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Abstract

It is shown that every unimodal map is realized as a restriction
of a simple map defined on the unit disc to a part of its boundary.
Our two-dimensional map is called a full-folding map, which is defined
generally on a compact metric space. It is a generalization of the full
tent map in that it has two homeomorphic inverse maps and thus every
non-critical point has two inverse images.

1 Introduction

Dynamics of unimodal maps is one of the most fruitful research area in which
combinatorial tools such as the kneading sequence play an important role.
In contrast to the simple definition, a unimodal maps has a rather compli-
cated behavior, and it is shown to be roughly controlled by the kneading
sequence. Kneading theory is developped in 70’s by Milnor and Thurston,
Guckenheimer, and others [7, 10], and since then it has been an active re-
search area and a lot of excellent books about this topic are written[5, 9, 4, 6].

In this paper, we provide a simple insight into the study of unimodal
maps. We show that every unimodal map (h, I) can be extended to a two-
dimensional map (f,D) with simple dynamical properties defined on the
unit disc D so that h is the restriction of f to a part of the boundary of D.
The dynamical property we consider is a generalizations of that of the full
tent map, and a map with this property is introduced more generally on a
compact metric space and is called a full-folding map.
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Among unimodal maps, the full tent map is a special one with a simple
chaotic dynamics. It homeomorphically maps both [0, 1/2] and [1/2, 1] to
the unit interval I, and thus it has two inverse maps g0 from I to [0, 1/2] and
g1 from I to [1/2, 1]. Therefore, through n-times repetitive application, the
unit interval is divided into 2n homeomorphic copies of I which are coded by
{0, 1}-sequences, and as the limit, each infinite {0, 1}-sequence designates
a point on I. On the other hand, each point has at most two such {0, 1}-
sequence codes which differ only at one digit, and by replacing this digit
with ⊥ (in this paper, we use the character “⊥” meaning undefinedness in
place of ’C’ or ’∗’), we obtain the itinerary of the point. In this way, a
full tent map can be investigated through the two inverse maps, which is
in contrast to a unimodal map in general where one or both of the inverse
images of a point may disappear.

We generalize this property of a tent map to compact metric spaces
and define (exact) full-folding maps, and study full-folding maps on the
unit disc D. As we will show, every unimodal map on I can be considered
as a restriction of a full-folding map on D to a part of the boundary. In
particular, the core of a unimodal map can be considered as a restriction of a
particular kind of full-folding maps. Thus, it is expected that combinatorial
properties of unimodal maps can be studied through the investigation of
two-dimensional full-folding maps.

Note that this research has its origin in computer science. As mentioned
above, we can consider the itinerary of the full tent map as a continuous
code of the unit interval in {0, 1,⊥}ω, and the author has been working on
computation over the reals with itineraries as codes [12, 13, 11]. He came to
the idea of a full-folding map in his attempt to generalize this representation
to other spaces.

In the next section, we introduce the notion of a full-folding map. Then,
we study full-folding maps on the two-dimensional unit disc in Section 3, and
show that unimodal maps appear as the marginal behavior of it in Section
4. In Section 5, we show that, in some cases, itineraries of two particular
points roughly determine the behavior of a full-folding map.
Preliminaries and Notations:

If f : X → X is a map on X, we sometime write (f,X) for f . Let
I = [0, 1] be the unit interval. We call a map (h, I) a unimodal map if h is
strictly increasing on [0, c] and strictly decreasing on [c, 1] for some 0 < c < 1.
Note that we only consider strict unimodal maps. The point c is called the
critical point of h. If h is a unimodal map such that h2(c) < c < h(c) and
h2(c) ≤ h3(c), then we call the interval [h2(c), h(c)] the core of h. Note that
the core is mapped to itself. The (full) tent map (t, I) is the map t(x) = 2x
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for x ≤ 1/2 and t(x) = 2 − 2x for x ≥ 1/2. For compact metric spaces X
and Y , two continuous maps (f,X) and (g, Y ) are conjugate if there is a
homeomorphism h : X → Y such that g ◦ h = h ◦ f .

In Section 2, we define a full-folding map on a compact metric space X.
In this section, we consider closure, interior, and boundary in X, and we
denote by U the closure of a subset U in X. Recall that a subset U of X
is regular open if U is the interior of its closure. In Section 3 and later, we
focus on the case X is a space homeomorphic to the unit disc D. For U ⊂ D,
we denote by Ū the closure of U in R2, by intU the interior of U in R2, and
by ∂U the boundary of U in R2. For example, intD is the open unit disc
and ∂D = S1. Note that the closure of U in R2 and the closure of U in D
are identical and there is no confusion of notation.

