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METRIC SPACES IN COMPUTABLE STRUCTURE THEORY

JOHANNA FRANKLIN

Computable structure theory has historically focused on countable algebraic structures. In
this talk, I will discuss a framework for considering metric spaces in the context of
computable structure theory. As an application, I will consider the question of lowness for
isometric isomorphism for metric structures: which Turing degrees are so weak that, if they
can compute an isometric isomorphism between two metric structures, there is already a
computable isometric isomorphism between them?
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Computable Polish groups

Alexander G. Melnikov

This tutorial/survey will be based on a series of papers jointly written with
Nies, Montalban, Ng, Lupini, Harrison-Trainor, and Koh. The subject holds signifi-
cant technical depth. It has interesting connections to other areas of computability
theory, most notably computable structure theory and effective topology. Some
of these applications are (perhaps) unexpected.
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Recent results in constructive reverse mathematics

Takako Nemoto

Constructive reverse mathematics aims to characterize mathematical theorems
with some combination of a fragment of choice axioms and logical principles. In
this talk, we consider several variations of Kőnig’s lemma and related principles
and observe some examples of the following phenomena.

– Logical principle raises up the consistency strength of systems.
– Induction principles and choice principles act similarly.
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Theoretical and practical aspects of computer
arithmetic

Siegfried M. Rump

The ubiquitous IEEE-754 floating-point standard is not the only possibility
to perform approximate computations. We first show that much more general
arithmetic models allow better error estimates for compound operations. To that
end IEEE-754 floating-point arithmetic is just a very special case. We next discuss
possibilities to compute mathematically correct error bounds for the solution
of numerical problems, such as the solution of nonlinear systems or ordinary
differential equations. We show how to lift error estimates for single operations to
error estimates for the approximate solution of a numerical problem. In particular
the benefit of affine and Taylor arithmetic compared to naive interval arithmetic
is discussed.
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Step functions in the Weihrauch lattice

Linda Westrick

For any real A in the unit interval, let sA denote the step function that
jumps at A. We consider the partial order of the functions sA under Weihrauch
reducibility, and start to paint the picture of how these functions are arranged.
Among other results, we find a collection of left-c.e. reals indexed by σ ∈ ω<ω

such that the Weihrauch reducibility of their step functions coincides with the
extension relation on their indices. Joint work with Arno Pauly.
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Almost everywhere randomness

Laurent Bienvenu, Valentino Delle Rose, Tomasz Steifer

July 31, 2023

In algorithmic randomness, the celebrated van Lambalgen theorem asserts that a pair
of infinite binary sequences, or reals, (X,Y ) is Martin-Löf random if and only if X is
Martin-Löf random and Y is Martin-Löf random relative to X. This theorem is known to
fail for other randomness notions such as Schnorr randomness, computable randomness,
Demuth randomness, etc.

A corollary of van Lambalgen theorem is that if X is Martin-Löf random, then for
almost all Y , X is Martin-Löf random relative to Y . Does this weaker corollary hold
for other randomness notions? For example, for computable randomness, this question is
equivalent to the following: is there a computably random sequence X (i.e., a sequence such
that no deterministic computable martingale succeeds on X) and a probabilistic martingale
M such that with positive probability, M defeats X? This question was implicitly left open
in a paper of Buss and Minnes [2].

In this talk, based on the paper [1], we show that, surprisingly, there does exist such a
sequence X. The proof uses a so-called fireworks argument. Furthermore, this result shows
that one can define a natural stronger version of computable randomness: we say that X is
almost everywhere (or ‘a.e.’) computably random if for almost all Y , X is computably ran-
dom relative to Y (due to our main result, this notion is strictly stronger than computable
randomness). We then prove that the separation between a.e. computable randomness
and computable randomness happens exactly in the almost everywhere dominating Turing
degrees.

References

[1] Laurent Bienvenu, Valentino Delle Rose, and Tomasz Steifer. Probabilistic vs determin-
istic gamblers. In 39th International Symposium on Theoretical Aspects of Computer
Science, STACS 2022, volume 219 of LIPIcs, pages 11:1–11:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

[2] Sam Buss and Mia Minnes. Probabilistic algorithmic randomness. The Journal of
Symbolic Logic, 78(2):579–601, 2013.

1

CCC 2023 Kyoto 11/47



Characterisations of polynomial-time and -space
complexity classes over the reals

Manon BLANC and Olivier BOURNEZ

Many recent works study how analogue models work, compared to classical digital
ones ([6]). By “analogue” models of computation, we mean computing over continuous
quantities, while “digital” models work on discrete structures, like bits. This led to
a broader use of Ordinary Differential Equation (ODE) in computability theory. An
interesting side-effect was the resolution of several open problems in computability and
computable analysis, such as the existence of a universal ODE in [5] or various hardness
problems related to dynamical systems in [9]. When talking about ODEs, especially in
computer science, it is necessary to clarify what type of equations we consider: discrete
or continuous. For example, in [5], it is shown that Turing machines can be simulated
through continuous ODEs. We will use both formalisms.

From this point of view, the field of implicit complexity has also been widely studied
and developed. It lies between logic and the theory of programming. For example, it
allows one to write alternative characterisations of several computability and complexity
classes, e.g. based on safe recursion [1], without any reference to the notion of machine.
In the context of implicit complexity a standard notation for denoting the smallest class
containing functions f1, ..., fn and operators op1, ...,opm is [ f1, ..., fn;op1, ...,opm].

Using these frameworks, we proved, using arguments from computable analysis, in
[2] and [3] that we can algebraically characterise P and PSPACE, using discrete ODEs
and more precisely the so-called Linear Length ODEs schemata.

We did so for P. We started by characterising the set of real numbers computable in
polynomial time and of real sequences computable in polynomial time ([2]):

LDL• = [0,1,πk
i , ℓ(x),+,−,×,cond(x),

x
2

;composition, linear length ODE,ELim],

where πk
i is the projection of the ie coordinate of a k-vector, ℓ(x) is the size of the

binary representation of an integer x, cond(x) valuing 1 for x> 3
4 and 0 for x< 1

4 , and
ELim stands for “Effective Limit”, that enable us to compute limits and make approxi-
mations. Thus we have LDL•∩RN = P∩RN. Then, we moved to the characterisation
of functions over the reals. But we cannot apply the same techniques for the computable
functions in RR. The problem comes from the fact that, in our settings, we can no longer
guarantee the continuity of the functions and the computations in our contructions.

Thus it was necessary to have a different approach and continuously approximate
some discrete functions that are mandatory for the proofs. The following algebra
characterises the set of functions over the reals computable in polynomial time in [3]:

LDL◦ = [0,1,πk
i , ℓ(x),+,−, tanh,

x
2
,

x
3

;composition, linear length ODE,ELim],

where tanh stands for the hyperbolic tangent. This gives LDL◦ ∩RR = P∩RR.
It turns out that we also characterised PSPACE using a similar algebra. For that, we
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introduced the notion of “robust” linear ODE, which means that the Linear ODEs are
now assumed numerically stable. And we have the class RLD◦ characterising PSPACE
([3]), and RLD◦∩RR = PSPACE∩RR.

A natural extension of the above works is to use continuous ODEs as operators
instead of discrete ODEs. To do so, we are inspired by [8], [4], where the use of
continuous ODEs for such purpose has been developed. The major issues in that
framework are the numerical stability and the management of the approximation errors.
In order to link this characterisation to the previous one, we use a a construction due
to [7], often called “Branicky trick”, to replace discrete settings by continuous ones,
thus the need to deal with an error bound. And, to have an equivalence, we need a
proper notion of numerical stability, so the ODEs are stable under discretisation. We
will present some original results on these aspects.

