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Abstract. We study coloring problems of the third-level approximation of a 16-cell

fractal. This four-dimensional object is projected to a cube in eight different ways,

after which it forms an 8× 8× 8 grid of cubes. On each such grid, we can consider two

Sudoku-like colorings. Our question is whether it is possible to assign colors to the 83

pieces of this pre-fractal object in such a manner that all of its eight cubic projections

form Sudoku-like colorings. We analyzed this problem and its variants and constructed

solution patterns to the cases they exist. We also enumerated the number of solutions

with computer programs for some of the cases.

1 Introduction

An imaginary cube is a three-dimensional object that has square projections in
three orthogonal directions, just as a cube has [3, 4]. Among imaginary cubes,
a hexagonal bipyramid imaginary cube (simply called an H, Fig. 1) is a double
imaginary cube, i.e., it is an imaginary cube of two different cubes. Therefore, it
has square projections in six ways. In addition, from an H, a double imaginary
cube fractal with the similarity dimension two is generated. When the first au-
thor designed a sculpture based on the second-level approximation of this fractal,
81 pieces were colored with nine colors so that the colors form a Sudoku solution
pattern in each of the six square projections, which form 9× 9 grids (Fig. 2) [1].
As the upper-middle picture of Fig. 2 indicates, this coloring pattern is based on
simple rules. In [2], he studied this Sudoku coloring problem and showed that
it has 140 solutions modulo change of colors and 30 solutions modulo change of

 

Fig. 1. H (Hexagonal bipyramid imaginary cube). This object is projected to a square
in six different ways.



Fig. 2. Fractal Sudoku Sculpture [1, 2] (reassembled by Y. Tsukamoto in 2013).

colors and congruences of the object. This calculation was first done with a com-
puter program and then performed manually, i.e., it was shown mathematically
as a proof. Tsuiki and Yokota also studied this Sudoku coloring problem only for
three orthogonal square projections, and they enumerated their solutions using
computer programs [5].

In this paper, we report our study of Sudoku colorings of the third level
approximation of the 16-cell fractal. This four-dimensional object is projected
to a cube in eight different ways, after which it forms an 8× 8× 8 grid of cubes.
On each such grid of cubes, we can consider two Sudoku-like coloring problems
indicated in Figure 3(a,b). Our question is whether it is possible to assign colors
to the 83 pieces of this pre-fractal object in such a manner that all of its eight
cubic projections form Sudoku-like colorings. We analyzed this problem and
its variants and constructed solution patterns to the cases they exist. We also
enumerated the number of solutions with computer programs for some of the
cases.

In the next section, we explain a 16-cell and its pre-fractals, and explain
Puzzle A and Puzzle B which are the two Sudoku-like coloring problems which
we study in this paper. In Section 3, we study properties of cubic projections of
a 16-cell. We study Puzzle A and its variants in Section 4, and Puzzle B and its
variants in Section 5.



2 A 16-cell and Sudoku-like coloring problems

A 16-cell is a four-dimensional regular polytope with eight vertices and sixteen
regular tetrahedron facets. We first review properties of this object and (pre-
)fractals generated by it based on [4]. Then, we explain our Sudoku-like coloring
problems.

A 16-cell is a four-dimensional counterpart of a regular octahedron in that it is
a cross-polytope. That is, V = {(±2, 0, 0, 0), (0,±2, 0, 0), (0, 0,±2, 0), (0, 0, 0,±2)}
is the set of vertices of a 16-cell. A 16-cell is also obtained by selecting eight
non-adjacent vertices of a hypercube. That is, let V1 and V2 be the subsets
of (±1,±1,±1,±1) with even and odd number of +1 coordinates, respectively.
Then, V1 and V2 are sets of vertices of 16-cells. If these two 16-cells are pro-
jected along each of the four axis of coordinates, then we have cubes. Therefore,
a 16-cell is an imaginary 4-cube. Here, an imaginary n-cube is an n-dimensional
object that has (n − 1)-dimensional hypercube projections in n orthogonal di-
rections just as an n-dimensional hypercube has. One can see that these cubic
projections are projections from four pairs of facets of a 16-cell. Therefore, by
symmetry, it also has cubic projections from the other four pairs of facets. Thus,
a 16-cel has cubic projections in eight directions and the eight directions are
divided into two sets of four mutually orthogonal directions. We call such an
object a double imaginary 4-cube.