We say that a map (g,X) is a similitude if there exists s > 0 such that
d(x, y) = sd(g(x), g(y)) for every x, y ∈ X. A curve is a continuous image of
[0, 1], and a curve is said to be simple if its map is injective. If C is a curve
in D and a and b are points on C, we call the segment of C from a to b an
interval and denote it by [a, b] (or (a, b) if the endpoints are excluded) if it
is not ambiguous.

For a character set Σ, we denote by Σ∗ the set of finite sequences of Σ
and by Σω the set of infinite sequences of Σ, with the index starting with 0.
We denote by ϵ the empty sequence. For p ∈ Σω ∪Σ∗, we denote by |p| the
length of p, which is infinity if p ∈ Σω. For n < |p|, we denote by p(n) the
n-th character of p and p<n the prefix of p of length n, that is, the sequence
p(0)p(1) . . . p(n− 1). We denote by σ the left shift operation on Σω and Σ∗,
with σ(ϵ) = ϵ. We use letters i, j, k, l,m, n to denote non-negative integers.

2 Full-Folding Maps

Though we are mainly interested in the case X is the unit disc D, we define
the notion of a full-folding map more generally on a compact metric space
and show properties we need in the following sections.

Definition 2.1 Let X be a compact metric space. A continuous map (f,X)
is a full-folding map if, for a regular open subset X0 of X and X1 = X \X0,
f |Xi

: Xi → X (i < 2) are homeomorphisms.

Suppose that f : X → X is a full-folding map. X1 is also a regular open
set. We denote by C the boundary of X0 in X, which is also the boundary of
X1 in X. We call C the set of critical points of f . We denote by gi : X → Xi

the inverse of f |Xi
for i < 2. If we need to specify the map f , we add the
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suffix f and write Xf0, Xf1, Cf for X0, X1, C, and so on. The map f is
one-to-one on C and two-to-one on X0 ∪ X1. If g0 and g1 are similitudes,
then we call f a similarity full-folding map.

We define the itinerary function φ (or φf ) from X to {0, 1,⊥}ω as

φ(x)(k) =


0 (fk(x) ∈ X0),
1 (fk(x) ∈ X1),
⊥ (fk(x) ∈ C).

We have
φ(f(x)) = σ(φ(x)) (2.1)

and, for i < 2,

φ(gi(x)) =

{
iφ(x) (x ̸∈ f(C)),
⊥φ(x) (x ∈ f(C)).

(2.2)

For n < ω and j < 2, let

Rn,j = f−n(Xj) = {x : fn(x) ∈ Xj}.

Rn,j is the set of points whose itineraries have the value j at the n-th co-
ordinate. Note that R0,0 = X0 and R0,1 = X1. For p ∈ {0, 1}∗ ∪ {0, 1}ω,
let

R(p) =
∩

k<|p|

Rk,p(k).

R(p) is the set of points with the itinerary p if p ∈ {0, 1}ω, and the set of
points with the itinerary starting with p if p ∈ {0, 1}∗.

Let v : X → X be the homeomorphism defined as follows.

v(x) =


g1(f(x)) (x ∈ X0),
g0(f(x)) (x ∈ X1),
x (x ∈ C).

We define not : {0, 1,⊥} → {0, 1,⊥} as not(0) = 1, not(1) = 0 and not(⊥) =
⊥, and nh : {0, 1,⊥}ω → {0, 1,⊥}ω (or nh : {0, 1,⊥}n → {0, 1,⊥}n for n <
ω) as nh(ϵ) = ϵ and nh(ip) = not(i)p for i ∈ {0, 1} and p ∈ {0, 1}∗ ∪{0, 1}ω.

Lemma 2.2 (1) v2(x) = x.

(2) φ(v(x)) = nh(φ(x)).

(3) v(R0,i) = R0,not(i) and v(Rn,i) = Rn,i for 0 < n < ω and i < 2.

(4) v(R(p)) = R(nh(p)) for p ∈ {0, 1}∗ ∪ {0, 1}ω.
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(5) For a point x ∈ C and an open set V ∋ x, there is an open set U such
that x ∈ U ⊂ V and v(U) = U .

Proof: (1), (2), (3), (4): immediate from the definition.
(5): Take U = V ∩ v(V ).

Proposition 2.3 Let n < ω, p ∈ {0, 1}n, and i < 2.

(1) R(ip) = gi(R(p)) ∩Xi.

(2) R(p) =
∩

k<nRk,p(k) = {x : φ(x)(k) ∈ {p(k),⊥} for k < n}.