References
[1] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization

of the poly-time functions. Computational Complexity, 2:97–110, 1992.

[2] Manon Blanc and Olivier Bournez. A characterization of polynomial time com-
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[3] Manon Blanc and Olivier Bournez. A characterization of functions computable
in polynomial time and space over the reals with discrete ordinary differential
equations. simulation of turing machines with analytic discrete ordinary differential
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On the δ-decidability of decision problems for
neural network questions

Olivier Bournez1 Johanne Cohen2 Valentin Dardilhac3

1 LIX, Ecole Polytechnique, IP Paris, France
2 Université Paris-Saclay, CNRS, LISN, 91405, Orsay, France.

3 ENS Paris-Saclay, CNRS, LISN, Université Paris Saclay

July 26, 2023

A extended abstract with more details is available on:
https://www.lix.polytechnique.fr/~bournez/load/tmp/ccc-2023-more-details.pdf

The current success of deep learning applications renewed interest in various
models of computation over the reals and their associated complexity classes. This
phenomenon mirrors what happened during the second wave of neural networks,
which led to the development and funding of several research projects related to
computational models over the reals such as the Blum Shub Smale model [3, 6, 9].
Notably, the complexity class ∃R, popularized in [12], corresponds to the constant-
free Boolean part of the class NPR from [3, 9]. The currently popular real RAM
model [4] can be viewed as an extension or formalization of models such as the real
Turing machine model considered in [6, 9].

One reason for ∃R’s popularity is its natural appearance in discussions about the
complexity of decision questions for neural networks. Formally, let Th∃(R) be the
set of all true sentences over R of the form ∃x1, . . . , xn ∈ R : ϕ (x1, . . . , xn), where ϕ
is a quantifier-free Boolean formula of equalities and inequalities of polynomials with
integer coefficients. Then, ∃R is defined as the closure of Th∃(R) under polynomial-
time many-one reductions [12]. Indeed, the training of neural networks has then
been shown to be ∃R complete in [1]. Later, the authors of [2] proved the hardness
of training for fully connected two-layer neural networks, even in the basic case of
fully connected two-layer ReLU neural networks with exactly two input and output
dimensions. In the context of verification of neural networks, it is established that
reachability is NP-complete even for the simplest neural networks using the ReLU
activation function [11]. This result has been further extended in [14] to prove
that verification of neural networks is ∃R complete for every non-linear polynomial
activation function.

However, in all these statements, completeness is established at the price of
assuming that activation functions are either the ReLU(x) = max(0, x) function
or, more generally, piecewise algebraic functions. This assumption allows them to
demonstrate that the model can be effectively simulated by the real RAM model
of computation [4, 3, 9]. Otherwise, it is not clear that we have ∃R-membership
as the function is not supported by the real RAM model of computation [4, 3, 9].
Notably, works like [10] state that computations involving analytic functions may
be undecidable.
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The question of what happens when the activation function is not piecewise
algebraic, such as the widely used sigmoid function σ(x) = 1

1+e−x , or tanh, is however
very relevant. Let us define the complexity class ∃RF as the collection of decision
problems that have a polynomial-time many-one reduction to closed formulae of
existential real arithmetic with additional functions from F . Here, F is a set of
unary real-valued functions intended to capture the allowed activation functions. In
that more general case, the neural network training problem NNF -TRAINING is
∃RF -complete, as proved in [7]. Specifically, NNσ-TRAINING is ∃Rexp-complete [7].
However, the question of whether ∃Rexp is decidable is a well-known open problem,
initially posed by Tarksi, and is known to be related to some open questions in
number theory [13]. In other words, while we have some completeness results, the
hardness with respect to classical complexity, and even the decidability of neural
network training or verification remain open questions.

Our first contribution is to present this unified framework that encompasses the
previous results. This helps to better understand the connections between various
models and complexity classes. A second main contribution is to demonstrate that
the potential undecidability arises from the fact that exact tests are assumed in these
models and classes. To address this, we consider a more robust notion of decision,
called δ-decidability, proposed by [5]. We prove this leads to the definition of more
natural and provably tractable robust complexity classes.

Namely, δ-decision corresponds to the following: Fix a collection F of computable
functions over the reals. The associated logic might be undecidable, in the general
case: there might be no algorithm that decides whether a first-order sentence φ over
the corresponding signature is true. However, using arguments from computable
analysis, the authors of [5] prove that there always exists an algorithm that, given
any first-order sentence φ, containing only bounded quantifiers, and a positive ra-
tional number δ, decides either "φ is true", or "a δ-strengthening of φ is false". The
proof from [5] consists in transforming the question into the question the sign of a
computable function, expressed using functions from F , and max and min func-
tions. Then, using arguments from computable analysis, one can determine whether
such a function is positive or negative, if we authorize an arbitrary answer (possibly
incorrect) when close to 0.

In relation with this approach, we introduce the concept of the non-binary deci-
sion problem: the idea is that an algorithm may answer incorrectly for some inputs,
i.e. may be incorrect in some “grey” zone. As an application, we establish that
while the (exact) complexity of training neural networks remains open (in particu-
lar NNtanh − TRAINING), its (bounded) non-binary decision lies between NP and
PSPACE. Our results follow from the previous arguments and an improved com-
plexity analysis. The analysis of the approach in [5] is primarily based on results
from Ko in [8] about the complexity of minimisation. We improve their analysis,
focusing on the case of Lipschitz functions. This is the case of the tanh or the
sigmoid σ functions, proving that the obtained algorithm is polynomial with oracle
in NP.

In particular, as algorithms over neural networks are often implemented using
non-exact arithmetic and bounded coefficients, we believe that the approach of δ-
decision instead of decision is very natural and highly relevant. Fundamentally,
our approach connects previous statements, primarily derived using the real RAM
model, with essential questions and concepts in the realm of computable analysis.
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FIBRED SETS WITHIN A PREDICATIVE AND CONSTRUCTIVE

VARIANT OF HYLAND’S EFFECTIVE TOPOS

CIPRIANO JUNIOR CIOFFO, MARIA EMILIA MAIETTI AND SAMUELE MASCHIO

In [MM21] the authors construct a strictly predicative variant of Hyland’s effective topos

based on Feferman’s predicative theory of non-iterative fixpoints ÎD1. This category pEff
is obtained by applying the elementary quotient completion in [MR13] to a first-order
hyperdoctrine Propr (representing Kleene realizability logic) defined over the category

Cr of definable classes of ÎD1 and recursive functions between them. Actually, over the
category Cr one can define four indexed categories corresponding to the four kinds of
dependent types in the intensional level of the Minimalist Foundation (MF) [Mai09].

Setr �
� // Colr

Propr
s
� � //

?�

OO

Propr
?�

OO

The indexed categories Propr and Propr
s are defined as posetal reflections of Col and

Set, respectively. The indexed category Set instead is obtained as an indexed subcategory
of the indexed category of dependent collections Col by means of a fix-point representing
a type theoretic universe of sets.

The work done in [MM21] produces a base category pEff and two first-order hyper-
doctrines pEffprop and pEffprops by using elementary quotient completion (here in fact
coinciding with ex/lex completion). However, while a notion of dependent collection could
be defined by means of the codomain fibration, a notion of dependent set was still missing
there.

In this talk we enrich the fibration pEff col of dependent collections over pEff with a
categorical structure of dependent sets needed to interpret the whole extensional level of
the Minimalist Foundation extended with Church’s thesis within the predicative version of
Hyland’s effective topos in [MM21] using the interpretation given in [IMMS18].

