
Deterministic vs probabilistic gamblers

Laurent Bienvenu (CNRS & Université de Bordeaux + Meiji University)
joint work with

Valentino Delle Rose (Universidad Católica de Chile)
Tomasz Steifer (Universidad Católica de Chile)

CCC 2023, Kyoto

September 26, 2023



1. Algorithmic randomness



Random infinite sequences

Algorithmic randomness is the theory whose goal is to give a satisfactory
meaning to the notion of random individual objects (in this talk: infinite
binary sequences).

Example:

111000000111000000000111000111000111000111000000111111000
000000111111000000000000111000000111000000111000111111111
111111000111000111000111000000000111000000111000000000111
111000111000000000000111111111000000111000111111111000....

Not random!
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Random infinite sequences

On the other hand:

1110100000010000000101110001010111011110011100001000011011100000
1111111011001001000100110101111000111100000111001011001110111010
11101010 10010010 11100010 00010111 11101010....

Looks random!
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Kolmogorov complexity

Definition
Let x be a finite binary string. We callKolmogorov complexity of x the quantity
K(x) defined by

K(x) = the shortest computer program (in binary) that generates x

Definition
Let x be a finite binary string. We callKolmogorov complexity of x the quantity
K(x) defined by

K(x) = the shortest computer program (in binary) that generates x

Definition
Let x be a finite binary string. We callKolmogorov complexity of x the quantity
K(x) defined by

K(x) = the shortest computer program (in binary) that generates x

Of course formalizing all this needs some care. A sound formalism can be
achieved using Turing machines (and programs=inputs of universal Turing
machine).

Modulo this formalization, we can now say that a string x is random with
randomness deficiency at most c if K(x) ≥ |x|− c.
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Martin-Löf randomness

Definition
An infinite sequence X is Martin-Löf random if and only if for some c and for
all n,

K(X0...Xn) > n− c ∗

Definition
An infinite sequence X is Martin-Löf random if and only if for some c and for
all n,

K(X0...Xn) > n− c ∗

Definition
An infinite sequence X is Martin-Löf random if and only if for some c and for
all n,

K(X0...Xn) > n− c ∗

∗ for this definition we need to consider a variant of Kolmogorov complexity, the so-called prefix-free Kolmogorov complexity
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Unpredictability

Another definition due to Schnorr (1971). Let us consider the following (infinite)
prediction game, where a player wants to guess the bits of an infinite binary
sequence.

• The bits of the sequence are written on cards, facing down.

• The player tries to predict the values of these cards in order. Starting with
a capital of $1, she bets at each move some amount of her money on the
value of the next card.

• The player wins the infinite game if her capital tends to infinity throughout
the game.
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Unpredictability

. . .

CAPITAL

MOVES
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Unpredictability

. . .0

Bet 0.6 on “1”
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Unpredictability

. . .0 1

Bet 0.6 on “1”

CAPITAL
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Unpredictability

. . .0 1
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Unpredictability

. . .0 1 1

Bet 0.7 on “0”

CAPITAL
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Unpredictability

. . .0 1 1

Bet 0.1 on “0”

CAPITAL
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Unpredictability

. . .0 1 1 0

Bet 0.1 on “0”

CAPITAL
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Unpredictability

. . .0 1 1 0

Bet 1.2 on “0”

CAPITAL

MOVES
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Unpredictability

. . .0 1 1 0 0

Bet 1.2 on “0”

CAPITAL
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Unpredictability

. . .0 1 1 0 0

Bet 0.5 on “0”
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Unpredictability

. . .0 1 1 0 0 1

Bet 0.5 on “0”
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Unpredictability

. . .0 1 1 0 0 1 0

Bet 0.3 on “0”
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Unpredictability

We say that an infinite sequence X is unpredictable if there is no computable
strategy that defeats X in this game.

The natural question: how do unpredictability and randomness relate to each
other?

It is fairly easy to prove that for an infinite sequence, random implies
unpredictable.