(3) R(ip) = gi(R(p)).

(4) R(p) is homeomorphic to X with gp = gp(0) ◦ gp(1) ◦ . . . ◦ gp(n−1) the

homeomorphism from X to R(p).

Proof: (1) By Equation (2.2).
(2) Suppose that R(p) (

∩
k<nRk,p(k) for some n < ω and p ∈ {0, 1}n.

We choose such a p with minimal length, and suppose that x ∈
∩

k<nRk,p(k)

and x ̸∈ R(p). If x ̸∈ C, we have x ∈ Xp(0) and through the homeo-

morphism f |Xp(0)
, f(x) ∈

∩
k<n−1Rk,p(k+1) and f(x) ̸∈ R(σ(p)), and thus

σ(p) satisfies the condition and contradicts to the minimality of the length
of p. If x ∈ C, we consider an open neighbourhood U of x in Lemma
2.2(5). For each index k > 0, we have Rk,p(k) ∩ U ̸= ∅. Since Rk,p(k) ∩ U
is open, Rk,p(k) ∩ U ̸⊂ C and therefore Rk,p(k) ∩ U ∩ Xi ̸= ∅ for i = 0
or 1. However, they are homeomorphic by Lemma 2.2(3) and both are
non-empty. Therefore, Rk,p(k) ∩ U ∩ Xp(0) ̸= ∅. Thus, in Xp(0), x ∈∩

0<k<nRk,p(k) ∩Xp(0) ⊆
∩

0<k<nRk,p(k) ∩Xp(0). On the other hand, x ̸∈
R(p) =

∩
0<k<nRk,p(k) ∩Xp(0) =

∩
0<k<n(Rk,p(k) ∩Xp(0)). Therefore, by

applying the homeomorphism f |Xp(0)
, f(x) ∈

∩
k<n−1Rk,p(k+1) and f(x) ̸∈∩

k<n−1Rk,p(k+1) = R(σ(p)). Therefore, σ(p) also satisfies the condition and
again we have contradiction.

(3) gi(R(p)) = gi(
∩

k<nRk,p(k)) =
∩

k<nRk+1,p(k) ∩Xi

=
∩

k<nRk+1,p(k) ∩Xi = R(ip) by (2) and Equation (2.2).
(4) Immediate from (3).

Corollary 2.4 For every p ∈ {0, 1}ω, there is an x ∈ X such that p is
obtained by filling ⊥ appearing in φ(x) with 0 or 1.
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Proof: The sequence R(p<n)(n = 0, 1, 2, . . .) of non-empty closed sub-
sets is shrinking and thus their intersection is non-empty. We take x ∈
∩n<ωR(p<n). By applying Proposition 2.3(2) to each R(p<n), we have
x ∈

∩
k<ω Rk,p(k). Therefore, φ(x)(k) ∈ {p(k),⊥} for k < ω.

If the itinerary function φf is injective, we say that f is an exact full-
folding map. A similarity full-folding map is exact. Note that, if f is an
exact full-folding map, R = {Rn,i : n < ω, i < 2} forms a full-representing
subbase studied in [11, 13]. If f is an exact full-folding map, the element x
in Corollary 2.4 is uniquely determined by p ∈ {0, 1}ω. We denote by ρ this
map which assigns x to p. It is shown that ρ is continuous in Theorem 5.2
of [13].

Definition 2.5 Let X be a compact metric space. A continuous map f :
X → X is a folding map if, for a regular open subset X0 and X1 = X \X0,
f |Xi

: Xi → X is a homeomorphism into X for i < 2 and for each b ∈ C =

X0 \X0 and each open neighbourhood U ∋ f(b), there exists a ∈ U such that
card(f−1(a)) = 2. Here card(A) is the cardinality of a set A.

A full-folding map is a folding map. As we did for a full-folding map, for
a folding map f , we call C the set of critical points of f , define the itinerary
function φf of f , and define an exact folding map.

Example 2.6 The shift map σ is an exact full-folding map on the Cantor
Set {0, 1}ω.

Example 2.7 Consider the case X = I. A map on I is full-folding if and
only if it is a unimodal map such that f(0) = f(1) = 0 and f(c) = 1 for the
critical point c, or its inverted map g(x) = 1 − f(x). The tent map (t, I)
is an exact full-folding map, and all the exact full-folding maps on I are
conjugate to it. The tent map and its inverted map are the only similarity
full-folding maps on I. (f, I) is a folding map if and only if f is a unimodal
map or its inverted map. Figure 1 shows regions Rn,i and R(p) of the tent
map.