We conclude by observing that, by applying the same technique, we can also build
a constructive version of Hyland’s Effective topos formalizable within CZF+REA and
capable of interpreting MF extended with inductive and coinductive definitions using the
realizability interpretation in [MMR21, MMR22].

Such predicative and constructive versions of Hyland’s effective topos can be used as
universes where to extract programs from proofs in MF extended with inductive and
coinductive definitions.
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Kuratowski’s problems in constructive Topology

Francesco Ciraulo∗

A classical result of Kuratowski’s states that
there are at most 14 different combinations of
the operators of interior i, closure c, and comple-
ment − in a topological space; they form an or-
dered monoid (w.r.t. composition and pointwise
ordering) whose Hasse diagram is shown below.

c

cic

ic ci 1

ici

i

−i

−ici

− −ci −ic

−cic

−c
Special classes of spaces can be characterized

by the fact that two or more of these operators
coincide: there are only 6 possible cases [5], that
is, 6 quotient of the Kuratowski’s monoid above.

∗Department of Mathematics, University of Padua

Our purpose is to find a constructive version
of this theory, in the sense that we do not
assume the Law of Excluded Middle (LEM).

We start with recalling a constructive account
of the closure-interior problem (with no reference
to the set-theoretic pseudocomplement) that we
know from Giovanni Sambin. For the sake of
generality, we consider closure and interior oper-
ators on an arbitrary poset L. It turns out that
the monoid generated by i and c in such a frame-
work is precisely the first piece of the above pic-
ture. So, perhaps surprisingly, this fact depends
neither on LEM nor on topological notions as
strictly understood.

All possible Kuratowski monoids are obtained
by imposing some extra condition on those 7 op-
erators (in the form of some inequality between
them). So, in order to understand the shapes of
such quotient monoids, one needs to understand
the implications between the several inequalities.
Since we are interested in the topological case,
we equip L with an overlap relation [4, 3] in or-
der to be able to express a compatibility condi-
tion between i and c (that comes from the fact
that, in constructive topology, c is defined via
adherent points). There are 26 possible inequal-
ities/equations which, however, are not indepen-
dent: their number can be reduced to 12 (up to
equivalence); their mutual implications are sum-
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marized in the following diagram.

ici = i

ic ≤ ci cic = c

OO

ci ≤ ic

ic = i

OO

BB

ci = ic

ee 99

ci = i

OO

\\

ci = c

OO

BB

cic = i

99ee OO

ic = c

\\

OO

c = 1

OO

i = 1

OO

\\ BB

Some Brouwerian counterexamples [3, 2] show
that many of these implications are strict (while
few other questions are still open).

Considering also the pseudocomplement in
the picture greatly increases the number of
possible combinations [1]. To simplify the
matter we study the case in which c = −i−.
Contrary to the classical case, we get 31 possible
combinations (instead of 14) which cannot be
reduced, apparently.

Finally, we investigate what the Kuratowski’s
problem looks like in a pointfree (and construc-
tive) framework, that is, within the (construc-
tive) theory of locales. Given the usual no-
tions of closed and open sublocales, it is clear
that every sublocale of a given locale has both
an interior and a closure. Moreover, it is well
known that the sublocales of a given locale form
a co-frame; in particular, every sublocale has a
co-pseudocomplement. Also, open and closed
sublocales are complemented, the complement

of a closed sublocale being open, and the com-
plement of an open sublocale being closed. So
the Kuratowki’s problem for sublocales is re-
lated, although in a dual way, to the interior-
pseudocomplement problem discussed in the pre-
vious paragraph. In view of this, we are able to
lower the number of possible combinations of in-
terior, closure and co-pseudocomplement to 21.
Showing that the picture cannot be further sim-
plified is only partially achieved and some issues
still remain open.
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Advances in verified set and function calculi in Coq

Pieter Collins1, Sewon Park2, and Holger Thies2

1Department of Advanced Computing Sciences,
Maastricht University, The Netherlands

2Kyoto University, Japan

July 31, 2023

In this talk, we present some advances toward the creation of a unified library
of verified operations on sets and functions in the Coq proof assistant. The work is
based on several different approaches to verified exact real computation using Coq:

� The Incone library [STT21] is a formalization of the realizability interpretation
of computable analysis. Computations on higher-order objects like the reals
are reduced to computations on basic types like natural or rational numbers
in Coq.

� CAERN [KPT22] defines computable real numbers and operations on them
abstractly via axioms. The axioms are formulated in a way that resembles
modern implementations of exact real computations, in particular the Haskell
library AERN. Axiomatically defined types/operations are mapped directly to
corresponding types/operations in AERN, allowing to extract efficient high-
level Haskell/AERN programs from proofs in the system.

� The verified rigorous numerics library of [Col23] implements interval arith-
metic and polynomial models that can be used to represent function types.
It is formulated in a generic way, and can be applied to any class supporting
rounded arithmetic.

The main extensions include progress towards:

� A compatible set of representations, including descriptions of sets by member-
ship predicates and the use of explicit bases.

� A consistent set of operations, including interval arithmetic on bounds and
balls, division, antidifferentiation and sweeping for polynomial function mod-
els, and (pre)images of sets under functions.
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The theories are constructive, and can be exported to Haskell or OCaml using Coq’s
code extraction features.

Acknowledgements: Holger Thies is supported by JSPS KAKENHI Grant Num-
bers JP20K19744 and JP18H03203. Sewon Park is a JSPS International Research
Fellow supported by JSPS KAKENHI (Grant-in-Aid for JSPS Fellows) JP22F22071.

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under the Marie Sk lodowska-Curie grant agree-
ment No 731143.
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Discontinuous IVPs with unique solutions

Riccardo Gozzi

École Polytechnique, Paris, France

Olivier Bournez

École Polytechnique, Paris, France

The study of ordinary differential equations (ODEs) and initial value problems
(IVPs) with discontinuous right-hand terms has many applications to a wide range of
problems in mechanics, electrical engineering and theory of authomatic control. Broadly
speaking, discontinuous ODEs of the form y′(t) = f(t, y) can be divided into two main
categories [5]: one in which f is continuous in y for almost all t and one in which f
is discontinuous on an arbitrary subset of its domain. In the first case, existence and
unicity for solutions of the IVPs can be discussed under specific requirements on f , such
as the Carathéodory conditions [1]. In the second case, the most common approach is to
study the dynamic using differential inclusions of the form y′(t) ∈ F (t, y) by identifying
the correct definition of F on the set of discontinuity points. In both cases, the solution,
when unique, is an absolutely continuous function y such that y′(t) = f(t, y) is defined
almost everywhere in an interval I.

We choose to analyze a different scenario: discontinuous IVPs for which the solution
is necessarily unique and the equation y′(t) = f(t, y) is defined everywhere on I. In
other words, we assume existence and unicity and we focus on finding an analytical
procedure to obtain such solution from f and the initial condition. In this sense, the
point of view is similar to the one in [2], where it is shown that when y is unique, then it
is computable if the IVP is. Nonetheless, unicity when f is discontinuous might imply
noncomputability of y even when the set of discontinuity points is trivial.

We first demonstrate the difficulty by means of an example: we construct a bidi-
mensional IVP such that, despite having computable initial condition and f computable
everywhere except a straight line, has a solution that assumes a noncomputable value
at a fixed integer time. This demonstrates the capability of these dynamical systems
of generating highly complicated solutions even when the structure of the discontinuity
points in the domain is particularly simple. Therefore, our goal is to characterize the
definability of y, generalizing the result obtained in [2] for computability to a wider class
of IVPs with unique solutions.

