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Abstract. Imaginary cubes are three-dimensional objects that have square projections

in three orthogonal ways, just like a cube has. In this paper, we introduce higher-

dimensional extensions of imaginary cubes and study their properties.

1 Introduction

Imaginary cubes are three-dimensional objects that have square projections in
three orthogonal ways, just like a cube has [1]. A regular tetrahedron and a
cuboctahedron are examples of imaginary cubes (Fig. 1(a,b)). There are two
imaginary cubes with remarkable geometric properties: a hexagonal bipyramid
imaginary cube (Fig. 1(c); we simply call it an H) and a triangular antiprismoid
imaginary cube (Fig. 1(d); we call it a T). Figure 2 shows how they can be
considered as imaginary cubes. The first author of this paper has studied imagi-
nary cubes, in particular minimal convex imaginary cubes and fractal imaginary
cubes. He has also designed sculptures and puzzles based on them [1–4].

In this paper, we study higher-dimensional extensions of imaginary cubes. In
particular, we study n-dimensional counterparts of regular tetrahedron, H, and
T for each n ≥ 2, which we call Sn,Hn, and Tn, respectively. We also study
fractal imaginary cubes that correspond to these three series of polytopes.

In Section 2, we review properties of imaginary cubes based on [1]. Then, we
study higher-dimensional extensions of them in Section 3, and fractal imaginary
hypercubes in Section 4.
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Fig. 1. Examples of imaginary cubes: (a) regular tetrahedron, (b) cuboctahedron, (c)
H: hexagonal bipyramid with 12 isosceles triangle faces with a height 3/2 of the base,
(d) T: triangular antiprismoid obtained by truncating the three vertices of a base of a
regular triangular prism whose height is

√
6/4 of an edge.



Objects and Polytopes

Here, we only study imaginary cubes that are compact subsets of Rn. Therefore,
an object means a non-empty compact subset of Rn in this paper. We say that
two objects are similar if one can be transformed to the other by scaling and
isometry. We call this equivalence class a shape. Each shape S is also regarded
as a name of an object, and we say that an object A is an S if A belongs to the
class S. We use roman font to denote a shape, but italic font is used for objects.

A polytope is a convex hull of a finite set of points in Rn. We denote by
conv(A) the convex hull of an object A, and by vert(P ) the set of vertices of a
polytope P . A facet of an n-dimensional polytope P is an (n − 1)-dimensional
face of P . We simply call an n-dimensional hypercube an n-cube. We refer the
reader to [5] for background material on polytopes.

For any two objects A and B, and for any scalar c ∈ R, we set their Minkowski
sum A + B = {a + b ∈ Rn | a ∈ A, b ∈ B}, and scaling cA = {ca | a ∈ A}. In
this paper, 1 is the vector (1, . . . , 1) ∈ Rn, and “·” is the dot product on Rn.

2 Imaginary Cubes

Imaginary cubes are three-dimensional objects with square projections in three
orthogonal ways. Note that a regular octahedron also has square projections in
three orthogonal ways, but its square projections are arranged differently. We
exclude such a case by defining an imaginary cube more precisely as follows.

Definition 1. Let C be a 3-cube, and A be an object.
1. A is an imaginary cube of C if A has the same three square projections as

C has.
2. A is an imaginary cube if it is an imaginary cube of a cube.
3. A is a minimal convex imaginary cube (MCI for short) of C if A is minimal

among convex imaginary cubes of C.
4. A is an MCI if it is an MCI of a cube.

It is clear that a convex object A is an imaginary cube of C if and only if
each edge of C contains at least one point of A. Therefore, an MCI of C is a
convex hull of some points of the edges of C, and thus it is a polytope.
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Fig. 2. Imaginary cubes in Figure 1 placed in cubes.



Let A be an MCI of a cube C. The vertices of A are divided into two cat-
egories: v-vertices, which are also vertices of C, and e-vertices, which are not
vertices of C. We denote by V (A) the set of v-vertices of A.

