Deterministic vs probabilistic gamblers

Laurent Bienvenu (CNRS \& Université de Bordeaux + Meiji University)
joint work with
Valentino Delle Rose (Universidad Católica de Chile)
Tomasz Steifer (Universidad Católica de Chile)

CCC 2023, Kyoto

September 26, 2023

1. Algorithmic randomness

Random infinite sequences

Algorithmic randomness is the theory whose goal is to give a satisfactory meaning to the notion of random individual objects (in this talk: infinite binary sequences).

Random infinite sequences

Algorithmic randomness is the theory whose goal is to give a satisfactory meaning to the notion of random individual objects (in this talk: infinite binary sequences).

Example:

Random infinite sequences

Algorithmic randomness is the theory whose goal is to give a satisfactory meaning to the notion of random individual objects (in this talk: infinite binary sequences).

Example:
111000000111000000000111000111000111000111000000111111000 000000111111000000000000111000000111000000111000111111111 111111000111000111000111000000000111000000111000000000111 111000111000000000000111111111000000111000111111111000....

Random infinite sequences

Algorithmic randomness is the theory whose goal is to give a satisfactory meaning to the notion of random individual objects (in this talk: infinite binary sequences).

Example:
111000000111000000000111000111000111000111000000111111000 000000111111000000000000111000000111000000111000111111111 111111000111000111000111000000000111000000111000000000111 111000111000000000000111111111000000111000111111111000....

Not random!

Random infinite sequences

On the other hand:

Random infinite sequences

On the other hand:

1110100000010000000101110001010111011110011100001000011011100000
1111111011001001000100110101111000111100000111001011001110111010
11101010100100101110001000010111 11101010....

Random infinite sequences

On the other hand:

1110100000010000000101110001010111011110011100001000011011100000
1111111011001001000100110101111000111100000111001011001110111010
11101010100100101110001000010111 11101010....

Looks random!

Kolmogorov complexity

Definition

Let x be a finite binary string. We call Kolmogorov complexity of x the quantity $K(x)$ defined by
$K(x)=$ the shortest computer program (in binary) that generates x

Of course formalizing all this needs some care. A sound formalism can be achieved using Turing machines (and programs=inputs of universal Turing machine).

Modulo this formalization, we can now say that a string x is random with randomness deficiency at most c if $K(x) \geq|x|-c$.

Martin-Löf randomness

Definition

An infinite sequence X is Martin-Löf random if and only if for some c and for all n,

$$
K\left(X_{0} \ldots X_{n}\right)>n-c{ }^{*}
$$

[^0]
Unpredictability

Another definition due to Schnorr (1971). Let us consider the following (infinite) prediction game, where a player wants to guess the bits of an infinite binary sequence.

Unpredictability

Another definition due to Schnorr (1971). Let us consider the following (infinite) prediction game, where a player wants to guess the bits of an infinite binary sequence.

- The bits of the sequence are written on cards, facing down.

Unpredictability

Another definition due to Schnorr (1971). Let us consider the following (infinite) prediction game, where a player wants to guess the bits of an infinite binary sequence.

- The bits of the sequence are written on cards, facing down.
- The player tries to predict the values of these cards in order. Starting with a capital of $\$ 1$, she bets at each move some amount of her money on the value of the next card.

Unpredictability

Another definition due to Schnorr (1971). Let us consider the following (infinite) prediction game, where a player wants to guess the bits of an infinite binary sequence.

- The bits of the sequence are written on cards, facing down.
- The player tries to predict the values of these cards in order. Starting with a capital of $\$ 1$, she bets at each move some amount of her money on the value of the next card.
- The player wins the infinite game if her capital tends to infinity throughout the game.

Unpredictability

Unpredictability

Bet 0.3 on " 0 "

Unpredictability

Bet 0.3 on " 0 "

Unpredictability

Bet 0.6 on " 1 "

Unpredictability

Bet 0.6 on " 1 "

Unpredictability

Bet 0.7 on " 0 "

Unpredictability

Bet 0.7 on " 0 "

Unpredictability

$$
\text { Bet } 0.1 \text { on " } 0 \text { " }
$$

Unpredictability

$$
\text { Bet } 0.1 \text { on " } 0 \text { " }
$$

Unpredictability

Bet 1.2 on " 0 "

Unpredictability

Bet 1.2 on " 0 "

Unpredictability

$0 \boxed{10} 0 \boxed{\square} \square \cdots$
 Bet 0.5 on " 0 "

Unpredictability

$0 \boxed{10} 0 \sqrt{0} \frac{1}{1} \square \cdots$
 Bet 0.5 on " 0 "

Unpredictability

Bet 0.3 on " 0 "

Unpredictability

Bet 0.3 on " 0 "

Unpredictability

We say that an infinite sequence X is unpredictable if there is no computable strategy that defeats X in this game.