Our approach is close in spirit to that of A. Denjoy, who provided with his totalization
method an extension to the Lebesgue integral in order to generalize the operation of
antidifferentiation to a wider class of derivatives [3]. This perspective fits within a wider
research field that explores set theoretical descriptions of the complexity of operations
such as differentiation and integration. For example, [8] makes use of the notion of
differentiable rank from [6] to present a precise lightface classification of differentiable
functions based on how complex their derivative can be. In [4],[7] instead the authors
conduct similar treatments for antidifferentiation.

More formally, the dynamical systems we are considering are IVPs of the form: given
an interval [a, b], a closed domain E ⊂ Rr for some r ∈ N, a point y0 ∈ E and a function
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f : E → E we have: {
y′(t) = f(y(t))

y(a) = y0
(1)

for some y : [a, b] → Rr with y([a, b]) ⊂ E. Under the assumption of unicity of y
we show that two conditions on the right-hand term f are sufficient for obtaining the
solution via transfinite recursion up to a countable ordinal. In order to do so we make
use of a construction inspired by the Cantor-Bendixson analysis where the set derivative
operator is replaced by the action of excluding the set of discontinuity points of f . More
precisely, we define:

Definition 1 Consider a closed domain E ⊂ Rr for some r ∈ N and a function
f : E → Rr. Let {Eα}α<ω1 and {fα}α<ω1 be transfinite sequences such that fα =
f ↾Eα

: Eα → Rr defined as following: let E0 = E; for all α = β + 1 let Eα =
{x ∈ Eβ : fβ is discontinuous in x}; for all α limit ordinal let Eα be Eα = ∩βEβ with
β < α. We call {Eα}α<ω1

the sequence of f -removed sets on E.

Studying the structure of the sequence of f -removed sets on E allows us to prove that
the two following conditions on f are sufficient for obtaining the solution. The conditions
are: 1) f is a function of class Baire one 2) For all closed K ⊆ E the set of discontinuity
points of f ↾K is a closed set. This result is obtained with our main theorem:

Theorem 2 Consider a closed interval, a closed domain E ⊂ Rr for some r ∈ N and a
function f : E → E such that, given an initial condition, the IVP of the form of Equation
1 with right-hand term f has a unique solution on the interval. If f is a function of
class Baire one such that for every closed K ⊆ E the set of discontinuity points of f ↾K
is closed, then we can obtain the solution analytically via transfinite recursion up to an
ordinal α such that α < ω1.

This result expresses the analogy between this context and the totalization method in [3],
leaving open the possibility of defining a rank for the IVPs related to constructible ordi-
nals in order to populate a hierarchy similar to the one presented in [8] for differentiable
functions.
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A number that has an elementary contractor and no elementary
sum approximation

Keita Hiroshima (Kyoto University)∗

A function is called elementary [4, Section VIII.7] if it can be computed in time bounded by a tower
of powers of constant height. A trace function for a irrational number α is a function T : Q → Q such
that |T (q) − α| < |q − α| for all q ∈ Q. A contractor F : Q → Q for α is a trace function for α such
that |F (q) − F (q′)| < |q − q′| for all q and q′ ∈ Q with q ̸= q′. The sum approximation for α is the
strictly increasing function S : N → N such that α = a +

∑∞
i=0 2−(S(i)+1) for some integer a.

Trace functions are primitive recursively [4, Section VIII.8] equivalent to contractors. That is, an
irrational number, that has a primitive recursive trace function, has a primitive recursive contractor [1,
Section 9]. Kristiansen [3, Theorem 5.4] showed that the sum approximation of a number with a
primitive recursive trace function is primitive recursive. The author and Kawamura [2, Part 1 of
Theorem 1] showed that the same implication fails for the subclass of elementary functions.

In this talk, we show that there exists an irrational number that has an elementary contractor has
no elementary sum approximation, as a claim that strengthens the previous result.
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Predicative presentations of stably locally

compact locales

Tatsuji Kawai

Kochi university

We give a lattice theoretic presentation of stably locally compact locales, the
class of locales which includes locally compact regular locales as its subclass.
Here, a stably locally compact locale is presented by a strong quasi-proximity
lattice, a quasi-bounded (or 0-bounded) distributive lattice without 1 equipped
with a certain idempotent relation on it. The structure generalises the corre-
sponding (bounded) distributive lattice presentation of stably compact locales
by strong proximity lattices due to Jung and Sünderhauf [2].

The characterisation of (non-strong) quasi-proximity lattice can be obtained
by a straightforward generalisation of that of proximity lattice (cf. van Gool
[3]). On the other hand, the characterisation of the strong variant depends on
the dually of stably locally compact locales, and in particular, on the observa-
tion that every stably locally compact locale is an adjoint retract of a dually
continuous maps on the ideal completion of a 0-bounded distributive lattice.1

This observation is implicit in the characterisation of strong proximity lattice [2]
but does not seem to be explicitly noted before. The fact naturally leads to a
characterisation of stably locally compact locales as the Karoubi envelop of the
ideal completions of 0-bounded distributive lattices and dually continuous maps,
which only requires finitary reducts of the complete lattice structure.

In the setting of strong quasi-proximity lattices, we construct a coreflection
from the category of locally compact regular locales and perfect maps to that
of stably locally compact locales and perfect maps. The coreflection can be
seen as a generalisation of the construction of non-negative real numbers as
Dedekind sections. It also gives a predicative manifestation of the topos-valid
but impredicative construction of a patch topology of a stably locally compact
locale as the frame of Scott continuous nuclei by Mart́ın Escardó [1]
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MORE ON THE INTUITIONISTIC BOREL HIERARCHY

TAKAYUKI KIHARA

In this talk, we study the notion of many-one reducibility for sets with witnesses
and reanalyze the arithmetical/Borel/projective hierarchy under this new reducibil-
ity notion. In computational complexity theory, the notion of polytime many-one
reducibility has been extended to sets with witnesses (a.k.a. search problems or
function problems) by Levin [1] already in 1970s, but strangely enough, it seems
that its computable analogue has never been studied.

We observe that the same definition as computable Levin reducibility is restored
as many-one reducibility in the category of represented spaces. This perspective
unexpectedly connects the notion of Levin reducibility with the study of arithmeti-
cal/Borel/projective hierarchy in intuitionistic systems.

According to Veldman [2, 3, 4], the intuitionistic Borel/projective hierarchy be-
haves differently from the classical hierarchy. For instance, Veldman showed that,
under a certain intuitionistic system, the set FIN of all sequences which is eventu-
ally zero is not Σ0

2-complete [2, 3], and the set IFKB of all trees which is ill-founded
w.r.t. the Kleene-Brouwer ordering is not Σ1

1-complete [4]. We see that these seem-
ingly strange results can be clearly understood using Levin reducibility.