3 Full-Folding Maps on the Two-Dimensional Unit
Disc

We study the case X is homeomorphic to the unit disc D. Suppose that
(f,D) is a full-folding map. Since X0 and X1 share the set C of critical
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n=4

3

2

1

0 R(0) R(1)

R(00) R(01) R(11) R(10)

R(000) R(001) R(011) R(010) R(110) R(111) R(101) R(100)

Figure 1: Rn,i and R(p) of the tent map. On each line, the gray part is Rn,0

and the black part is Rn,1.

points of f , one of g0 or g1 is orientation preserving and the other one is
orientation reversing. We choose X0 so that g0 is orientation preserving and
thus X0, X1, g0, g1 are uniquely determined by f . In the following, recall
that ∂A is the boundary of A in R2 ⊃ D.

Lemma 3.1 C is a simple curve in D with different endpoints on ∂D.

Proof: Since f homeomorphically maps X0 to D, C, which is a closed
subset of ∂X0, is mapped to a closed subset of ∂D. Since ∂D is compact,
f(C) consists of finite number of connected components. Suppose that one
of the connected components of f(C) is a one-point set {x}. Then, there is
an open neighbourhood U of x such that U∩f(C) = {x}. Therefore, f−1(U)
is an open neighbourhood of f−1(x) such that f−1(U) ∩ C = {f−1(x)}. It
means that f−1(U)\{f−1(x)} consists of two disjoint open sets f−1(U)∩X0

and f−1(U) ∩ X1, and we have contradiction. Therefore, each connected
component of f(C) is an arc in ∂D, and each connected component of C is a
curve in D with endpoints on ∂D. Thus, each connected component divides
D into two regions, and if C has more than one components, then X0 or X1

comes to be disconnected. Therefore, C is connected and is a curve with
endpoints on ∂D. If both of the endpoints of C are the same, then C comes
to be a closed curve and X0 or X1 has a hole and is not homeomorphic to
D. Therefore, C is a simple curve.

We first study similarity full-folding maps on X, where X is a space
homeomorphic to D. Since X0 and X1 share the set C, the shrinking rates
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R(0)=X R(01)

R(10)

R(00)

R(11)

R(011) R(001)

R(010) R(000)

R(110) R(100)
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0

0

0
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1

1
0

1
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f(C)

x
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10 

n = 0 n = 1 n = 3n = 2

R(1)=X

R
(0

1
1

1
)

R
(0

1
1

0
)

1

1

0

0

Figure 2: Rn,i and R(p) of the rectangular similarity full-folding map. In
each figure, the white region is Rn,0 and the gray region is Rn,1.

of gi (i < 2) are the same. Since X is the union of two similar copies of X,
this rate is 1/

√
2. Since the congruence map g1 ◦ f from X0 to X1 is the

identity on the curve C, C is a line segment and g1 ◦ f is the map flipping
over C. Therefore, f(C) is a line segment on ∂X with the length

√
2 of that

of C. Through this kind of observation, one can see that there are only two
similarity full-folding maps.

One is what we call the rectangular similarity full-folding map (q,K).
Here, the space K is a rectangle with the height

√
2 of the width. We place

K as in Figure 2 by flipping it if necessary so that the orientation preserving
copy X0 is the upper half of K and f(C) is the right-hand side edge of X0.
q is the composition of two maps. First, K is mapped to X0 by flipping
X1 over the line segment C. Then, X0 is enlarged with the ratio of 1 :

√
2

and rotated to the left by 90 degrees so that it coincides with K. As in the
figure, we set the width of K as 1 and locate the lower-left corner of K at
the origin of the axis of coordinates. Then, we have

q((x, y)) =

{
(
√
2(
√
2− y),

√
2x) ( y ≥ 1/

√
2),

(
√
2y,

√
2x) ( y ≤ 1/

√
2).

Let φ̂t be the inverted itinerary of the tent map t. that is,

φ̂t(x)(n) =

{
1− φt(x)(n) ( φt(x)(n) ̸= ⊥),
⊥ ( φt(x)(n) = ⊥).

The itinerary φq((x, y)) of (x, y) is the interleaving of φ̂t(x) and φ̂t(y)
through an appropriate scaling. That is,

φq((x, y))(2n) = φ̂t(y/
√
2)(n),

φq((x, y))(2n+ 1) = φ̂t(x)(n).
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f(C)

1

-1
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     l
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Figure 3: Rn,i and R(p) of the triangular similarity full-folding map. In each
figure, the white region is Rn,0 and the gray region is Rn,1.