Definition 2. A 0/0.5/1 MCI of C is an MCI with its e-vertices at middle
points of the edges of C.

Each object in Fig. 1 is a 0/0.5/1 MCI. Note that a regular tetrahedron has
only v-vertices and a cuboctahedron has only e-vertices.

For a polytope A, a subset of vert(A) is called a star if it is composed of a
vertex and all of its adjacent vertices.

Theorem 3 (Theorem 3 and Corollary 4 of [1]). There is one-to-one corre-
spondence between 0/0.5/1 MCIs of C and subsets of vert(C) that do not contain
any star as their subset. There are 15 0/0.5/1 MCI shapes.

Proof. For an MCI A of C, V (A) does not contain any star because of its mini-
mality. On the other hand, from a subset S ⊂ vert(C) without a star, we obtain
an MCI by selecting its e-vertices on middle points of the edges of C both of
whose endpoints are not in S.

There are 15 equivalence classes of subsets of vert(C) without a star. Here,
two subsets of vert(C) are equivalent if one is transformed to the other by an
isometry which fixes C. We can easily check that every pair of them induces
non-similar 0/0.5/1 MCIs. Therefore, there are 15 0/0.5/1 MCI shapes. ⊓⊔

We say that two MCIs A and A′ of C are v-equivalent if V (A) can be trans-
formed to V (A′) by an isometry which fixes C. There is a representative 0/0.5/1
MCI in each v-equivalence class. The list of all 0/0.5/1 MCIs is given in [1].

We define a double imaginary cube as an imaginary cube of two different
cubes. As Fig. 3 shows, an H (Fig. 1(c)) is the intersection of two cubes and is a
double imaginary cube. It is shown that all the convex double imaginary cubes
are intersections of two cubes of the same size which share a diagonal and thus
they are MCIs v-equivalent to H [1, Proposition 5].

Fig. 3. H as the intersection of two
cubes.
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Fig. 4. T as a weak polytope.



We call an n-dimensional polytope with 2n vertices a weak cross-polytope if its
vertices are on the positive and the negative sides of a set of axes of coordinates,
and call it a cross-polytope if the distances from the origin to the vertices are the
same. As Fig. 4 shows, a T (Fig. 1(d)) is a three-dimensional weak cross-polytope
as well as an imaginary cube.

Hs and Ts form a tiling of three-dimensional Euclidean space and this tiling
is closely related to the properties that H is a double imaginary cube shape
and T is a weak cross-polytope imaginary cube shape. We explain this tiling in
Section 3.4 together with another tiling by imaginary hypercubes.

3 Imaginary Hypercubes

3.1 Minimal convex imaginary n-cubes

We extend the theory of imaginary cubes to higher-dimensional cases. For n ≥ 2,
we say that an object A is an imaginary n-cube of an n-cube C if A has (n− 1)-
cube projections in n orthogonal directions, just like C has. An imaginary n-cube
is defined as an imaginary n-cube of some n-cube.

We define the following as we did in the three-dimensional case: a minimal
convex imaginary n-cube (n-MCI for short) (of C), a 0/0.5/1 MCI (of C), v-
vertices and e-vertices of an n-MCI (of C), and v-equivalence on n-MCIs of C.
We omit the dimension when it is obvious from the context, and an n-MCI is
called an MCI, for example.

Theorem 4. For an n-cube C with n ≥ 2, there is a one-to-one correspondence
between 0/0.5/1 MCIs of C and subsets of vert(C) without a star.

The proof of this theorem is the same as that of Theorem 1 and is omitted.

Also in higher-dimensional cases, some objects are 0/0.5/1 MCIs of two dif-
ferent n-cubes. However, the set of v-vertices of such an object does not depend
on the choice of the cube as we will show in Theorem 9. Therefore, we only have
to enumerate equivalence classes of subsets of vert(C) without a star in order to
enumerate 0/0.5/1 MCI shapes. We calculated these numbers for the case n ≤ 5
with a computer program.

n 2 3 4 5
shapes 4 15 269 829036

modulo orientation-preserving isometries 4 16 338 1544164

Note that there is a 0/0.5/1 3-MCI that cannot be transformed to its mirror
image by any orientation-preserving isometry. The second line is the enumeration
modulo orientation-preserving isometries.