We divide the collection of Σ0
2 sets into three layers under computable Levin

reducibility, and show that FIN is complete in the bottom layer. We also show that
the set of all bounded sequences is complete in the middle layer, and the set of all
binary trees with more than one path is complete in the top layer. This means
that the classical Σ0

2-complete sets actually had three different patterns upon closer
inspection, which improves on Veldman’s result for intuitionistic Σ0

2-complete sets.
A detailed analysis of Σ1

1-complete sets is performed in a similar way. The sets
of all ill-founded linear orders, all ill-founded partial orders, all partial orders which
is not wqo, and those restricted to bounded width are all classically Σ1

1-complete,
but under computable Levin reducibility, they form a very complicated structure.
This also improves on Veldman’s result for intuitionistic Σ1

1-complete sets.
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Arithmetical complexity for archimedean
order positive fields

Margarita Korovina, Oleg Kudinov
A.P. Ershov Institute of Informatics Systems, Sobolev Inst. of Math

(Novosibirsk, Russia)
rita.korovina@gmail.com

The computability notion based on numberings is well established [4, 2] with
a number of prominent results. Nevertheless applied to ordered fields it fails
to capture some natural properties and there are many natural structures
which are not computable in this sense. In [1] we did show that there are no
computable copies neither for the field of primitive recursive real numbers
nor for smaller fields of En-computable real numbers, where En is a level
in Grzegorczyk hierarchy, n ≥ 3. Another prominent example is given in
[3] where a computable real closed field is built, all maximal archimedean
subfields of which have no computable presentations. From our point of
view, in the case when the language of a structure contains the order and
the structure has a negative numbering [5] it makes sense to add the follow-
ing requirements: computable enumerability of strict ordering and partial
computability of the inverse function. Thus, we propose to consider order
positive fields which satisfy these requirements. We show that order posi-
tive fields have interesting properties in particular, order positive real closed
fields are closed under taking the archimedean part. We present a general
criterion when an archimedean field is order positive. Using this criterion we
prove that the field generated by primitive recursive functions and the fields
of En-computable real numbers are order positive and also study arithmetical
complexity of subclasses of order positive fields such as real closed, algebraic,
computable fields.
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SOLOVAY REDUCIBILITY AND SIGNED-DIGIT REPRESENTATION

KENSHI MIYABE

Solovay reducibility in the theory of algorithmic randomness [1, Chapter 9] compares two
reals in terms of approximability, which is naturally related to computability and randomness.
We give some characterizations of Solovay reducibility for weakly computable reals in terms of
analysis.

We say that a real x ∈ R is weakly computable if there exists a computable sequence (xn)n∈ω
of rationals such that x = limn→∞ xn and

∑
n |xn − xn+1| < ∞. Zheng and Rettinger [3]

extended Solovay reducibility to weakly computable reals as follows: Let α and β be weakly
computable reals. We say that α is Solovay reducible to β if, there exist computable sequences
(an)n and (bn)n of rationals converging to α, β respectively and c ∈ ω such that

|α− an| ≤ c(|β − bn| + 2−n)

for all n.
We give a characterization of Solovay reducibility for weakly computable reals in terms of

the signed-digit representation [2, Chapter 7]. Roughly speaking, α ≤S β if and only if α is
computable from β with use bound h(n) = n+O(1) when both of α and β are represented by the
signed-digit representation. This should be compared with the fact that computable Lipschitz
reducibility is similarly defined with respect to the binary representation and that Solovay
reducibility and computable Lipschitz reducibility are incomparable. Solovay reducibility is a
continuous concept and has good compatibility with analysis. Also note that it is well-known
that the binary expansion is not suitable in the study of computability in analysis while the
signed-digit representation is.

Another characterization of Solovay reducibility for weakly computable reals we give is in
terms of Lipshcitz functions. Solovay reducibility for left-c.e. reals has a natural characteri-
zation in terms of Lipschitz functions. In our previous work, we considered quasi-Solovay re-
ducibility for left-c.e. reals in terms of Hölder continuous functions. Roughly speaking, α ≤S β

if and only if there exists a Lipschitz function sandwiched by lower and upper semicomputable
functions converging to α as the input goes to β.

We also studied related reducibilities and gave separation among them.
This is joint work with Masahiro Kumabe (The Open University of Japan) and Toshio Suzuki

(Tokyo Metropolitan University).
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Exact Real Arithmetic
and the Efficiency of Taylor Models ⋆

Norbert Müller1

Abteilung Informatikwissenschaften, Universität Trier, Germany

An essential aspect of software for exact real arithmetic (ERA) is the way
how it deals with the composition of functions. The resulting error propagation
can be treated manually or automatic. An example for an essentially manual
solution would be the explicit computation of the modulus of convergence of a
sequence in order to approximate its limit, for example derived from Cauchy’s
integral formula. A more automatic way would be the use of some kind of interval
arithmetic. The latter could be implemented, for example, using naive interval
arithmetic or with more elaborate applications of intervals like in Taylor models.

In this short note we want to discuss aspects of this automatic control in a
quite special application of ERA: the computation of relatively long trajectories
in iterated function systems.

In order to find general applicable results, it is necessary to abstract away from
concrete implementations. We will here also just consider the one-dimensional
case.

– Suppose f : R → R is computable with f(D) ⊆ D on some bounded D ⊂ R.
– Consider a computable point x0 ∈ D and the trajectory X := (xn)n∈N defined

by xn+1 = f(xn) for n ∈ N.

It is easy to see that the trajectory X is uniformly computable, so there is a an
algorithm on n and k approximating xn with an error of at most 2−k.

In the following we will additionally assume that both f and x0 are computable
in time t : N → N, where t is ‘regular’, i.e. t has properties allowing us to simplify
terms using t. Additionally, f should be Lipschitz on D, i.e. |f(x) − f(y)| ≤
2ℓ · |x− y| for some ℓ ∈ Q. Then X is uniformly computable in time t : N2 → N
where t(n, k) = O(n · t(k + n · ℓ)).

The idea behind the computation of X is that for an approximation of xn
with error 2−m we just need an approximation to xn−1 with error ≈ 2−m−ℓ. The
disadvantage of this simple ‘manual’ approach is that we need to know ℓ. Using
an algorithm for f based on intervals, we can avoid the explicit knowledge of ℓ
and simply repeat an interval based iteration. Depending on the quality of the
algorithm, this might lead to a behaviour similar to the complexity bound t, but
it could also be significantly worse. We will have a detailed look at this for the
case of the logistic map L(x) = µ · x · (1− x) with different control parameters
µ ∈ [2, 4] and compare naive interval arithmetic to an approach with linear Taylor
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models. We find cases where both approaches necessarily have almost the same
behaviour and other cases where the Taylor models show an asymptotically better
behaviour.

– Linear Taylor models (easily?) have an error behaviour corresponding to the
Lyapunov exponent for IFS, while in the case of naive interval arithmetic we
have to take a very careful look on the implementation to achieve this (and
perhaps cannot even achieve in higher dimensional examples).

– If we search for upper bounds for the uniform complexity of the iterates in an
IFS, we see a difference in the bounds we get depending on whether we have
stable orbits or repelling fixed points: Stable orbits should have a uniform
complexity of O(n · t(k)), while repelling fixpoints lead to O(n · t(k + n)).
One difference between the two cases is the Lyapunov exponent (negative for
stable, positive for repelling).

– In consequence, a real arithmetic based of Taylor models will be able to work
with a complexity of n · t(k) more often than version based on naive interval
arithmetic, as they often don’t show the contraction which would be possible
due to the negative Lyapunov exponent.

– The effects can be quite dramatic: For the Logistic map, the computation of
many stable orbits can be done in linear time O(n+ k) with Taylor models
whereas naive interval arithmetic needs more than quadratic time O(n2+kn).

– However, for repelling fixed points, Taylor models turn out to be not signifi-
cantly better than naive interval arithmetic.
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ON LEAST REALIZABILITY NOTIONS CORRESPONDING TO

SEMI-CLASSICAL AXIOMS IN INTUITIONISTIC ARITHMETIC

SATOSHI NAKATA

The purpose of this talk is to determine “least” realizability notions realizing
semi-classical axioms in first-order intuitionistic arithmetic from a topos-theoretic
point of view.