More interestingly, not only a 16-cell but also a fractal based on a 16-cell is a
double imaginary 4-cube. Let Fi (1 ≤ i ≤ 8) be the homothetic transformations
with centers at the eight vertices of a 16-cell S and with scales 1/2. Here, a
homothetic transformation is a similitude that performs no rotations. We define
a map G on the space H4 of non-empty compact subsets of R4 as G(X) =⋃8

i=1 Fi(X). Since G is a contraction map in H4, the sequence S0 = S, S1 =
G(S0), S2 = G(S1), S3 = G(S2), . . . converges to the unique fixedpoint S∞ of G,
which is called the fractal generated by the iterative function system {Fi | 1 ≤
i ≤ 8}. One can easily see that S∞ has the similarity dimension 3, and it is also
a double imaginary 4-cube. In addition, not only S∞ but also Sn, which is a n-th
level approximation of S∞, is a double imaginary hypercube for every n ≥ 1.
We call such an approximation of a fractal a pre-fractal.

Since each cubic projection image of Sn consists of a set of 8n cubes forming
a 2n× 2n× 2n grid, if there is a coloring notion on a 2n× 2n× 2n grid of cubes,
then we have a corresponding coloring notion on the pre-fractal Sn that all the
eight cubic projections satisfy the coloring. We consider the case n = 3 and
consider two Sudoku-like coloring puzzles on a 8× 8× 8-grid of cubes.

Puzzle A0: Assign 64 colors to an 8× 8× 8 grid of cubes so that each
8× 8-plane (3× 8 exist) and each 4× 4× 4-block (8 exist) contains
all 64 colors (Fig. 3(a)).

Puzzle B0: Assign 8 colors to an 8 × 8 × 8 grid of cubes so that each
8-sequence (3×64 exist) and each 2×2×2-block (64 exist) contains
all 8 colors (Fig. 3(b)).
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Fig. 3. (a) Sets of pieces with different colors in Puzzle A0, (b) that of Puzzle B0, (c)
address of cubes in a lattice.

For each of them, there is a Sudoku-like coloring Puzzle A (resp. Puzzle B)
of S3 to assign 64 (resp. 8) colors to the components of S3 so that each of the
eight cubic projections is a solution of Puzzle A0 (resp. Puzzle B0). We can
also consider four projection variants of these puzzles. That is, fix a set of four
orthogonal cubic projections of a 16-cell and consider the condition that each
of them is a solution of Puzzle A0 (or Puzzle B0). We call them Puzzle AS and
Puzzle BS , respectively.

Remark: In [4] and [3], it is shown that (1) all the convex double imaginary
3-cubes are variants of H, (2) a 16-cell is the only convex double imaginary 4-
cube, (3) there is no double imaginary n-cube for n ≥ 5, and (4) H is the only
convex double imaginary 3-cube from which one can generate a double imaginary
3-cube fractal with the similarity dimension 2. Therefore, a 16-cell fractal is the
only object in three- and higher-dimensional spaces on which one can consider
a coloring problem similar to the one on the H pre-fractal.

3 Projections of a 16-cell pre-fractal

We study how different cubic projections of S3 are related.
We first study how vertices of a 16-cell are mapped by cubic projections. Let

v0 = (2, 0, 0, 0), v1 = (0, 2, 0, 0), v2 = (0, 0, 2, 0), v3 = (0, 0, 0, 2) and let S be
the 16-cell with the set of vertices {±v0,±v1,±v2,±v3}. We consider a cube C
with vertices (±1,±1,±1) and assign a number in D = {i | 0 ≤ i ≤ 7} to the
vertices of C so that (x, y, z) is given the number b(z)b(y)b(x) in binary notation
with b(−1) = 0 and b(1) = 1 (c.f. Fig. 3(c)). We sometime use binary notation
for elements of D. We define inv(i) = 7 − i so that i and 7 − i specify space
diagonal vertices.