Unpredictability

We say that an infinite sequence X is unpredictable if there is no computable strategy that defeats X in this game.

The natural question: how do unpredictability and randomness relate to each other?

Unpredictability

We say that an infinite sequence X is unpredictable if there is no computable strategy that defeats X in this game.

The natural question: how do unpredictability and randomness relate to each other?

It is fairly easy to prove that for an infinite sequence, random implies unpredictable.

Unpredictability

We say that an infinite sequence X is unpredictable if there is no computable strategy that defeats X in this game.

The natural question: how do unpredictability and randomness relate to each other?

It is fairly easy to prove that for an infinite sequence, random implies unpredictable.

The converse is far from true: there are unpredictable sequences X which are 'close-to-computable', so much so that $K\left(X_{0} \ldots X_{n}\right)=O(\log n)$ (hence are not random).

Unpredictability

We say that an infinite sequence X is unpredictable if there is no computable strategy that defeats X in this game.

The natural question: how do unpredictability and randomness relate to each other?

It is fairly easy to prove that for an infinite sequence, random implies unpredictable.

The converse is far from true: there are unpredictable sequences X which are 'close-to-computable', so much so that $K\left(X_{0} \ldots X_{n}\right)=O(\log n)$ (hence are not random).

Nonetheless this is a natural notion worth studying.
2. Randomizing things

Randomized betting strategies

What happens if we reinforce the betting strategy model, by allowing the gambler to use a probabilistic algorithm to try to guess X ?

Randomized betting strategies

What happens if we reinforce the betting strategy model, by allowing the gambler to use a probabilistic algorithm to try to guess X ?

Do we get a strictly stronger randomness notion?

Randomized betting strategies

What happens if we reinforce the betting strategy model, by allowing the gambler to use a probabilistic algorithm to try to guess X ?

Do we get a strictly stronger randomness notion?
If so, how does it relate to Martin-Löf randomness?

A restricted model

This model was first studied by Buss and Minnes (2013) who considered a restricted case, namely when the betting strategy must be defined with probability 1 . They proved:

A restricted model

This model was first studied by Buss and Minnes (2013) who considered a restricted case, namely when the betting strategy must be defined with probability 1 . They proved:

Theorem

If X is unpredictable, it also defeats all probabilistic betting strategies that are defined with probability 1.

A restricted model

This model was first studied by Buss and Minnes (2013) who considered a restricted case, namely when the betting strategy must be defined with probability 1 . They proved:

Theorem

If X is unpredictable, it also defeats all probabilistic betting strategies that are defined with probability 1.

But this leaves open the general question, where gamblers can take even more risk by allowing some random choices to trap them in an infinite loop (more risk, more potential reward!).

Buss-Minnes theorem revisited

A neat argument to see why the Buss-Minnes theorem is true:

Buss-Minnes theorem revisited

A neat argument to see why the Buss-Minnes theorem is true:

Instead of viewing betting strategies as using random bits, view the use of probabilistic choices as endowing the space of betting strategies with a probability measure μ.

Buss-Minnes theorem revisited

A neat argument to see why the Buss-Minnes theorem is true:
Instead of viewing betting strategies as using random bits, view the use of probabilistic choices as endowing the space of betting strategies with a probability measure μ.

The condition that the strategy must be defined with probability 1 ensures that μ is nice, namely, it is a computable probability measure.

Buss-Minnes theorem revisited

A neat argument to see why the Buss-Minnes theorem is true:
Instead of viewing betting strategies as using random bits, view the use of probabilistic choices as endowing the space of betting strategies with a probability measure μ.

The condition that the strategy must be defined with probability 1 ensures that μ is nice, namely, it is a computable probability measure.

Thus, the average $\mathbb{E}_{\mu}(S)$ is a computable strategy, therefore when 'playing' on an unpredictable $X, \mathbb{E}_{\mu}(S)$ must remain bounded, thus
$\mu\{S \mid S$ remains bounded against $X\}=1$

Our main result

If we remove the Buss-Minnes assumption, the situation changes dramatically:

Our main result

If we remove the Buss-Minnes assumption, the situation changes dramatically:

Theorem
There exists an X which is unpredictable but for which there is a probabilistic strategy which succeeds against X with probability >0.9999.

Our main result

If we remove the Buss-Minnes assumption, the situation changes dramatically:

Theorem

There exists an X which is unpredictable but for which there is a probabilistic strategy which succeeds against X with probability >0.9999.

Take-home message: probabilistic gamblers are strictly better than deterministic gamblers!