Since Kleene defined the first realizability interpretation (Kleene realizability)
for Heyting arithmetic HA, many variants have been proposed in the literature:
(1) relativization to Turing degree d (d-realizability), (2) Lifschitz realizability [5],
and (3) Kreisel’s modified realizability [4]. These realizability methods are useful to
separate the hierarchy of semi-classical axioms over HA, such as Σn-DNE (double
negation elimination) and Πn-LEM (law of excluded middle). Akama et al. [1],
for instance, show that Σn-DNE is realizable while Πn-LEM is not under ∅(n−1)-
realizability, meaning that the former does not imply the latter. Similarly, Lifschitz
realizability relativized to degree ∅(n−1) is used to separate Πn ∨Πn-DNE and
Πn-LEM.

It is known that the realizability notions (1), (2) and (3) are expressed by subto-
poses of (extensions of) the effective topos Eff in such a way that formula φ is
realizable iff φ is true in the corresponding topos [3, 6, 7, 8]. This leads to a
topos-theoretic explanation for separation of semi-classical axioms.

Given an elementary topos E , the subtoposes of E are in one-to-one correspon-
dence with the local operators (a.k.a. Lawvere-Tierney topologies) in E . A key
notion here is what we call least operator of a formula φ, that is completely deter-
mines the subtoposes of E which satisfies φ. The same notion appears in Caramello’s
study of categorical logic [2] and in van Oosten’s study of categorical realizability [7].
Above all, van Oosten shows that the local operator jLif in Eff corresponding to
the Lifschitz topos Lif is the least operator of an arithmetical formula, which is
equivalent to Π1 ∨Π1-DNE over HA. Our emphasis here is the following observa-
tion: given two axioms, if their least operators are different, then it automatically
follows that they are separable.

In this talk, we first develop a general theory of such local operators applicable
to an arbitrary topos. To achieve this, we need to restrict our treatment of local
operators to dense ones. This restriction is not essential since all nondegenerate
operators are dense in Eff . In particular, we show the following existence theorem:

Theorem 1. For every topos E with natural number object and every n ≥ 0,
Σn-DNE, Πn-LEM, Σn-LEM and Πn ∨Πn-DNE have least dense operators in
E.

We next consider such least dense operators of semi-classical axioms in Eff and
determine them in terms of (generalized) Turing degrees. Our contribution is to

CCC 2023 Kyoto 33/47



establish a threefold relationship among realizability notions, semi-classical axioms
and least dense operators in Eff as outlined below:

realizability notions semi-classical axioms least dense operators in Eff
∅(n−1)-realizability Σn-DNE j∅(n−1)

∅(n)-realizability Πn-LEM j∅(n)

∅(n)-realizability Σn-LEM j∅(n)

∅(n−1)-Lifschitz Πn ∨Πn-DNE jLif(n−1)

Here ∅(n)-Lifschitz stands for Lifschitz realizability relativized to n-th Turing
jump ∅(n) and jLif(n) for the corresponding local operator in Eff . This correspon-
dence automatically implies the above-mentioned results of [1]. More interestingly,
our framework explains that realizability notions they used are “optimal” in the
sense of minimality.

Furthermore, we obtain the following negative consequence because least dense
operators give us the complete information about separation of semi-classical ax-
ioms by subtoposes of Eff .
Theorem 2. For any n ≥ 0, Πn-LEM, Σn-LEM and Σn+1-DNE are never
separable by any subtopos of Eff .

In addition to the separation results explained above, [1] also separates Πn-LEM
and Σn-LEM by using monotone modified realizability. As a by-product of Theo-
rem 2, we find that this realizability notion cannot be captured by a subtopos of
Eff .
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Synthetic guarded domain theory
Beginning with Scott and Strachey’s groundbreaking investiga-
tions in 1969, the scientific study of programming semantics has
been guided by the search for a topology of computation — em-
bodied in monoidal closed categories of spaces called domains
whose points can be thought of as the values of datatypes and com-
puter programs [21–24]. The thesis of denotational semantics under
Scott and Strachey is that the computational behavior of expres-
sions in a programming language can be studied by characterizing
what values they take when interpreted as continuous functions
between domains; the advantage of denotational semantics over
the direct/operational study of program behavior is that, unlike the
latter, it is compositional and amenable to mathematical methods
of reduction and abstraction.

The need to reason about increasingly complex programming
languages has drawn researchers toward alternative theories of
domains based on (complete, bounded, ultra-) metric spaces [1,
5, 10, 17, 20] and later simplifications and generalizations to cate-
gories of sheaves on frames with well-founded bases and the even
simpler case of presheaves on well-founded posets [3], allowing
for a synthetic and topos-theoretic approach to guarded domain
theory along the lines of synthetic domain theory [13]. The core
idea of synthetic guarded domain theory (SGDT) is to work with
a topos 𝒮 that is equipped with an endofunctor ▶, together with
a natural transformation next : id𝒮 ▶ and a “guarded” fixed
point operator −† ensuring that for each 𝑓 : ▶𝐴 𝐴, there exists
a unique 𝑓 † : 1𝒮 𝐴 such that 𝑓 ◦ next𝐴 ◦ 𝑓 † = 𝑓 †. Under mild
assumptions (e.g. left exactness of ▶), it can be seen that ▶ extends
to an endofunctor on the fundamental fibration P𝒮 𝒮 and there-
fore gives rise to a true connective in the internal dependent type
theory of 𝒮.

Guarded recursion and coinduction
Unlike both classical and ordinary synthetic domain theory, SGDT
is effective in the sense that it gives rise to type theories satisfying
the canonicity property [12]; this means that SGDT is a program-
ming language in addition to a semantic universe for denotational
semantics. One early application of guarded recursion in this sense
was to provide a more ergonomic and compositional method to
write programs involving coinductive types or final coalgebras.

Consider the type of infinite streams S𝐴 as an example; this type
is the final coalgebra for the endofunctor F𝐴𝑋 = 𝐴×𝑋 , and because
F𝐴 is 𝜔-continuous we may compute S𝐴 as the limit of the 𝜔-chain

F𝑛𝐴1 � 𝐴𝑛 by Adámek’s theorem. A stream producer 𝛼 : 𝑋 S𝐴
must therefore decompose into a cone of finite approximations
𝛼𝑛 : 𝑋 𝐴𝑛 for all 𝑛 ∈ 𝜔 ; in simpler terms, we must be able to
compute any finite approximation of a stream. It is not difficult to
imagine programming partial functions on streams 𝛽 : S𝐴 S𝐵
by general recursion; such a programming style is easily supported
in languages like Haskell. But what is the appropriate linguistic
construct for defining total functions 𝛽 : S𝐴 S𝐵? Just as in the
dual case for inductive data, a programming language must verify
that recursive calls are justified and reject any recursive calls that
would make (for instance) the projections 𝛽𝑛 : S𝐴 𝐵𝑛 ill-defined.