For each tuple (a0, a1, a2, a3) ∈ {−1, 1}4, there is a regular tetrahedron facet
F of S with the set of vertices {a0v0, a1v1, a2v2, a3v3}. S is projected to a
cube when it is projected from F , that is, projected along the vector a0v0 +
a1v1 + a2v2 + a3v3. We fix a0 = 1 and denote by P(a1,a2,a3) this projection.



By P(a1,a2,a3), the four space diagonals of S are projected to the four space
diagonals of a cube. We transfer cubes obtained by projections to the cube C
through rotations and reflections so that v0 is mapped to vertex 0 and the space
diagonal between ±vi is mapped to the space diagonal between the vertices i
and inv(i). We redefine this map from S to C as the projection P(a1,a2,a3).

By P(a1,a2,a3), the two regular tetrahedron facets with the vertices (v0, a1v1,
a2v2, a3v3) and (−v0,−a1v1,−a2v2,−a3v3) preserve their shapes and these
lists of vertices are mapped to lists of vertices of regular tetrahedrons in C,
that is, vertices (0, 6, 5, 3) and (7, 1, 2, 4) in C. Since v0 and −v0 are mapped to
vertices 0 and 7, respectively, it determines how P(a1,a2,a3) maps vertices of S to
vertices of C. That is, v0 is always mapped to the vertex 0 and vi (i = 1, 2, 3)
is mapped to the vertex 2i−1 if ai = −1 and to inv(2i−1) if ai = 1.

Instead of studying colorings on S3, we consider colorings of the 8×8×8 grid of
cubes obtained by projection P(1,1,1). In order to express the constraints caused
by other projections, it is important to know how the same piece of S3 is mapped
by different projections. For this, we first study action of P(a1,a2,a3) ◦ P

−1
(1,1,1)

on vertices of C, which can be expressed as a permutation on D. The above
observation shows that this action is generated by the three transpositions α =
(1, 6), β = (2, 5), and γ = (3, 4). We denote by U the subgroup of the symmetric
group S8 generated by these three transpositions. The order of U is 8 and it is
isomorphic to the group 2× 2× 2.

Among the eight projections, the projection lines of P(1,1,1), P(−1,−1,1),

P(1,−1,−1), and P(−1,1,−1) are mutually orthogonal. One can see that P ◦P−1(1,1,1)

for P these four projections cause the identity permutation, αβ, βγ, and γα,
respectively. They are even permutations and they form the Klein four-group.
We denote by US this subgroup of U .

Now, we study how each piece of S3 is mapped to a piece of an 8× 8× 8 grid
of cubes. As in Fig. 3(c), we assign numbers in D to a 2 × 2 × 2 grid of cubes.
We give addresses (i, j, k) for i, j, k ∈ D to an 8 × 8 × 8 grid of cubes so that
i specifies the big block, j specifies the small block, and k specifies the address
in the small block. Therefore, a piece of S3 that is mapped to the cube (i, j, k)
by the projection P(1,1,1) is mapped by P(a1,a2,a3) to the cube (δ(i), δ(j), δ(k)).

Here, δ ∈ U is αb1βb2γb3 where bi is 0 or 1 depending on whether ai is 1 or −1.

4 Solutions of Puzzle A

Based on the observation in the previous section, we formalize Puzzle A as a
three-dimensional puzzle on a cube.

Let c : D×D×D → D×D be a coloring of an 8× 8× 8 grid of cubes with
D ×D. The condition that all of the 4 × 4 × 4-blocks contain all the 64 colors
can be expressed as follows.