3.2 16-cells

A 16-cell is a four-dimensional cross-polytope. It is a four-dimensional regular
polytope with 16 regular tetrahedron facets. See [8], for example, about proper-
ties of regular polytopes.

Let A1 be a 16-cell given by vert(A1) = V1 = {(±1, 0, 0, 0), (0,±1, 0, 0),
(0, 0,±1, 0), (0, 0, 0,±1)}, and let C1 = conv({−1/2, 1/2}4) be a 4-cube. Let V2

and V3 be the subsets of vert(C1) with even and odd numbers of 1/2-coordinates,
respectively. One can see that C2 = conv(V1 ∪ V3) and C3 = conv(V1 ∪ V2) are
also 4-cubes. Since V1 does not contain any star of C2 (resp. C3), and every edge
of C2 (resp. C3) contains a point in V1, we can find that A1 is an imaginary cube
of C2 (resp. C3) that has no e-vertices. Thus, A1 is a double imaginary 4-cube.
Note that A2 = conv(V2) and A3 = conv(V3) are also 16-cells.

As we described in Section 2, T is a weak cross-polytope imaginary cube
shape and H is a double imaginary cube shape in the three-dimensional case.
We show that 16-cell is the only weak cross-polytope imaginary cube shape as
well as the only double imaginary cube shape in four and higher-dimensional
cases. First, we study weak cross-polytope imaginary cubes.

Lemma 5. A convex imaginary n-cube polytope has at least 2n−1 vertices.

Proof. An n-cube has n2n−1 edges and a convex imaginary n-cube polytope
contains a vertex on each of these edges. Since a vertex is on at most n edges of
the cube, we have the result. ⊓⊔

Proposition 6. For n ≥ 3, T and 16-cell are the only weak cross-polytope imag-
inary hypercube shapes.

Proof. Since an n-dimensional weak cross-polytope has 2n vertices, n must sat-
isfy 2n ≥ 2n−1 by Lemma 5, and hence n ≤ 4.

For n = 4, any weak cross-polytope has eight vertices. If a weak cross-
polytope A is an imaginary cube polytope of a 4-cube C, then A is a MCI
with no e-vertices, and each edge of C contains one vertex of A from the proof
of Lemma 5. Thus A is a 16-cell.

For n = 3, assume that a weak cross-polytope A is an imaginary cube of a 3-
cube C. Note that A may not be an MCI of C. We set V (A) := vert(C)∩A. Since
a 3-cube has 12 edges and A has 6 vertices, we have 3#V (A)+(6−#V (A)) ≥ 12,
and get #V (A) ≥ 3.

If #V (A) = 3, A has three e-vertices and they must be on the edges of C
both of whose endpoints are not in V (A). Thus, A is an MCI of C, and we can
find that T is the only such polytope.

If #V (A) ≥ 4, there is a pair {v1,v2} ⊂ V (A) such that vert(A) \ {v1,v2}
is on a plane that is orthogonal to the line segment [v1,v2]. Suppose that C =
conv{0, 1}3. Since [v1,v2] contains an interior point of C, we can put v1 =
(0, 0, 0) and v2 = (1, 1, 1) without loss of generality. Suppose that the other four
vertices of A are on a plane defined as {(x, y, z) | x+ y + z = a} (a ∈ R). Since
A has four or more v-vertices, we get a = 1, 2. If a = 1, vert(A) must contain



(1, 0, 0), (0, 1, 0) and (0, 0, 1). However, no line passes through two of them and
the origin (1/3, 1/3, 1/3) at the same time. Therefore, we have no weak cross-
polytope in this case. The case a = 2 is similar to the case a = 1. ⊓⊔

Next, we study double imaginary n-cubes. A convex object can be an imagi-
nary 2-cube of two or more squares. For example, a square is an imaginary cube
of infinitely many squares. In the three-dimensional case, there are many convex
double imaginary cubes, and H is the only 0/0.5/1 MCI among them as we men-
tioned in Section 2.1. For n ≥ 4, we show that 16-cell is the only convex double
imaginary n-cube shape. We prepare two lemmas, whose proofs are omitted.