One method to ensure that recursive functions on coinductive
types are total is to impose a syntactic guardedness check: every
recursive call must be wrapped in a call to a constructor. Syntactic
guardedness checks are employed in several type theoretic lan-
guages, such as Agda [19], Coq [11], and Idris [8, 9], but they are
unfortunately very brittle and not at all conducive to compositional
and modular programming with higher-order functions. A sound
and thus more promising type-based approach to ensuring the
guardedness of recursive calls arises from the later modality ▶, first
viewed as a programming construct by Nakano [18].1 The idea is
to approximate the coinductive type S𝐴 � 𝐴 × S𝐴 by the guarded
recursive type S▶𝐴 � 𝐴 × ▶ S▶𝐴:

S▶ : Type → Type (::) : 𝐴 → ▶ S▶𝐴 → S▶𝐴

The guarded fixed point operator then allows recursive defini-
tions of functions on guarded streams, with the caveat that recur-
sive calls must appear underneath the later modality. While this
semantic / type-based restriction does automatically ensure totality,
it is too conservative: we cannot, for instance, define the projec-
tion functions S▶𝐴 → 𝐴𝑛 . For instance, the following attempted
definition is not well-typed:

take : N→ S▶𝐴 → List 𝐴
take 0 𝑢 = []
take (𝑛 + 1) (𝑥 :: 𝑢) = 𝑥 :: take 𝑛 𝑢

Clock-indexed guarded recursion
At the heart of the problem discussed above is the fact that the
guarded streams only approximate the coinductive streams. The
remarkable suggestion of Atkey and McBride [2] is to define real
coinductive types in terms of their guarded approximations by
adding an additional notion of clock to the language; with this
combination of features, arbitrary functions on coinductive types
can be defined using guarded recursion. In the setting of Atkey and
McBride, the later modality ensures that functions are well-defined
1The calculus of Nakano [18] was subsequently connected to metric domain theory
by Birkedal, Schwinghammer, and Støvring [4].
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and the clocks allow the later modality to be removed in a type-
constrained way. The language of Atkey and McBride contains
a new sort of clocks 𝑘 , together with a clock-indexed family of
later modalities ▶𝑘 as well as a clock quantifier ∀𝑘.𝐴[𝑘]. In the
case where 𝐴 does not depend on the clock variable 𝑘 , a clock
irrelevance principle is asserted stating that 𝐴 = ∀𝑘.𝐴; finally
the canonical map 𝜆𝑥.Λ𝑘.next(𝑥 [𝑘]) : ∀𝑘.𝐴[𝑘] ∀𝑘. ▶𝑘 𝐴[𝑘] is
asserted to have an inverse force.

A clock can be thought of metaphorically as a “time stream”;
thus an element of ∀𝑘. ▶𝑘 𝐴 exhibits an element of ▶𝑘 𝐴 in all time
streams 𝑘 ; thus under this metaphor, the force operation simply
instantiates this family at an earlier time stream to obtain an ele-
ment of 𝐴. With the clock-indexed later modality in hand, it is now
possible to define coinductive streams in terms of their guarded ap-
proximations by setting S𝐴 B ∀𝑘.S▶𝑘𝐴; thus we may use guarded
recursion to define the take function on coinductive streams:

S▶𝑘 : Type → Type
(::) : 𝐴 → ▶𝑘 S▶𝑘𝐴 → S▶𝑘𝐴

head : S𝐴 → 𝐴
head 𝑢 = Λ𝑘.fst (uncons𝑘 𝑢 [𝑘])

tail : S𝐴 → S𝐴
tail 𝑢 = force(Λ𝑘.snd (uncons𝑘 𝑢 [𝑘]))

take : N→ S𝐴 → List 𝐴
take 0 𝑢 = []
take (suc 𝑛) 𝑢 = (head 𝑢) :: (take 𝑛 (tail 𝑢))

Efforts towards the generalization of Atkey and McBride’s clocks
to the dependently typed setting have been brought forward by
Bizjak and Møgelberg [7] and Sterling and Harper [26].

Main results
Most models of single-clock SGDT are given by presheaf topoi; the
models of multi-clock SGDT are also taken in presheaves, but of
a different kind than the single-clock version. Thus the work of
[2, 6, 7, 26] on multi-clock guarded recurison raises two questions
concerning the relationship between the existing models of single-
clock and multi-clock guarded recursion:

(1) Does the passage from single-clock to multi-clock topos
models have a universal property?

(2) Can the multi-clock model be rephrased as a special case
of the single-clock model of SGDT?

We answer both questions positively. Each multi-clock topos
can be seen to be a partial product or bagtopos [14, 15, 27] for a
certain cocartesian fibration of topoi applied at a given model of
single-clock guarded recursion as hinted by Sterling [25, §2.2.6];
moreover we show that the model of SGDT in the multi-clock
setting is an instance of the single-clock model generalized to the
relative bounded topos theory over a given elementary topos 𝒮, and
prove stability properties for models of SGDT under presheaves
and localizations. Thus we have contributed a completely modular
toolkit for negotiating the two orthogonal axes of variation in multi-
clock synthetic guarded domain theory: the properties of the object
of clocks, and the properties of each later modality ▶𝑘 .
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By hiding reiterations and approximating computations from users, iRRAM
has succeeded in making the reals that users observe and deal with in iRRAM
appear to be exact real numbers instead of approximations [Mül00]. To adopt
user interactions such as input/output functionalities into this framework, iR-
RAM uses a dynamically allocated multi-value cache to force consistency. When
a user asks for some information to be printed, it is only printed once at some
iteration, with a promise that the printed information will be consistent through-
out the future reiterations. Necessary communications among iterations to force
consistency are achieved by the multi-value cache.

Therefore, to verify iRRAM-like iteration-based exact real computation im-
plementations, we must deal with dynamically allocated memory that is carried
on through iterations. In this talk, we present our recent progress on verifying
basic operations that iRRAM provides, including real arithmetic and multi-
valued choices using a compositional verification calculus based on separation
logic.
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The Minimalist Foundation [9, 5], for short MF, is a dependently typed
foundational system for constructive mathematics that serves as a common core
between the most relevant foundational theories such as Aczel’s constructive set
theory [1], Martin-Löf’s type theory [10], the internal language of a topos [6], the
Calculus of Construction [3], or Homotopy Type Theory [11]. Its development
has been strongly driven by the desire to find a suitable foundational system
for the constructive treatment of topology, known as Formal Topology [13]. In
particular, to implement its powerful (co)inductive methods [4], an extension
of MF with two new constructors formalising the inductive generation of basic
covers and the coinductive generation of positivity relations was presented in
[8].

In previous joint work with M. E. Maietti presented at CCC2022, we pro-
vided a topological counterpart of well-founded sets in terms of inductive su-
plattices introduced in Martin-Löf-Sambin’s formal topology. Here we dualize
this result for general (co)inductive predicates. To this purpose, we extend MF
with context-independent coinductive predicates and we provide a topological
counterpart for them in terms of Martin-Löf-Sambin’s positivity relations. Fur-
thermore, we show their equivalence with generalized inductive and coinductive
definitions of constructive set theory [12] and M-types in extensional Martin-
Löf’s type theory and Homotopy Type Theory [2]. Our work let us conclude
that the extension of MF with inductive suplattices and coinductive positivity
relations in [8] (see also [7]) has the full strength of the extension of MF with
general inductive and coinductive definitions.
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Abstract

I will present some results from my ongoing project with Dag Normann on the
logical and computational properties of the uncountable, namely a new discovery
in Kleene’s computability theory based on S1-S9 ([1,2]) and our recent equivalent
lambda calculus formulation based on fixed point operators ([5]).

In a nutshell, I will present basic operations stemming from mainstream
mathematics that are computable in Kleene’s quantifier ∃2, while slight math-
ematical variations are computable in Kleene’s quantifier ∃3 but not in weaker
oracles ([7]). Since the difference between ∃2 and ∃3 is considerable, we say that
these two classes are separated by an abyss.

Kleene’s computability theory via fixed points

Kleene’s S1-S9 computation schemes provide a formal framework for the notion

the object X is computable in the object Y

where X,Y are objects of any finite type. In case X,Y are real numbers, S1-S9-
computability reduces to Turing computability, i.e. the former is an extension
of the latter. While S1-S8 only formalise a basic form of primitive recursion,
the schema S9 is rather ad hoc in nature, hard-coding as it does the recursion
theorem for S1-S9-computability theory. By contrast, the recursion theorem for
Turing machines is derived from first principles in [8].