For each i ∈ D, the cardinality of {c(i, j, k) | j, k ∈ D} is 64. (1)



Let F̃0 = {F1,F2,F3} for

F1 = {{0, 1, 2, 3}, {4, 5, 6, 7}} ( = {{bzbybx | bz = 0}, {bzbybx | bz = 1}}),
F2 = {{0, 1, 4, 5}, {2, 3, 6, 7}} ( = {{bzbybx | by = 0}, {bzbybx | by = 1}}),
F3 = {{0, 2, 4, 6}, {1, 3, 5, 7}} ( = {{bzbybx | bx = 0}, {bzbybx | bx = 1}}).

The condition of Puzzle A0 that all of the 8× 8-planes contain all the 64 colors
can be expressed as the requirement that the following condition holds for every
F ∈ F̃0.

For each (F1, F2, F3) ∈ F × F × F ,
the cardinality of {c(i, j, k) | i ∈ F1, j ∈ F2, k ∈ F3} is 64.

(2)

For Puzzle AS , we have the condition that F = δ(F ′) for F ′ ∈ F̃0 and
δ ∈ US also satisfy (2). Here, δ({F1, F2}) = {δ(F1), δ(F2)} and δ({i, j, k, l}) =
{δ(i), δ(j), δ(k), δ(l)}. One can see that α(β(F1)) = F4 for

F4 = {{0, 3, 5, 6}, {1, 2, 4, 7}}. (3)

In addition, the set F̃S = {F1,F2,F3,F4} is closed under the action of US .
Therefore, we can restate this condition to the requirement that (2) is satisfied

for every F ∈ F̃S . Note that, when F = F4, the pieces for the cases F1 =
F2 = F3 = {0, 3, 5, 6} and F1 = F2 = F3 = {1, 2, 4, 7} are third-level cubic
approximations of the Sierpinski Tetrahedron.

For Puzzle A, we have the condition that F = δ(F ′) satisfies (2) for F ′ ∈ F̃0

and δ ∈ U . In this case, F ranges over all the eight divisions of D into two sets
that do not contain i and inv(i) for every i ∈ D. The cardinality of this set is 8

and we denote this set by F̃ . We summarize these results.

Proposition 1. Let c : D ×D ×D → D ×D be a coloring.
(a) c is a solution of Puzzle A0 if and only if (1) is satisfied and (2) is satisfied

for F ∈ F̃0.
(b) c is a solution of Puzzle AS if and only if (1) is satisfied and (2) is satisfied

for F ∈ F̃S.
(c) c is a solution of Puzzle A if and only if (1) is satisfied and (2) is satisfied

for F ∈ F̃ .

Our goal is to see whether there exists a solution to these puzzles and to
present a solution if it exists.

Theorem 2. The following is a solution of Puzzle A (and therefore is a solution
of Puzzle A0 and Puzzle AS).

c(i, j, k) = (j, k) (i = 0, 7)

c(i, j, k) = (inv(j), k) (i = 1, 6)

c(i, j, k) = (j, inv(k)) (i = 2, 5)

c(i, j, k) = (inv(j), inv(k)) (i = 3, 4)
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Fig. 4. L1 ∈ L̃0, L4 ∈ L̃S and α(L1) ∈ L̃ considered as relations between vertices of a
cube.

Proof. Condition (1) is obviously satisfied. Let F ∈ F̃ and F1, F2, F3 ∈ F .
We show that the cardinality of {c(i, j, k) | i ∈ F1, j ∈ F2, k ∈ F3} is 64. It
holds because F1 contains one element of each of {0, 7}, {1, 6}, {2, 5}, {3, 4},
and the four sets {(j, k) | j ∈ F2, k ∈ F3}, {(inv(j), k) | j ∈ F2, k ∈ F3},
{(j, inv(k)) | j ∈ F2, k ∈ F3}, {(inv(j), inv(k)) | j ∈ F2, k ∈ F3} are all disjoint.

ut

We formalized the condition of Puzzle A as a conjunctive normal form Boolean
formula and put it into a SAT solver miniSAT version 2.2.0 to obtain some more
solutions. Enumeration of all of the solutions of each puzzle is an open problem.

5 Solutions of Puzzle B

We study Puzzle B and its variants. Let c : D×D×D → D be a coloring of an
8× 8× 8 grid of cubes with D. The condition that each 2× 2× 2-block contains
all the 8 colors can be expressed as follows.