The other similarity full-folding map is (p,L) in Figure 3, which we call
the triangular similarity full-folding map. This time, L is an isosceles right
triangle. We place L on the coordinate plane as in Figure 3 so that the
orientation preserving copy X0 comes in the first quadrant. Then, we have

p((x, y)) = (1− (x+ |y|), x− |y|).

We consider the map β : I → L defined as

β(x) = ρp(fill0(φ̂t(x)))).

Here, filli : {0, 1,⊥}ω → {0, 1}ω is the function to replace ⊥ in the sequence
with i (i < 2), and ρp is defined below Corollary 2.4. Though fill0 ◦ φ̂t is not
continuous, ρp(fill0(φ̂t(x))) and ρp(fill1(φ̂t(x))) coincide and β comes to be
a continuous surjective map. β is a space-filling curve sometimes called the
Peano Curve.

Now, we move on to the study of a full-folding map f on D. In the
following, we fix an orientation of D. Let a1 and b1 be the two endpoints of
C. We select a1 so that the orientation of C induced by the orientation of
X0 is from b1 to a1, and define a = f(a1) and b = f(b1). The four points
a, b, a1, b1 are on ∂D. One can see that there are 16 possibilities for the order
of four points a, b, a1, b1 on a circle under the condition that a1 and b1 are
different and a and b are different. Thus we can divide full-folding maps
of D into 16 categories. We list eleven of them in Figure 4 with the names
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A(, A) B(, B) C(, C)

FE(, E)D(, D)

H I

G

J K

Figure 4: 16 categories of full-folding maps. A,. . . , E. are obtained by
reversing the figure horizontally and replacing ai and bi for i = 0 and 1.

A to K. The rests are obtained from A, B, C, D, and E by reversing the
orientation of D, that is, flipping the figure horizontally, swapping a and b,
and swapping a1 and b1. We name them A, B, C, D, and E, respectively.
Note that Category F to K are stable under this operation. Thus, we have 11
categories if we do not consider the orientation of D. In order to distinguish,
we call them CATEGORY A to K. The 16 Categories are preserved by
orientation-preserving conjugacy, that is, for a full-folding map f and an
orientation-preserving homeomorphism e, f and e−1 ◦ f ◦ e belong to the
same Category. The 11 CATEGORIES are preserved by conjugacy. One
can see that a triangular similarity full-folding map belongs to CATEGORY
A and a rectangular similarity full-folding map belongs to CATEGORY B.

Figure 5 shows inverse images of the set C of critical points for a full-
folding map in Category K. Let a2 and b2 be the images of a1 and b1 by
g0, respectively, and â2 and b̂2 be those by g1. As the second figure shows,
there are many possibilities for the order of a, b, â2, and b̂2 on ∂X1 \ C. In
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Figure 5: Inverse images of C for a full-folding map in Category K.

this figure, â2 is on f(C) and therefore g0(â2) = g1(â2) is on C and thus the
regions R(111) and R(011) share a part of their boundaries. See Figure 7
for different arrangements of the regions induced by different orders of the
four points. In the third figure of Figure 5, we have choices of the order
of b, â3, and b̂3 where â3 = g1(a2) and b̂3 = g1(b2), and a different choice
induces a different arrangement of the regions in the next level. It is easy
to see inductively that, with any of the choices, R(1n) ∩ ∂D consists of two
connected components which exist on the intervals (a1, â2) and (b1, b̂2) of ∂D
(n ≥ 2) because g1(R(1n)) = R(1n+1). Therefore, the diameter of R(1n) is
greater than the distance between the two intervals [a1, â2] and [b1, b̂2] and
thus full-folding maps in Category K are not exact.

In the same way, one can show that only CATEGORY A and B contain
exact full-folding maps. The non-existence for CATEGORY C and J are
proved in the same way as for K. For the rests, the non-existence can be
shown via the non-existence of a core of the corresponding unimodal map
given in Theorem 4.1.

4 Unimodal Maps as Full-Folding Maps Restricted
to the Boundaries

Suppose that (f,D) is a full-folding map. One can see that f maps ∂D into
itself and that any neighbourhood of a (and b) intersects with ∂D \ f(C).
Therefore, f |∂D is a folding map on ∂D = S1 with the set of critical points
{a1, b1}. We cut ∂D at a1 and identify ∂D with I = [0, 1] so that the
orientation of ∂D coincides with that of I and define the induced map (h, I)
of (f,D). Here, if f(x) = a1, we define h(x) = 0 if x ∈ {0, 1} and h(x) = 1
otherwise. Figure 6 shows graphs of induced maps of full-folding maps in
Category A, B, and K.
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A B K

Figure 6: Graphs of induced maps of typical full-folding maps in Category
A, B, and K. For A, the product of the core of the induced unimodal map
is drawn with a thick-lined box.