Lemma 7. For n ≥ 3, the dimension of the affine hull of an imaginary n-cube
is n.

Note that this lemma does not hold for n = 2 because a line segment is an
imaginary 2-cube.

For an n-dimensional hyperplane G, we denote by r(G) he distance of G from
the origin.

Lemma 8. Let C = conv({−1, 1}n) and G be an n-dimensional hyperplane.
(1) If n > 4 and one of the open half spaces defined by G contains only one

vertex of C, then r(G) > 1.
(2) If n = 4 and one of the open half spaces defined by G contains only one

vertex v of C, then r(G) ≥ 1. If r(G) = 1, in addition, then the four adjacent
vertices of v are on G.

Theorem 9. 16-cell is the only convex double imaginary 4-cube shape. For n >
4, there is no double imaginary n-cube.

Proof. Let n ≥ 4. Suppose that B is a double imaginary cube of two n-cubes
C1 and C2. One can see that A = C1 ∩ C2 is a convex double imaginary cube
because we have B ⊂ A. We consider the double imaginary cube A.

We can assume without loss of generality that C1 = conv({−1, 1}n) and that
the edge length of C2 is less than or equal to the edge length of C1, that is, 2.
Let P be a facet of C2 and G be the hyperplane containing P . All the edges of
P must intersect with C1 because A is an imaginary cube of C2. Hence P ∩C1 is
an imaginary cube of an (n− 1)-cube P . Since n ≥ 4, the dimension of its affine
hull is n− 1 by Lemma 7. On the other hand, it is immediate to show that each
facet of C1 is not on G. Therefore, there exists a vertex v of C1 in the open half-
space defined as the opposite side of C2 with respect to G. Such a vertex of C1

is unique because every edge of C1 must intersect with C2. Therefore, if n > 4,
then r(G) > 1 by Lemma 8. Since it also holds for the facet P ′ which is parallel
to P , the edge length of C2 is greater than 2, contradicting the assumption.
Therefore, we have n = 4. By Lemma 8, the two 4-cubes have the same size
and P contains all the four adjacent vertices of v. Therefore, P ∩C1 is a regular
tetrahedron. Since C1 and C2 have the same size, it holds for all the facets of C1

and C2. Therefore, A is a 16-cell. Since a 16-cell is a minimal convex imaginary
4-cube, it is the only convex double imaginary 4-cube. ⊓⊔



3.3 Higher dimensional extensions of H and T

In this subsection, we make n-dimensional extensions of the four 0/0.5/1 MCIs
in Fig. 1 in each n ≥ 2. We regard the 0/0.5/1 n-MCI which has no v-vertices
as an imaginary n-cube corresponding to a cuboctahedron.

As an n-dimensional counterpart of a regular tetrahedron, we define Sn and
S′n as follows:

V (Sn) = {x ∈ {0, 1}n | x · 1 ≡ 0 (mod 2)},
V (S′n) = {x ∈ {0, 1}n | x · 1 ≡ 1 (mod 2)}.

Let x,y ∈ {0, 1}n be two vertices of C = conv({0, 1}n). If x and y are the two
endpoints of an edge of C, we get x · 1 = y · 1 ± 1. Therefore, every edge of C
contains points of both Sn and S′n. Therefore, Sn and S′n are imaginary cubes
of C that have no e-vertices. Moreover, since both V (S) and V (S′) contain no
star of C, S and S′ are MCIs of C. Note that Sn and S′n have the same shape
which is denoted by Sn. The shape S4 is 16-cell.