For each (i, j) ∈ D ×D, the cardinality of {c(i, j, k) | k ∈ D} is 8. (4)

Let L̃0 = {L1,L2,L3} for

L1 = {{0, 1}, {2, 3}, {4, 5}, {6, 7}},
L2 = {{0, 2}, {1, 3}, {4, 6}, {5, 7}},
L3 = {{0, 4}, {1, 5}, {2, 6}, {3, 7}}.

See Fig. 4 for the meaning of L1. The condition of Puzzle B0 that all the 64× 3
sequences contain all the 8 colors can be expressed by stating that the following
condition holds for every L ∈ L̃0.

For each (L1, L2, L3) ∈ L × L× L,
the cardinality of {c(i, j, k) | i ∈ L1, j ∈ L2, k ∈ L3} is 8.

(5)



Fig. 5. Conditions of Puzzle BS expressed as colors.

For Puzzle BS , we have the condition that L = δ(L′) satisfies (5) for L′ ∈
L̃0 and δ ∈ US . Here, δ({L1, L2, L3, L4}) = {δ(L1), δ(L2), δ(L3), δ(L4)} and

δ({i, j}) = {δ(i), δ(j)}. We define L̃S = {L1,L2,L3,L4,L5,L6} for

L4 = {{0, 6}, {2, 4}, {1, 7}, {3, 5}},
L5 = {{0, 5}, {1, 4}, {2, 7}, {3, 6}},
L6 = {{0, 3}, {1, 2}, {4, 7}, {5, 6}}.

See Fig. 4 for the meaning of L4. We have α(β(L1)) = L4, β(γ(L2)) = L5, and

γ(α(L3)) = L6. In addition, L̃S is closed under the action of US . Therefore, the

condition can be restated as the requirement that (5) is satisfied for L ∈ L̃S .
The condition that (5) is satisfied for L4, L5, and L6 says that on each of the 24
8× 8-planes, different D-colors are assigned to those cubes with the same color
in Figure 5.

For Puzzle B, we have the condition that L = δ(L′) satisfies (2) for L′ ∈ L̃0

and δ ∈ U . In this case, L ranges over all the 12 divisions of D into four pairs
that do not contain i and inv(i) for i ∈ D and that if i and j are paired, then

inv(i) and inv(j) are also paired. We will denote this set by L̃. One can see by
Fig. 4 that most of the sets of eight cubes which ought to have different colors
by condition (5) for L = α(L1) are not on 8× 8-planes.

We summarize these results.

Proposition 3. Let c : D ×D ×D → D be a coloring.

(a) c is a solution of Puzzle B0 if and only if (4) is satisfied and (5) is satisfied

for L ∈ L̃0.
(b) c is a solution of Puzzle BS if and only if (4) is satisfied and (5) is satisfied

for L ∈ L̃S.
(c) c is a solution of Puzzle B if and only if (4) is satisfied and (5) is satisfied

for L ∈ L̃.

We obtained the result that Puzzle B has no solution using a computer
program, and this fact was verified using the SAT solver miniSAT version 2.2.0.
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Fig. 6. Coloring d(k) = a⊕ k of the unit cube for a ∈ D. The names E, X, Y, Z, e, x,
y, z of the colorings are used in Fig. 7.

6 Constructions of solutions of Puzzle B0 and Puzzle BS

We consider D as a linear space over the finite field F2 = {0, 1} and use ⊕
for addition in D, which is the bitwise “exclusive or” operation. We construct
solutions of Puzzle B0 and Puzzle BS by considering the address space D×D×D
and the color space D as linear spaces and restricting the coloring function
c : D ×D ×D → D to linear functions. Thus,

c(i, j, k) = c(i, 0, 0)⊕ c(0, j, 0)⊕ c(0, 0, k). (6)

We call a 2× 2× 2 grid of cubes a unit cube and give address to the set of unit
cubes with D×D. Through change of colors, we fix the coloring of the unit cube
at (0, 0) as c(0, 0, k) = k. We define ϕ(i) = c(i, 0, 0) and ψ(j) = c(0, j, 0). Thus,
we have

c(i, j, k) = ϕ(i)⊕ ψ(j)⊕ k. (7)

