Kuratowski's problems in constructive topology

Francesco CIRAULO
Padua

CCC2023
27 September 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 731143

Classical Kuratowski's problem: the closure-complement problem ($i=-c-$)

A 14-set of reals

$$
\begin{aligned}
& \begin{array}{cccccc}
-2 & -1 & 0 & 1 & 2 & 3 \\
0 & 0 & \ldots
\end{array} \\
& \{-2\} \cup(-1,0) \cup(0,1) \cup((2,3) \cap \mathbb{Q})
\end{aligned}
$$

Kuratowski's monoids: the case of a Boolean space

Boolean space $=$ the opens are a cBa

A space is Boolean iff $c=i c$ iff $c i=i$ iff ...

$i=-c-$ does not make sense
(when $c=1$ we get $i=--$ which is an interior operator iff LEM)
so we keep i as primitive and
we have 3 possibilities for c

- treat c as primitive too (and no pseudocomplement)
- put $c=-i-$ (the "negative" definition of closure)
- define c in terms of adherent points ("positive")

For an interior i

$$
(i x \leq i y \text { iff } i x \leq y)
$$

and a closure c

$$
(c x \leq c y \text { iff } x \leq c y)
$$

on an arbitrary poset:

Constrcutive and very general:

- no link between i and c
- no topology

Example: if $c i=i$ (a version of Booleanness), then

(because $c i=i$ implies $c i=i c i=i$, and $c i=i c i$ is equivalent to $c i c=i c$)

The present framework is a bit too general for studying Kuratowski's monoids...

There are 26 additional inequalities which could be imposed:

$$
\begin{aligned}
& c=i, c=i c i, c=i c, c=c i, c=c i c, c=1, \\
& c i c=i, c i c=i c i, c i c=i c, c i c=c i, c i c \leq 1,1 \leq c i c, \\
& i c=i, i c=i c i, i c \leq c i, i c \leq 1,1 \leq i c, \\
& c i=i, c i=i c i, c i \leq i c, c i \leq 1,1 \leq c i, \\
& i c i=i, i c i \leq 1,1 \leq i c i, \\
& 1=i .
\end{aligned}
$$

Although some are equivalent...

$c i c \leq 1$	$c i c=i$	
$1 \leq c i c$	$c=c i c$	
$i c \leq c i$	$c i c=c i$	$i c=i c i$
$i c \leq 1$	$i c=i$	
$1 \leq i c$	$c=i c$	
$c i \leq i c$	$c i c=i c$	$c i=i c i$
$c i \leq 1$	$c i=i$	
$1 \leq c i$	$c=c i$	
$i c i \leq 1$	$i c i=i$	
$1 \leq i c i$	$c=i c i$	

(items in the same row are equivalent).

These are the implications which hold in general:

(some counterexample still missing).

Closure via adherent points

In a topological space
$p \in c(Y)$ if every (basic) open neighbourhood of p overlaps Y
if $i(X)$ and $c(Y)$ overlap each other, then in fact $i(X)$ and Y overlap each other

In order to get a general algebraic version of this, we need a poset with overlap...

Overlap relations

```
Poset with overlap \((L, \leq, æ)\)
\(=\operatorname{poset}(L, \leq)+\) binary relation \(\gtrless\) on \(L\) s.t.
```

$x \ngtr y \Rightarrow y æ x$
(symmetry)
$(x \nless y) \&(y \leq z) \Rightarrow(x \ngtr z)$
(monotonicity)
$\forall z(x \gg z \Rightarrow y \gg z) \Rightarrow x \leq y$
(density)

A "positive" link between interior and closure

Compatibility:

$$
i x æ c y \Rightarrow i x æ y
$$

In a poset with \gg
if i and c are compatible then:
$\bullet i=1 \Rightarrow c=1$

- ...
- $c=i c \Rightarrow c i=i$
- $c=c i \Rightarrow i c=i$
-

TFAE:

- LEM
- $c=1 \Rightarrow i=1$
- $c i=i \Rightarrow c=i c$
- ...

