} e N

1: function ilog,(x : R) // Require: x >0
2 Z>1l:=1 //{0<x, =1}
3 if x > 1 then // {1 <x, =1}
4: R>y:=x /{1 =21 <y =y.2-1 = x}
5: while y > 2 do // {2t <y .21 = x}
6: li=1+1;y:=y/2 // {2 <y L2001 = x}
7 end while /2t < x =y 20 <2}
8 else //{0<x <1=21}
o: repeat

10: l:=1-1 // {0 < x < 2!}
11: until x > 21 // {2 < x <21}
12: end if

13: return [// {2 < x < 21}

14: end function

COMMENTS ON THE CODE

» no formal deduction
» given pre/post conditions give partial correctness

» Archimedian property gives total correctness

COMMENTS ON THE CODE
» no formal deduction
» given pre/post conditions give partial correctness
» Archimedian property gives total correctness

But exchanging R with computable REAL,
we need to replace > with >y.

COMPUTABLE VERSION

1: function ilog,(x : REAL) // Require: x >0
> INTEGER>l:=1 //{0<x, 1=1}
3: if x>_1 3/2 then // {1 <x,;1=1}
4: R>y:i=x /{1l =21 <y =y.271 = x}
5 while y >_1 5/2 do // {2t <y 2171 = x}
6: li=1l+1;y:=y/2 // {2 <y 20 = x}
7 end while /)2 < x = y 2171 < 2141}
8: else // {0 <x <2=21}
o: repeat
10: l:=1-1 // {0 < x < 2l*1}
11: until x >, 3 * 212 // {21 < x < 2141}
12: end if

13: return l // {21 < x < 2141}

14: end function

COMPUTABLE VERSION

1: function ilog,(x : REAL) // Require: x >0
> INTEGER>l:=1 //{0<x, 1=1}
3: if x>_1 3/2 then // {1 <x,;1=1}
4: R>y:i=x /{1l =21 <y =y.271 = x}
5 while y >_1 5/2 do // {2t <y 2171 = x}
6: li=1l+1;y:=y/2 // {2 <y 20 = x}
7 end while /)2 < x = y 2171 < 2141}
8: else // {0 <x <2=21}
o: repeat

10: l:=1-1 // {0 < x < 2l*1}
11: until x >, 3 * 212 // {21 < x < 2141}
12: end if

13: return l // {21 < x < 2141}

14: end function

Recallx >2 => x>_13/2 > x>1,
y>=3=>y>15/2=> y>2and, forl<1,
x=4-22 5 x>.,3.272 = x> 2.2-2

Other examples

GAUSSIAN ELIMINATION

Given a n X m matrix A, returns a row echelon form.

GAUSSIAN ELIMINATION

Given a n X m matrix A, returns a row echelon form.

Problems with standard diagonalization procedure

» not compatible with REAL if rank(A) is not given (Kihara,
Pauly Dividing by zero - how bad is it, really?, 2016)

» Partial pivoting is not computable over REAL, even if rank(A)
is given

GAUSSIAN ELIMINATION

Given a n X m matrix A, returns a row echelon form.

Problems with standard diagonalization procedure

» not compatible with REAL if rank(A) is not given (Kihara,
Pauly Dividing by zero - how bad is it, really?, 2016)

» Partial pivoting is not computable over REAL, even if rank(A)
is given

» ...but with full pivoting and given rank it is computable!

FULL PIVOT SEARCH USING MULTIVALUED TEST

Procedure choosePivot
(n,k : INTEGER, B[n,n]: REAL, var pi,pj: INTEGER)
1: vari,j: INTEGER; vars,t:REAL; t:=0
// Require: B’ := Blk...n,k...n]notall zero
// Calculate max absolute value of square sub-matrix B’:
2: fori:=k ton do
: for j:= k ton dot:=max (t,abs(B[i,j])) end for
4: end for
// Find index of some element whose abs exceeds half of t:
5: fori:=k to n do
for j:= kton do

7 s:=abs(B[i, j]) ;if choose(s >t/2,t>s) = 1 then
pi:=1i;pj:=j endif
end for

o: end for // Return index of some element of at least half the
maximum absolute value in B’.

SIMPLE ROOT FINDING

Given continuous f : [0,1] — R with f(0) <0 < f(1) and a unique
root as black box as well as n € Z, produce some ¢ € [0,1] such
that |x — c| < 2™.

SIMPLE ROOT FINDING

Given continuous f : [0,1] — R with f(0) <0 < f(1) and a unique
root as black box as well as n € Z, produce some ¢ € [0,1] such
that |x — c| < 2™.

Bisection may fail when the testing value is exactly the root.

Use trisection

CONCLUSIONS AND FUTURE WORK

» applied Floyd-Hoare logic for imperative, exact real
computation

» three examples of verification

» no deductive formal proof, but possible

CONCLUSIONS AND FUTURE WORK

» applied Floyd-Hoare logic for imperative, exact real
computation

» three examples of verification

» no deductive formal proof, but possible

» extend to full matrix diagonalization

» proof assistants for automated verification

» computational complexity of multi-valued algebraic real
verification

CONCLUSIONS AND FUTURE WORK

» applied Floyd-Hoare logic for imperative, exact real
computation

» three examples of verification

» no deductive formal proof, but possible

» extend to full matrix diagonalization

» proof assistants for automated verification

» computational complexity of multi-valued algebraic real
verification

Thanks