Theorem 4.1 Suppose that (f,D) is a full-folding map and (h, I) is the
induced map defined above.

(1) h is a unimodal map if and only if a1 ∈ f(C), that is, f is in Category
A to I, D, or E. The critical point of h is b1. In other cases, h becomes
a discontinuous map.

(2) If h is a unimodal map with a core, then b1 ̸∈ f(C), that is, f belongs
to Category A, B, or C.

(3) If f is a full-folding map in Category A, then h is a unimodal map
with a core.

Proof: Immediate from the definition.

Remark 4.2 If we cut ∂D at b1 and identify ∂D with [0, 1] in the oppo-
site direction, then we have similar results, and, for example, we obtain a
unimodal map if and only if b1 ∈ f(C).

We also have the converse of this theorem. That is, for a unimodal map
(h, I), we can find a full-folding map (f,D) such that (h, I) is obtained as
the restriction of (f,D) to a part of the boundary of D.

Theorem 4.3 (1) Suppose that (h, I) is a unimodal map with the critical
point c such that h(0) = h(1). Suppose also that (h, I) is not a full-
folding map, that is, h(0) ̸= 0 or h(c) ̸= 1. Then, there is a full-folding
map (f,D) which induces (h, I).
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(2) Suppose that (h, I) is a unimodal map. There is a full-folding map
(f,D) and an interval [a, b] on ∂D such that h = f |[a,b] through an
identification of the interval [a, b] with [0, 1].

(3) Suppose that a unimodal map (h, I) has a core. Suppose also that
h3(c) ̸= h2(c). Then, there is a full-folding map f : D → D in Category
A which extends the core of h. That is, h|[h2(c),h(c)] = f |[a,a1] through
the identification of [a, a1] ⊂ ∂D with [h2(c), h(c)].

Proof: (1) We consider h as a map (h, S1) on S1 = ∂D by identifying
0 and 1. Let D be the interval [h(c), h(0)] on S1 which contains 0 = 1.
We connect the two points c and 0 by a line segment C in D. Let u be
any homeomorphism from C to D such that u(c) = h(c) and u(0) = h(0).
Now, C divides D into two regular open sets X0 and X1 of D such that
∂X0 = [0, c] ∪ C and ∂X1 = C ∪ [c, 1]. Here, [0, c] and [c, 1] are intervals
on S1. Thus, we obtain a homeomorphism f ′

0 from ∂X0 to ∂D defined
as f ′

0(x) = h(x) for x ∈ [0, c] and f ′
0(x) = u(x) for x ∈ C. Similarly,

we define a homeomorphism f ′
1 from ∂X1 to ∂D. One can extend f ′

i to
a homeomorphism fi from Xi to D for i < 2. Such a homeomorphism
obviously exists. In the following, we give one construction of f0. Take a
point o in intX0 and o′ in intD. Since D and X0 are both convex, one can
connect o and x ∈ ∂X0 by a line segment [o, x] and o′ and f ′

0(x) ∈ ∂D by a
line segment [o′, f ′

0(x)]. Thus, we define the map f0 so that [o, x] is mapped
to [o′, f ′

0(x)] linearly. Because f0 and f1 coincide on C, we obtain a map
(f,D), which is full-folding.

(2) Suppose that a unimodal map (h, I) is given. One can extend I to
[a′, b′] ⊃ I so that h is a unimodal map which satisfies the conditions of (1)
through the identification of [a′, b′] with [0, 1]. We apply (1) to form (f,D).

(3) For simplicity, we redefine [h2(c), h(c)] as I and (h|[h2(c),h(c)], [h
2(c), h(c)])

as (h, I). We have h(c) = 1, h(1) = 0, and h(0) ̸= 0. For some a < 0, we
extend h to a unimodal map on [a, 1] so that h(a) = 0. Then, we apply the
method in (1) to obtain a full-folding map in Category A with the desired
property.

In this way, one can view a unimodal map as a restriction of a full-folding
map on the unit disc to a part of its boundary. One important property of
a full-folding map (f,D) is that both of the inverse images g0(x) and g1(x)
are guaranteed to exist. Therefore, if a unimodal map (h, I) does not have
the inverses of a point x ∈ I, they do exist in the extended space D for the
extended full-folding map. Thus, the author suggests one can investigate in
unimodal maps through full-folding maps, in particular through full-folding
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maps in Category A since interesting combinatorial behavior of a unimodal
map appear in the core. Possible areas of application would be the kneading
theory (for example, [2, 5, 8]), and the inverse limit space theory ([1, 3]).