Concerning H and T, we define three 0/0.5/1 MCIs of an n-cube C =
conv({−1, 1}n) as follows:

V (Hn) = {x ∈ {−1, 1}n | x · 1 ≡ 0 (mod 3)},
V (Tn) = {x ∈ {−1, 1}n | x · 1 ≡ −1 (mod 3)},
V (T ′n) = {x ∈ {−1, 1}n | x · 1 ≡ 1 (mod 3)}.

(1)

By a similar argument, one can see that they define 0/0.5/1 MCIs. Note that
Tn and T ′n are similar because we have Tn = −T ′n. We denote by Hn and Tn

the shapes of Hn and Tn, respectively.
These sets of vertices satisfy the following equations. We have

V (Hn+1) = V (T ′n)× {−1} ∪ V (Tn)× {1},
V (Tn+1) = V (Hn)× {−1} ∪ V (T ′n)× {1},
V (T ′n+1) = V (Tn)× {−1} ∪ V (Hn)× {1}.

(2)

One can see from (1) that each of Hn, Tn and T ′n is mapped to itself by a
permutation of the n coordinates. Therefore, one can derive from equation (2)
that for n ≥ 4, Hn has 2n copies of Tn−1 facets. The other facets are (n − 1)-
simplexes because each vertex figure of an n-cube is a simplex. On the other
hand, Tn has n copies of Hn−1 facets, n copies of Tn−1 facets and some (n− 1)-
simplex facets for n ≥ 4. In the case n = 3, the six 2-simplex facets of H3 coincide
with T2 and the three H2 facets of T3 degenerate to line segments. Thus, H3 has
twelve T2 faces and T3 has eight faces.

One can see that the set of e-vertices of Hn, Tn and T ′n are the sets

{x ∈ {−1, 0, 1}n | x · 1 ≡ 0 (mod 3), x · x = n− 1},
{x ∈ {−1, 0, 1}n | x · 1 ≡ −1 (mod 3), x · x = n− 1}, and

{x ∈ {−1, 0, 1}n | x · 1 ≡ 1 (mod 3), x · x = n− 1},
(3)

respectively.



3.4 Tilings by imaginary cubes

As we mentioned above, Hs and Ts form a tiling of three-dimensional Euclidean
space, and 16-cells form a tiling of four-dimensional Euclidean space. We explain
these tilings from the viewpoints of weak cross-polytope imaginary cubes and
double imaginary cubes.

We set positive integers n ≥ 3 and k ≥ 2. Consider a subset Z of the n-
dimensional cubic lattice

Z = {x ∈ Zn | x · 1 ≡ 0 (mod k)}.

We call a cube conv({0, 1}n) + {v} (v ∈ Zn) a lattice-cube. In each lattice-cube
C, take an MCI of C whose set of v-vertices is Z ∩ vert(C). Such an MCI is a
translation of one of Mr for 0 ≤ r < k defined as

V (Mr) = {x ∈ {0, 1}n | x · 1 ≡ r (mod k)}.

Note that every pair of these MCIs which are placed in adjacent n-cubes
share the faces on their intersection. After placing such MCIs, there remain
holes around lattice points

{x ∈ Zn | x · 1 ̸≡ 0 (mod k)}.

These holes are weak cross-polytopes because all of the vertices are on the lattice
edges. Therefore, for every n and k, we have a tiling of n-dimensional space by
translations of Mr for 0 ≤ r < k and n-dimensional weak cross-polytopes of
several shapes. In the case n = 3 and k = 2, this tiling is the three-dimensional
tiling by regular tetrahedra and regular octahedra. In the case n = 3 and k = 3,
Mr (r = 0, 1, 2) are H, T , and T ′, respectively, and each hole is a T. Therefore,
we have the three-dimensional tiling by Hs and Ts. In the case n = 4 and k = 2,
not only MCIs placed in lattice-cubes but also the holes are 16-cells, and we get
the four-dimensional tiling by 16-cells. Since T and 16-cell are the only weak
cross-polytope imaginary n-cube shapes for n ≥ 3 (Proposition 6), among these
tilings, there are only two tilings by imaginary cubes.