A vague idea of the proof

To prove this result, we use the notion of (computability-theoretic) Cohen genericity, namely the class of 1 -generics. We say that an object X is 1 -generic if for every effectively open $\operatorname{set} \mathcal{U}, X$ is either in \mathcal{U} or in $\operatorname{Int}\left(\mathcal{U}^{C}\right)$.

A vague idea of the proof

To prove this result, we use the notion of (computability-theoretic) Cohen genericity, namely the class of 1 -generics. We say that an object X is 1 -generic if for every effectively open set \mathcal{U}, X is either in \mathcal{U} or in $\operatorname{Int}\left(\mathcal{U}^{c}\right)$.

1-genericity is usually defined for infinite binary sequences but is a topological notion, so it can be extended to the topological space of strategies. The topology: we view the space of strategies as a (closed) subspace of the space of functions $\left\{f: 2^{<\omega} \rightarrow \mathbb{R}\right\}$ with the product topology.

A vague idea of the proof

To prove this result, we use the notion of (computability-theoretic) Cohen genericity, namely the class of 1 -generics. We say that an object X is 1 -generic if for every effectively open $\operatorname{set} \mathcal{U}, X$ is either in \mathcal{U} or in $\operatorname{Int}\left(\mathcal{U}^{c}\right)$.

1-genericity is usually defined for infinite binary sequences but is a topological notion, so it can be extended to the topological space of strategies. The topology: we view the space of strategies as a (closed) subspace of the space of functions $\left\{f: 2^{<\omega} \rightarrow \mathbb{R}\right\}$ with the product topology.

It turns out that 1-generic martingales are good at defeating sequences that are very close to computable!

A vague idea of the proof

To prove this result, we use the notion of (computability-theoretic) Cohen genericity, namely the class of 1 -generics. We say that an object X is 1 -generic if for every effectively open $\operatorname{set} \mathcal{U}, X$ is either in \mathcal{U} or in $\operatorname{Int}\left(\mathcal{U}^{c}\right)$.

1-genericity is usually defined for infinite binary sequences but is a topological notion, so it can be extended to the topological space of strategies. The topology: we view the space of strategies as a (closed) subspace of the space of functions $\left\{f: 2^{<\omega} \rightarrow \mathbb{R}\right\}$ with the product topology.

It turns out that 1-generic martingales are good at defeating sequences that are very close to computable!

A vague idea of the proof

Also, there is probabilistic algorithm which can generate 1-generic objects with >0.9999 probability (fireworks argument would deserve a whole talk!).

A vague idea of the proof

Also, there is probabilistic algorithm which can generate 1-generic objects with >0.9999 probability (fireworks argument would deserve a whole talk!).

This algorithm induces a (twisted!!) measure ξ on the space of martingales, with $\xi(1 G E N)>0.9999$.

A vague idea of the proof

Also, there is probabilistic algorithm which can generate 1-generic objects with >0.9999 probability (fireworks argument would deserve a whole talk!).

This algorithm induces a (twisted!!) measure ξ on the space of martingales, with $\xi(1 G E N)>0.9999$.

So now we can build an X so close to computable that

$$
\xi\{S \mid S \text { defeats } X\}>0.9999
$$

... which means that indirectly, we have built a probabilistic martingale which succeeds against X with high probability!

Looking forward

So we now have a seemingly new notion of randomness:

a.e.-unpredictability.

Looking forward

So we now have a seemingly new notion of randomness:

a.e.-unpredictability.

It is implied by Martin-Löf randomness, but is it as strong as Martin-Löf randomness?

Looking forward

So we now have a seemingly new notion of randomness:

a.e.-unpredictability.

It is implied by Martin-Löf randomness, but is it as strong as Martin-Löf randomness? No!

Theorem

There are a.e.-unpredictable sequences X that satisfy $K\left(X_{0} \ldots X_{n}\right)=O(\log n)$.

Looking forward

So we now have a seemingly new notion of randomness:

a.e.-unpredictability.

It is implied by Martin-Löf randomness, but is it as strong as Martin-Löf randomness? No!

Theorem
 There are a.e.-unpredictable sequences X that satisfy $K\left(X_{0} \ldots X_{n}\right)=O(\log n)$.

So we have a truly new notion of randomness, which deserves further study. Also, one now needs to take a new look are the randomness zoo...

Looking forward

... and see which ones have an non-trivial 'a.e.' counterpart!

References

[1] Sam Buss, Mia Minnes, "Probabilistic Algorithmic Randomness", Journal of Symbolic Logic 78(2), 2013.
[2] Laurent Bienvenu, Valentino Delle Rose, Tomasz Steifer, "Probabilistic vs deterministic gamblers", STACS 2022 and arxiv.org/abs/2112.04460

Thank You!

[^0]: * for this definition we need to consider a variant of Kolmogorov complexity, the so-called prefix-free Kolmogorov complexity