In light of the previous, it is a natural question whether there is a (more)
conceptually pleasing formulation of S1-S9, which is one of the topics of [5]. In
particular, it is shown that S1-S9 can be equivalently captured by the computa-
tional model consisting of the following extended lambda calculus:

– Kleene’s schemas S1-S8 capturing primitive recursion,

⋆ This research was supported by the Deutsche Forschungsgemeinschaft (DFG) (grant
nr. SA3418/1-1) and the Klaus Tschira Boost Fund (grant nr. GSO/KT 43).
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2 S. Sanders

– λ-abstraction for all finite types,
– the least fixed point operators µσ for all finite types σ.

The operator in the final item is such that µσx.s(x) is the least fixed point of
the σ → σ-mapping λx.s(x) which is assumed monotone as follows:

xσ ⪯σ y
σ means that the graph of y is included in the graph of x and

the mapping λx.s(x) is monotone if (∀xσ, yσ)(x ⪯σ y → s(x) ⪯σ s(y)).

We will introduce this new model and briefly sketch its advantages over S1-S9.

The abyss in Kleene computability theory

In a nutshell, we identify a number of basic operations (e.g. finding suprema
or points of continuity) stemming from mainstream mathematics that are ‘close
to computable’ in that they are computable from ∃2 (or weaker oracles). Per-
haps surprisingly, slight variations of these basic operations (like extending the
function class) are computable in ∃3 but not in weaker oracles. The following
examples give the reader an idea of this abyss.

The functional ∃2 can compute supx∈[p,q] f(x) for f : [0, 1] → R which is
either cadlag, Baire 1, or quasi-continuous.

The functional ∃3 can compute supx∈[p,q] f(x) for f : [0, 1] → R which is
either regulated, Baire 2, or cliquish, but no weaker oracle suffices.

Mathematically speaking, the operations on the first and second line are close
as respectively cadlag and regulated, Baire 1 and Baire 2, and quasi-continuous
and cliquish, are closely related function classes in real analysis. We discuss
similar results for other function classes and operations, like computing points
of continuity and computing representations of the set of continuity points.

An important observation concerning the abyss is that the operations com-
putable in ∃2 involve function classes for which f(x) for any ∈ [0, 1] can always
be approximated using f(q) for q ∈ [0, 1] ∩Q. The other side of the abyss lacks
this approximation device.

Finally, we explain how the logical and computational properties of the un-
countability of the reals as follows:

there is no injection from R to N. (NIN)

plays a central role in our project ([3, 4, 6]).
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The Compact Hyperspace Monad: a Constructive

Approach∗
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1 Extended abstract

As shown by Michael in his seminal 1951 paper [5], the hyperspace KpXq of non-empty com-
pact subsets of a compact Hausdorff space X is compact Hausdorff again with respect to the
Vietoris topology. Moreover, the compact union of compact sets is compact as well. Since the
construction K is functorial, this gives rise to a monad pK, η, Uq, where ηX maps points x P X
to the singleton txu, and UX compact sets K P KpKpXqq to their union

Ť

K.
In [2] an approach was presented to deal with compact point sets in a constructive way. It

allows to extract the computational content from proofs of computationally meaningful state-
ments. The approach is computationally equivalent to Weihrauch’s Type-Two Theory of Ef-
fectivity [7]. However, contrary to this approach it is purely logical and representation-free.
Representations of the computed objects are obtained via a realisability interpretation of the
logic, i.e., intuitionistic fixed point logic (IFP) extended by inductive and co-inductive defini-
tions (cf. [3]). Note that although IFP is based on intuitionistic logic a fair amount of classical
logic is available: Any true disjunction-free formula can be used as axiom.

The approach in [2] is based on Iterated Functions Systems (IFS), i.e., spaces X coming
with a finite set D of continuous self-maps d : X Ñ X. Assume that X is a compact metric
space and all d P D are contracting, say with contraction factor q P Q`. pX,Dq is covering if
X “

Ť

t rangepdq | d P D u. The structure pX,Dq is called a digit space in this case and the
d P D digits. Such spaces can be characterised co-inductively.

Let CX be the co-inductively largest subset of X such that

x P CX Ñ
ł

dPD

pDy P CXqx “ dpyq. (1)

Then X “ CX . Since X may be a classically defined object, this equality is true only classically.
In the constructive approach one works with CX instead of X, where in (1) the disjunction has
to be interpreted constructively. Thus, given x0 P X, one effectively obtains d0 P D so that
for some x1 P X, x0 “ d0px1q. By iterating this procedure, one receives a sequence pdiqiPN of
self-maps in D that serves as representation of x0,

Let d1, . . . , dr P D be pairwise distinct and define rd1, . . . .drs : KpXqr Ñ KpXq by

rd1, . . . , drspK1, . . . ,Krq
Def
“

r
ď

ν“1

KpdνqpKνq,

where KpdqpKq
Def
“ drKs. Let KpDq be the finite set of all such maps rd1, . . . , drs. Then

pKpXq,KpDqq is an IFS in which the self-maps are no longer required to be unary. We use the
notion extended IFS in this case [6]. As is well known KpXq is a compact metric space with
respect to the Hausdorff metric. The metric topology is equivalent to the Vietoris topology. If

∗ This project has received funding from the European Unions Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 731143.
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KpXqr is endowed with the maximum metric the maps rd1, . . . , drs are also contracting with
contraction factor q. Moreover, pKpXq,KpDqq is covering [6]. Therefore,

KpXq “ CKpXq.

One would like to iterate the process described above to obtain co-inductive characterisations
of the higher compact hyperspaces KnpXq with n ą 1. Let us consider the case n “ 2. The
digit maps would then be of the form

rd⃗1, . . . , d⃗ks. (2)

with
d⃗i “ rd

piq
1 , . . . , dpiq

ri s,

for i “ 1, . . . , k. Let K2pDq be the finite set of all such maps.
The type of the map in Line (2) is

KpKpXqr1q ˆ ¨ ¨ ¨ ˆ KpKpXqrkq Ñ K2pXq. (3)

Thus, these maps are no longer self-maps of K2pXq and hence pK2pXq,K2pDqq not an extended

IFS. For simplicity assume that r1 “ ¨ ¨ ¨ “ rk
Def
“ r, then the type in Line (3) becomes

KpKpXqrqk Ñ K2pXq.

In this paper we will inductively construct spaces Kp2q

i pXq and sets of maps Kp2q

i pDq with

Kp2q

0 pXq “ K2pXq and Kp2q

0 pDq “ K2pDq such that

Kp2q

i`1pXq
Kp2q

i pDq
ÝÝÝÝÝÑ Kp2q

i pXq,

where for spaces Yi and sets Fi of maps f : Yi`1 Ñ Yi,

Yi`1
Fi

ÝÑ Yi

means that for each i P N and every y P Yi there are f P Fi and z P Yi`1 with y “ fpzq.
Analogously, we will proceed for all n ą 2.

For each such co-chain pYi`1
Fi

ÝÑ YiqiPN let Y “
ř

iPN Yi be the topological sum of the family
of spaces pYiqiPN and F be the disjoint union of the Fi. Then pY,Fq is an infinite extended IFS
(cf. [4]). The maps in F operate only locally on the components. If the Yi are metric spaces,
Y carries a canonical 8-metric. IFS of this kind will be the objects of the category underlying
the monad.

As shown in [6], Berger’s [1] co-inductive inductive characterisation of the uniformly con-
tinuous functions on the unit interval can be transferred to the case of extended IFS. A further
generalisation to the case of the directed sums just described is presented in the present paper.
The function classes obtained from the co-inductive inductive definitions will constitute the
hom-sets of the category.
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