These two tilings are related to the fact that H and 16-cell are double imag-
inary cubes. The three-dimensional tiling by Hs and Ts can be characterized
as follows [1]. Let σ3 be the isometry on three-dimensional Euclidean space to
rotate by 180 degrees around the axis x = y = z. Then, the tiling is a Voronoi
tessellation of the union Z3 ∪ σ3(Z3) of the two cubic lattices such that Voronoi
cells of points in Z3 ∩ σ3(Z3) have the shape H and those of other points have
the shape T. See [6], for example, for the notion of Voronoi tessellations.

This construction can be extended to higher-dimensional cases. In the n-
dimensional Euclidean space, let σn be the orthogonal transformation on Rn

that satisfies σn(1) = 1 and σn(v) = −v for v ∈ Rn with v · 1 = 0. Then,
take the Voronoi tessellation of Zn ∪ σn(Zn). The Voronoi cell of the origin is
the intersection of two n-cubes conv({−1/2, 1/2}n) and σn(conv({−1/2, 1/2}n)),
and Voronoi cells of points in Zn ∩ σn(Zn) are its translations.



In the case n = 4, σ4 maps the set V1 to V3, V3 to V1, and V2 to itself,
where the sets V1, V2, and V3 are defined in Section 3.2. Therefore, the cube
conv({−1/2, 1/2}4)) = conv(V2 ∪ V3) is mapped to the cube conv(V2 ∪ V1) and
their intersection conv(V2) is the Voronoi cell at the origin. One can show that
the other Voronoi cells are also 16-cells, and therefore this tiling is the four-
dimensional tiling by 16-cells.

For n ≥ 3, if the intersection En of two cubes conv({−1/2, 1/2}n) and
σn(conv({−1/2, 1/2}n)) is an imaginary cube of an n-cube C, then it must
also be an imaginary cube of σn(C). It is easy to show that C and σn(C) are
different n-cubes and thus En is a double imaginary cube. Since H and 16-cell
are the only double imaginary n-cube shapes for n ≥ 3 (Theorem 9), among
these Voronoi tessellations there are only two tilings by imaginary cubes.

4 Fractal imaginary hypercubes

4.1 Fractal imaginary cubes

From a regular tetrahedron, one can form a fractal (i.e., self-similar) object
known as a Sierpinski tetrahedron (Fig. 5(a)). It has similarity dimension two
and it is also an imaginary cube.

Let Hn be the metric space of non-empty compact subsets of Rn with the
Hausdorff metric. According to the theory of IFS (iterated function system) frac-
tals developed by Hutchinson [7], for contractions fi : Rn → Rn (i = 1, . . . ,m),
an IFS I = {fi | i = 1, 2, . . . ,m} defines a fractal object as the fixedpoint of the
following contraction map on Hn:

FI(X) =

m∪
i=1

fi(X). (4)

As for a Sierpinski tetrahedron, let S be a regular tetrahedron and let IS =
{fi : R3 → R3 | i = 1, 2, 3, 4} be an IFS where fi(i = 1, 2, 3, 4) are homothetic
transformations (i.e., similitudes that perform no rotations) with the scale 1/2

(b)

(a)

Regular tetrahedron

(c)

Fig. 5. The first two approximations of (a) Sierpinski tetrahedron, (b) H∞, and (c)
T∞.



whose centers are vertices of S. The induced fractal is a Sierpinski tetrahedron.
It is an imaginary cube of the cube C of which S is an imaginary cube. Note
that this fractal object is minimal among imaginary cubes of C.

As generalizations of a Sierpinski tetrahedron, fractal imaginary cubes such
that an IFS that induces the fractal is composed of k2 homothetic transforma-
tions of scale 1/k are studied [2]. Sierpinski tetrahedron is the only such shape
for k = 2. In the case k = 3, there are two such fractal shapes H∞ and T∞
whose convex hulls are H and T, respectively (Fig. 5(b,c)). In particular, H∞ is
a double imaginary cube. In the following, we explain these fractal imaginary
cubes and their higher-dimensional counterparts.