Note that the coloring d : D → D of the unit cube at (i, j) is d(k) = a ⊕ k
for a = ϕ(i) ⊕ ψ(j). We list such colorings in Figure 7. They are rotations and
reflections of the coloring of the unit cube at (0,0). When a = 001, 010, 100, it is
the image of reflection through the yz-, zx-, xy-coordinate plane , respectively;
when a = 110, 101, 011, it is the image of a 180-degree rotation along x-, y-, z-
coordinate axis, respectively, and when a = 111, it is the image of the antipodal
map. Note that these maps form an Abelian group of order 8.

The linear map ϕ is determined by ϕ(001), ϕ(010), ϕ(100), and ψ is deter-
mined by ψ(001), ψ(010), ψ(100). Therefore, the coloring is determined by these
six elements of D. We consider conditions on ϕ and ψ so that (7) forms a solu-
tion of Puzzle B0 and Puzzle BS . Condition (4) is automatically satisfied. As a
part of condition (5) for L = L1, it says that c(i, j, k) for i, j, k ∈ {000, 001}
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Fig. 7. (a)Solution of Puzzle B0 in Example 5. (b) Solution of Puzzle BS in Example 6.
Meanings of the names E, X, Y, Z, e, x, y, z are given in Fig. 6. Red names are values of
ϕ at 001, 010, 110 and cyan ones are values of ψ at 001, 010, 110. They determine green
ones as ϕ(a) ⊕ ψ(a) for a ∈ {001, 010, 100} and the rest just as a three-dimensional
group multiplication table.

are all different and therefore the cardinality of {ϕ(i) ⊕ ψ(j) ⊕ k | i, j, k ∈
{000, 001}} is 8. That is, {ϕ(001), ψ(001), 001} is linearly independent in the
linear space D over F2. Similarly, condition (5) for L = L2 and L = L3 imply
that {ϕ(010), ψ(010), 010} and {ϕ(100), ψ(100), 100} are linearly independent
in D, respectively. We show in Theorem 4(a) that they form a necessary and
sufficient condition for Puzzle B0.

Theorem 4. (a) Coloring (7) is a solution of Puzzle B0 if and only if each of the
sets of vectors {ϕ(001), ψ(001), 001}, {ϕ(010), ψ(010), 010}, {ϕ(100), ψ(100),
100} is linearly independent.

(b) Coloring (7) is a solution of Puzzle BS if and only if, in addition to the
three sets of vectors in (a), each of the sets of vectors {ϕ(110), ψ(110), 110},
{ϕ(101), ψ(101), 101}, {ϕ(011), ψ(011), 011} is linearly independent.

Note that {ϕ(a), ψ(a), a} is linearly independent inD if and only if ϕ(a), ψ(a),
a and ϕ(a)ψ(a) are all different.

Proof. Let a ∈ {001, 010, 100, 110, 101, 011}. For any pair of elements (b, c) such
that {a, b, c} is linearly independent, the eight elements {000, a, b, c, a ⊕ b, b ⊕
c, c⊕ a, a⊕ b⊕ c} are all different and the set La = {{000, a}, {b, b⊕ a}, {c, c⊕
a}, {b ⊕ c, a ⊕ b ⊕ c}} is uniquely determined by a. Since Li(1 ≤ i ≤ 6) is La

for a = 001, 010, 100, 110, 101, 011, respectively, in order to show (a) and (b), we
prove that {ϕ(a), ψ(a), a} is linearly independent if and only if, the cardinality
of {ϕ(i)⊕ ψ(j)⊕ k | i ∈ L1, j ∈ L2, k ∈ L3} is 8 for each (L1, L2, L3) ∈ L3

a.
For the if part, consider the case L1 = L2 = L3 = {000, a}. Since the

cardinarity of {ϕ(i) ⊕ ψ(j) ⊕ k | i, j, k ∈ {000, a}} is eight, {ϕ(a), ψ(a), a} is
linearly independent.