Example: two versions of Booleanness

$c i=i$
(every open is closed)

$$
c i=i c i=i
$$

$c=i c$
(every closed is open)

$$
c=c i c=i c
$$

The case of a Kolmogorov space

Example: two versions of Booleanness $+T_{0}$

$$
(c=i c)+T_{0} \Longleftrightarrow \underbrace{i=1}_{(\text {discrete })}
$$

$$
\left[(c i=i)+T_{0} \Longleftrightarrow i=1\right] \quad \text { iff LEM }
$$

The interior-pseudocomplement problem

Pseudo-complement operator - on a poset L :

$$
x \leq-y \Longleftrightarrow y \leq-x
$$

(- defines an antitone Galois connection on L)
Properties:
$x \leq--x$
$x \leq y \Rightarrow-y \leq-x$
(- is antitone)
$---x=-x$
($---=-$)
$x \leq--y \Leftrightarrow--x \leq--y$
(- - is a closure operator)
As usual, let i be an interior operator on L. Put $b=-i-$ (closure operator).

31 possible combinations

monotone	antitone
1	-
--	$i-$
i	-b
$i--$	$-i$
$--i$	$b-$
-b-	$i-i$
$i--i$	$i b-$
b	-bi
$i b$	$-b i--$
$--i b$	-ib
$\begin{gathered} b i \\ b i-- \end{gathered}$	$\begin{aligned} & i b i- \\ & -b i b \end{aligned}$
$\begin{gathered} i b i \\ i b i-- \end{gathered}$	$-i b i$ $-i b i--$
$\begin{aligned} & --i b i \\ - & -i b i- \end{aligned}$	14
bib	
17	

Cayley graph of the monoid generated by iand -

$$
i-b=i--i-=i-
$$

$$
b-i=-i--i=-i
$$

$i w i=i-i$
$i w i \in\{i, i--i, i b i\}$
for every w with an odd number of -'s
for every w with an even number of -'s

L = poset (co-frame) of all sublocales of a given locale
\leq is the sub-locale relation
(opposite of the pointwise order on nuclei)

- is the co-pseudocomplement on the co-frame L
$(-x \leq y \Leftrightarrow-y \leq x)$
$i=$ the interior in the sense of sublocales
(it is a closure operator on nuclei)
$c=$ the closure in the sense of sublocales
(it is an interior operator on nuclei)

Some facts about open and closed sublocales

Open and closed sublocales are complemented in L : the complement of an open sublocale is closed and the complement of a closed sublocale is open.

Consequences:

$$
\begin{gathered}
--i=i=-c-=i--\leq--\leq c--=-i-\leq c=--c \\
-c \leq i-\leq-\leq c-=-i
\end{gathered}
$$

Formally, the Kuratowski's problem for locales is a special case of the interior-pseudocomplement problem above...

Warning: since now - is a co-pseudocomplement, one has to apply the previous result with respect to the opposite order, and so the roles of the interior and closure operators are switched.

As $i=-c-$, we fall under the assumption about b above (where the closure b was supposed to be $-i-$).

Solution: (i) take the previous diagrams, (ii) reverse them, (iii) write c in place of i, (iv) then write i in place of b, and (v) simplify based on the previous facts.

$c \neq-i-$
$X=$ the opposite of $\omega+1$ (it's a cHa/frame/locale) $Y=$ its smallest dense sublocale (it is defined by the double negation nucleus) so $c Y=X$.
But $-Y=X$ and hence
$-i-Y=\emptyset$ (the smallest sublocale of X).
C., Kuratowski's problem in constructive Topology, (submitted)
C., Overlap Algebras as Almost Discrete Locales, Logical Methods in Computer Science (to appear)
C. \& Contente, Overlap Algebras: a constructive look at complete Boolean algebras, Logical Methods in Computer Science (2020)
C. \& Maietti \& Toto, Constructive version of Boolean algebra, Logic Journal of the IGPL (2012)
C. \& Sambin, The overlap algebra of regular opens, Journal of Pure and Applied Algebra (2010)

Sambin, Positive Topology. A new practice in constructive mathematics, Clarendon Press, Cambridge (to appear)

Al-Hassani \& Mahesar \& Sacerdoti Coen \& Sorge, A term rewriting system for Kuratowski's closure-complement problem, 23rd International Conference on Rewriting Techniques and Applications (2012)

Gardner \& MJackson, The Kuratowski closure-complement theorem, New Zealand J. Math. 38 (2008)

He \& Zhang, Interior and boundary in a locale, Adv. Math. (China) 29 (2000)

Thank you!