For k ≥ 2, let I = {fi : Rn → Rn | i = 1, 2, . . . , kn−1} be an IFS such that
fi(i = 1, 2, . . . , kn−1) are homothetic transformations with the scale 1/k. Let
XI be the fractal object obtained as the fixedpoint of the contraction map FI

on Hn defined by (4). Since XI is the fixedpoint of FI , for any B ∈ Hn, the
sequence B,FI(B), F 2

I (B), . . . converges to XI with respect to the Hausdorff
metric. Here, fm is the m-times repetition of f .

Lemma 10. Let C be an n-cube and let (Ai; i = 0, 1, . . .) be a sequence of
imaginary n-cubes of C. If the sequence (Ai; i = 0, 1, . . .) converges to A with
respect to the Hausdorff metric, then A is also an imaginary cube of C.

Proof. For each projection p from C to a hyperplane containing a facet of C,
p(Ai) for i = 0, 1, . . . are the same (n−1)-cube p(C). Since p induces a continuous
map from Hn to Hn−1, p(A) is also equal to p(C). ⊓⊔
Proposition 11. Let I be an IFS as above. The limit XI is an imaginary cube
of an n-cube C if and only if FI(C) is an imaginary cube of C.

Proof. Suppose that XI is an imaginary cube of C. We have C ⊃ XI and the
sequence C ⊃ FI(C) ⊃ F 2

I (C) · · · converges to XI . Therefore, all of F
i
I (C) are

imaginary cubes of C. In particular, FI(C) is an imaginary cube of C. Conversely,
if FI(C) is an imaginary cube of C, then all of F i

I (C) are imaginary cubes of C by
induction, and the limit XI is also an imaginary cube of C from Lemma 10. ⊓⊔
The fractal object XI has the similarity dimension n− 1. Note that FI(C) is an
imaginary cube of C if and only if fi(C) (i = 1, 2, . . . , kn−1) are n-cubes obtained
by cutting C into kn n-cubes of the same size and selecting kn−1 of them so that
they form an imaginary n-cube. Such a selection of kn−1 cubes corresponds to
an (n− 1)-dimensional Latin hypercube of order k. See, for example, [9] for the
notion of a Latin hypercube.

4.2 Higher-dimensional extensions of the Sierpinski tetrahedron

Let C be the n-cube conv({0, 1}n). We set Pn
a = 1

2 (C + {a}) for a ∈ {0, 1}n.
There are the following two ways of selecting 2n−1 n-cubes from {Pn

a | a ∈
{0, 1}n} to form an imaginary cube.

Ŝn = ∪{Pn
a | a ∈ {0, 1}n, a · 1 ≡ 0 (mod 2)},

Ŝ′n = ∪{Pn
a | a ∈ {0, 1}n, a · 1 ≡ 1 (mod 2)}.



These two imaginary cubes have the same shape which we denote by Ŝn (Fig. 6).
Let IS be the IFS that consists of 2n−1 homothetic transformations with the scale
1/2 that map C to the cubes in Ŝn, and let Sn

∞ be the fractal induced by IS . S
n
∞ is

a fractal imaginary n-cube with the similarity dimension n−1 by Proposition 11.
We denote by Sn∞ the shape of Sn

∞. The shape S3∞ is the Sierpinski tetrahedron.
Since all the components of IS are homothetic transformations, the convex hull
of Sn

∞ is equal to the convex hull of the centers of IS , which is Sn defined in
Section 3.3.

It is immediate to show that Ŝn and Ŝ′n are the only two ways of selecting
2n−1 n-cubes from {Pn

a | a ∈ {0, 1}n} to form an imaginary cube. Therefore,
Sn∞ is the only fractal imaginary cube shape obtained as the limit of an IFS that
is composed of 2n−1 homothetic transformations with the scale 1/2.