5 Itineraries of Full-Folding Maps

Suppose that (f,D) is a full-folding map in Category A, B, C, D, E, F, G, H,
I, D, or E. By Theorem 4.1(1), the induced map (h, I) of (f,D) is a unimodal
map. As in Section 4, we cut ∂D at a1 and consider that x ∈ I specifies a
point η(x) on ∂D, and compare the two itineraries φh(x) and φf (η(x)) for
x ∈ I. Since Xh0 = η−1(Xf0 ∩ ∂D) ∪ {0} and Xh1 = η−1(Xf1 ∩ ∂D) ∪ {1},
φh(x)(n) and φf (η(x))(n) differ only when fn(η(x)) = a1, and φh(x) is
obtained from φf (η(x)) by replacing some of the occurrences of ⊥ with 0 or
1.

For every f , such replacements to 0 and 1 obviously occur as the first
character of φh(0) and φh(1), respectively. If f is in Category B, C, E, F,
G, H, D, or E this is the only replacement. If f is in Category D or I,
replacements occur only in itineraries of 0, 1, and η−1(b1), which are easily
calculated. If f is in Category A, the situation is a bit complicated.

Lemma 5.1 Suppose that (f,D) is in Category A and a1 is not a periodic
point of f . Let bottom(x) = {n : φf (x)(n) = ⊥} for x ∈ D.

(1) bottom(a1) = {0}.

(2) For x ∈ ∂D \ {a1}, bottom(x) is ∅ or {k, k + 1} for some k.

(3) For x ∈ intD, bottom(x) is ∅, one-point set, or {j, k, k + 1} for some
j < k.

Proof: (1) Obvious.
(2) Since ∂D is mapped to itself, φ(x)(k) = ⊥ if and only if fk(x) ∈

{a1, b1}. On the other hand, fk(x) = b1 if and only if fk+1(x) = a1 for
k ≥ 0. Since a1 is not periodic, there is at most one k for which fk(x) = b1.

(3) Let x ∈ intD. If f j(x) ∈ C \ {a1, b1}, then fk(x) ∈ ∂D for every
k > j. Therefore, f j(x) ∈ C \ {a1, b1} only for at most one j. On the other
hand, if fk(x) ∈ ∂D, then for some 0 ≤ j < k, f j(x) ∈ C \ {a1, b1}.

Let x ∈ ∂D \ {a1}. If a1 is not a periodic point of (f,D) and φf (x)
contains a copy of ⊥, then φf (x) contains a subsequence ⊥⊥ by Lemma
5.1(1), In this case, φh(η

−1(x)) is obtained from φf (x) by replacing ⊥⊥
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φ(a) φ(b)

A 0... ⊥φ(a)
B 0... 1...
C ⊥ω 1...
D 1ω ⊥1ω

E ⊥ω 0ω

F 1ω 1ω

G 0ω 0ω

H ⊥ω ⊥ω

I ⊥ω ⊥ω

J 0... 0...
K 1... 1...

φ(a) φ(b)

A ⊥φ(b) 0...
B 1... 0...
C 1... ⊥ω

D ⊥1ω 1ω

E 0ω ⊥ω

Table 1: Itineraries of a and b for the 16 categories of full-folding maps.

with ⊥1. If a1 is periodic, then successive pairs of ⊥ may appear repeatedly
in φf (x), and φh(η

−1(x)) is obtained from φf (x) by making this replacement
to all of them. Conversely, for 0 < x < 1, φf (η(x)) is obtained from φh(x)
by replacing ⊥1 with ⊥⊥.

It is known that, the itineraries of 0 and the critical point c roughly
determine the behavior of a unimodal map (h, I). We investigate similar
results for a full-folding map (f,D) and the two points a and b. Table 1
shows the forms of itineraries of a and b for the 16 categories of full-folding
maps.

Lemma 5.2 Suppose that (f,D) is a full-folding map which belongs to Cat-
egory other than H, I, J, or K. Then, φ(a) and φ(b) determine the category
of f .

Proof: Immediate from Table 1.

We write af , bf , and Rf (p) for a, b, and R(p) of a full-folding map (f,D),
respectively.