For the only-if part, since {ϕ(a), ψ(a), a} is linearly independent, the car-
dinality of X = {ϕ(i) ⊕ ψ(j) ⊕ k | i, j, k ∈ {000, a}} is 8. Let d1, d2, d3 ∈
{000, b, c, b⊕c}. By adding ϕ(d1)⊕ψ(d2)⊕d3 to each element of X, we have the
set Y = {ϕ(d1 ⊕ i)⊕ ψ(d2 ⊕ j)⊕ (d3 ⊕ k) | i, j, k ∈ {000, a}} whose cardinality
is also 8. Let L1 = {d1, d1 ⊕ a}, L2 = {d2, d2 ⊕ a}, L3 = {d3, d3 ⊕ a}. One can
see that Y is equal to {ϕ(i)⊕ψ(j)⊕ k | i ∈ L1, j ∈ L2, k ∈ L3}. Since {d, d⊕ a}
takes all elements of La if d ranges over {000, b, c, b⊕ c}, we have the result. ut

Example 5. We present a solution of Puzzle B0 (see Fig. 7(a)). ϕ and ψ defined
as ϕ(001) = 011, ψ(001) = 101, ϕ(010) = 110, ψ(010) = 011, ϕ(100) = 101,
ψ(100) = 110 satisfies the condition of Theorem 4(a). This solution consists of
only four colorings E, X, Y, Z of the unit cube in Figure 6, which are the identity
map and 180-degree rotations around the three axes. This is not a solution of
Puzzle BS , because ϕ(110) = 011, ψ(110) = 101, and 110 are linearly dependent.

Example 6. We give a solution of Puzzle BS . See Fig. 7(b). In order to show
its symmetric structure, we present seq(i) = (ϕ(i), ψ(i), ϕ(i)ψ(i)) instead of
(ϕ(i), ψ(i)) for i ∈ {001, 010, 100}.

seq(001) = (100, 011, 111),

seq(010) = (110, 111, 001),

seq(100) = (111, 010, 101).

We can calculate the followings

seq(110) = (001, 101, 100),

seq(101) = (011, 001, 010),

seq(011) = (010, 100, 110),

and see that it satisfies the condition of Theorem 4(b). Using a computer pro-
gram, we found 480 solutions of Puzzle BS that satisfy the condition of Theorem
4(b).

Through computer calculation, we have obtained 1148928 solutions of Puzzle
BS modulo change of colors, and this number is verified by a #SAT solver
sharpSAT version 1.1 [6]. The enumeration of the solutions of Puzzle B0 is an
open problem.

References

1. Hideki Tsuiki. Does it look square? Hexagonal Bipyramids, Triangular Antipris-
moids, and their Fractals. in Conferenced Proceedings of Bridges Donostia. Mathe-
matical Connection in Art, Music, and Science, Tarquin publications, pp. 277–287,
2007.

2. Hideki Tsuiki. SUDOKU Colorings of the Hexagonal Bipyramid Fractal. In Compu-
tational Geometry and Graph Theory: International Conference, KyotoCGGT 2007,
Revised Selected Papers, LNCS Vol. 4535, Springer, pp. 224-235, 2008.



3. Hideki Tsuiki. Imaginary Cubes and Their Puzzles. Algorithms 5(2), pp. 273-288,
2012.

4. Hideki Tsuiki and Yasuyuki Tsukamoto. Imaginary Hypercubes. In Discrete and
Computational Geometry and Graphs : JCDCGG 2013, Revised Selected Papers,
LNCS Vol. 8845, Springer, pp. 173-184, 2014.

5. Hideki Tsuiki and Yohei Yokota. Enumerating 3D-Sudoku Solutions over Cubic
Prefractal Objects. Journal of Information Processing 20(3), pp. 667-671, 2012.

6. Marc Thurley. sharpSAT - Counting Models with Advanced Component Caching
and Implicit BCP. In Proceedings of the 9th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2006), pp. 424-429, 2006.