4.3 Fractal imaginary cubes H∞ and T∞ and their
higher-dimensional extensions.

We study the case k = 3. Let C be the n-cube conv({−1, 1}n). We define Qn
a ⊂ C

(a ∈ {−1, 0, 1}n) as 1
3 (C+{2a}). There are the following three ways of selecting

3n−1 n-cubes from {Qn
a | a ∈ {−1, 0, 1}n} to form an imaginary cube of C.

Ĥn = ∪{Qn
a | a ∈ {−1, 0, 1}n, a · 1 ≡ 0 (mod 3)},

T̂n = ∪{Qn
a | a ∈ {−1, 0, 1}n, a · 1 ≡ −1 (mod 3)},

T̂ ′n = ∪{Qn
a | a ∈ {−1, 0, 1}n, a · 1 ≡ 1 (mod 3)}.

T̂n and T̂ ′n have the same shape which we denote by T̂n. We denote by Ĥn the
shape of Ĥn (Fig. 6).

Let IH (resp. IT ) be the IFS that consists of 3n−1 homothetic transformations
with the scale 1/3 that map C to the cubes in Ĥn (resp. T̂n), and let Hn

∞ (resp.
Tn
∞) be the fractal induced by IH (resp. IT ). H

n
∞ and Tn

∞ are fractal imaginary
n-cubes with the similarity dimension n − 1 by Proposition 11. We write Hn

∞
and Tn

∞ for their shapes.
The convex hull of Hn

∞ is equal to the convex hull of the centers of the
components of IH because they are homothetic transformations. It is the set

Dn = {x ∈ {−1, 0, 1}n | x · 1 ≡ 0 (mod 3)}.

Fig. 6. The three shapes Ŝ3, Ĥ3, and T̂3.



From (3), the set of vertices of the polytope Hn defined in Section 3.3 is the
intersection ofDn with the edges of C. Therefore, the convex hull ofDn coincides
with Hn. Similarly, we can show that the convex hull of Tn

∞ is Tn.

Theorem 12. For n ≥ 3, Hn
∞ and Tn

∞ are the only fractal imaginary cube
shapes obtained as the limit of an IFS that is composed of 3n−1 homothetic
transformations with the scale 1/3.

Proof. Suppose that n ≥ 2 and that U ⊂ {−1, 0, 1}n satisfies #U = 3n−1 and
∪{Qn

a | a ∈ U} is an imaginary cube of C. We show that there exist b ∈ {−1, 1}n
and r ∈ {−1, 0, 1} such that U = U(b, r) for U(b, r) = {a ∈ {−1, 0, 1}n | a·b ≡ r
(mod 3)}. It is clear that such a selection U is congruous to that of Ĥn or T̂n.
We show this by induction on n, and it is true for n = 2.

Note that we have U(b, r) = U(b′, r′) if and only if (b, r) = ±(b′, r′). Since
simultaneous equations a1+a2 ≡ r1, a1−a2 ≡ r2 (mod 3) always have a solution
(a1, a2) = 2(r1 + r2, r1 − r2), one can also find that if b ̸= ±b′, then we have
U(b, r) ∩ U(b′, r′) ̸= ∅ for any choice of r, r′ ∈ {−1, 0, 1}.

Suppose that n ≥ 3. We divide U into three parts

U = U−1 × {−1} ∪ U0 × {0} ∪ U1 × {1},

where Ui ⊂ {−1, 0, 1}n−1 satisfies #Ui = 3n−2 and that ∪{Qn−1
a | a ∈ Ui}

is an imaginary (n − 1)-cube for i ∈ {−1, 0, 1}. From the assumption, we can
put Ui = U(bi, ri) for i ∈ {−1, 0, 1}. Considering the projection in the n-th
direction, we have Ui ∩ Uj = ∅ for −1 ≤ i < j ≤ 1. Therefore, we can assume
that b−1 = b0 = b1 = (b1, . . . , bn−1), and we get {r−1, r0, r1} = {−1, 0, 1}. In
each case, there is bn ∈ {−1, 1} such that r0 ≡ r−1 − bn ≡ r1 + bn (mod 3), and
hence we obtain U = U((b1, . . . , bn), r0). ⊓⊔
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