Proposition 5.3 Suppose that two full-folding maps (f,D) and (f ′,D) are
not in Category H, I, J or K. Suppose also that they satisfy φf (af ) = φf ′(af ′)
and φf (bf ) = φf ′(bf ′). Then, f and f ′ belong to the same category and, for
each n < ω, there is a homeomorphism αn on D which maps af to af ′, bf
to bf ′, and Rf (p) to Rf ′(p) for every p ∈ {0, 1}n.
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Proof: First, Lemma 5.2 shows that (f,D) and (f ′,D) belong to the same
category. We write g0, g

′
0, R, R′, a, a′, b, b′, φ, φ′ for gf0, gf ′0, Rf , Rf ′ , af ,

af ′ , bf , bf ′ , φf , φf ′ , and so on. We inductively define αn for n < ω such that
αn is orientation-preserving and αn maps af to af ′ , bf to bf ′ , and Rf (p) to
Rf ′(p) for every p ∈ {0, 1}n.

First, let α0 be any orientation-preserving homeomorphism on D which
maps a, b, a1, and b1 to a′, b′, a′1, and b′1, respectively. Note that f and f ′

are in the same category and therefore the orders of these four points are
the same and thus such a homeomorphism exists. Suppose that a homeo-
morphism αn−1 is defined for n > 0. Since αn−1 is orientation-preserving
and it maps a to a′ and b to b′, it maps f(C) to f ′(C ′). As a candidate of
αn, we define

δn(x) =

{
g′0(αn−1(f(x))) (x ∈ X0),

g′1(αn−1(f(x))) (x ∈ X1).

For c ∈ C, since f(c) ∈ f(C), we have αn−1(f(c)) ∈ f ′(C ′) and therefore
g′0(αn−1(f(c))) = g′1(αn−1(f(c))). It means that δn is well-defined and δn
becomes a homeomorphism.

δn maps R(p) to R′(p) for every p ∈ {0, 1}n. However, δn(a) ̸= a′ and
δn(b) ̸= b′ in general, and therefore we need to make some modification to
δn. Let q = φ(a) = φ′(a′), and r = φ(b) = φ′(b′).

Suppose that q<n contains a bottom and k is the first index at which
q(k) = ⊥. Then, a is on the boundary of two regions R(q<k0) and R(q<k1)
and therefore δn(a) is on the boundary of R′(q<k0) and R′(q<k1). If k = 0,
then R′(q<k0) ∩ R′(q<k1) ∩ ∂D = {a′1, b′1}. If a′ = a′1 and δn(a) = b′1, then
a = a1 because f and f ′ belong to the same category, and thus δn(a1) = b′1.
Therefore, a′1 = b′1 and we have contradiction. Similarly, we have contradic-
tion if a′ = b′1 and δn(a) = a′1, Therefore, δn(a) = a′ for the case k = 0. If
k > 0, then, since f is not in Category J or K, for every p ∈ {0, 1}n, R(p)∩∂D
is connected and thus is a curve in ∂D. Therefore, R′(q<k0)∩R′(q<k1)∩∂D
is an one-point set. Since δn(a) and a′ are in this set, we have δn(a) = a′.
Therefore, if q<n contains a bottom, we define β as the identity homeo-
morphism on D. Now, consider the case that q<n do not contain a bottom.
Then, the region R(q<n) is mapped to R′(q<n) by δn and δn(a) and a′ are on
the boundary of R′(q<n). We define β as the homeomorphism on D which is
identity on D\R′(q<n) and which maps δn(a) to a′. Such a homeomorphism
exists by Schönflies theorem which says the inside of a Jordan closed curve
is homeomorphic to D. We define α′

n = β ◦ δn. Then, it satisfies α′
n(a) = a′

It is also the case for δn(b) and b′, and there is a homeomorphism β′ on
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(a) (b) (c)

Figure 7: Three examples of full-folding maps in Category K such that
φ(a) = φ(b) = 1ω. Note that, for (a) and (b), the order of a, b, â2, and b̂2
determine the whole sequences φ(a) and φ(b).

D which is identity on D\R′(r<n) and which maps δn(b) to b′. Therefore, we
define αn = β′ ◦ β ◦ δn if q<n ̸= r<n or q<n = r<n and it contains a bottom.

Finally, we consider the case q<n = r<n and it does not contain a bottom,
Since f is not in Category J or K, it happens only if f is in Category F or
G by Table 1. Since δn is orientation-preserving, the order of δn(a) and
δn(b) on ∂D ∩ R′(q<n) is the same as that of a′ and b′. Therefore, there is
a homeomorphism β on D which is identity on D \R′(q<n) and which maps
δn(a) to a′ and δn(b) to b′. Thus, we define αn = β ◦ δn.

This proposition does not hold if we also consider full-folding maps in
Category J and K. For example, Figure 7 shows three examples of full-
folding maps in Category K such that φ(a) = φ(b) = 1ω but a second level
homeomorphism α2 between each pair does not exist.
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