The converse is far from true: there are unpredictable sequences X which
are ‘close-to-computable’, so much so that K(X0 . . . Xn) = O(log n) (hence
are not random).

Nonetheless this is a natural notion worth studying.
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2. Randomizing things



Randomized betting strategies

What happens if we reinforce the betting strategy model, by allowing the
gambler to use a probabilistic algorithm to try to guess X?

Do we get a strictly stronger randomness notion?

If so, how does it relate to Martin-Löf randomness?
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A restricted model

This model was first studied by Buss and Minnes (2013) who considered a
restricted case, namely when the betting strategy must be defined with
probability 1. They proved:

Theorem
If X is unpredictable, it also defeats all probabilistic betting strategies that are
defined with probability 1.

Theorem
If X is unpredictable, it also defeats all probabilistic betting strategies that are
defined with probability 1.

Theorem
If X is unpredictable, it also defeats all probabilistic betting strategies that are
defined with probability 1.

But this leaves open the general question, where gamblers can take even
more risk by allowing some random choices to trap them in an infinite loop
(more risk, more potential reward!).
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Buss-Minnes theorem revisited

A neat argument to see why the Buss-Minnes theorem is true:

Instead of viewing betting strategies as using random bits, view the use of
probabilistic choices as endowing the space of betting strategies with a
probability measure µ.

The condition that the strategy must be defined with probability 1 ensures
that µ is nice, namely, it is a computable probability measure.

Thus, the average Eµ(S) is a computable strategy, therefore when ‘playing’ on
an unpredictable X, Eµ(S) must remain bounded, thus

µ{S | S remains bounded against X} = 1
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Our main result

If we remove the Buss-Minnes assumption, the situation changes dramatically:

Theorem
There exists an X which is unpredictable but for which there is a probabilistic
strategy which succeeds against X with probability > 0.9999.

Theorem
There exists an X which is unpredictable but for which there is a probabilistic
strategy which succeeds against X with probability > 0.9999.

Theorem
There exists an X which is unpredictable but for which there is a probabilistic
strategy which succeeds against X with probability > 0.9999.

Take-home message: probabilistic gamblers are strictly better than
deterministic gamblers!
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A vague idea of the proof

To prove this result, we use the notion of (computability-theoretic) Cohen
genericity, namely the class of 1-generics. We say that an object X is 1-generic
if for every effectively open set U , X is either in U or in Int(Uc).

1-genericity is usually defined for infinite binary sequences but is a topological
notion, so it can be extended to the topological space of strategies. The
topology: we view the space of strategies as a (closed) subspace of the space
of functions {f : 2<ω → R} with the product topology.

It turns out that 1-generic martingales are good at defeating sequences that
are very close to computable!
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A vague idea of the proof

Also, there is probabilistic algorithm which can generate 1-generic objects
with > 0.9999 probability (fireworks argument would deserve a whole talk!).

This algorithm induces a (twisted!!) measure ξ on the space of martingales,
with ξ(1GEN) > 0.9999.

So now we can build an X so close to computable that

ξ
{
S | S defeats X

}
> 0.9999

... which means that indirectly, we have built a probabilistic martingale which
succeeds against X with high probability!
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Looking forward

So we now have a seemingly new notion of randomness:
a.e.-unpredictability.

It is implied by Martin-Löf randomness, but is it as strong as Martin-Löf
randomness? No!

Theorem
There are a.e.-unpredictable sequences X that satisfyK(X0 . . . Xn) = O(log n).
Theorem
There are a.e.-unpredictable sequences X that satisfyK(X0 . . . Xn) = O(log n).
Theorem
There are a.e.-unpredictable sequences X that satisfyK(X0 . . . Xn) = O(log n).

So we have a truly new notion of randomness, which deserves further study.
Also, one now needs to take a new look are the randomness zoo...
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Looking forward
... and see which ones have an non-trivial ‘a.e.’ counterpart!
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Thank You !
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