Kuratowski's problems in constructive topology

Francesco CIRAULO Padua

CCC2023 27 September 2023 This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 731143 Classical Kuratowski's problem: the closure-complement problem (i = -c-)

A 14-set of reals

$\begin{array}{cccc} -2 & -1 & 0 & 1 & 2 & ... & 3 \\ \hline \{-2\} \cup (-1,0) \cup (0,1) \cup ((2,3) \cap \mathbb{Q}) \end{array}$

Kuratowski's monoids: the case of a Boolean space

Boolean space = the opens are a cBa

A space is Boolean iff c = ic iff ci = i iff ...

What happens CONSTRUCTIVELY (no LEM)?

i = -c - does not make sense

(when c = 1 we get i = -- which is an interior operator iff LEM)

so we keep *i* as primitive and

we have 3 possibilities for *c*

- treat c as primitive too (and no pseudocomplement)
- put c = -i (the "negative" definition of closure)
- define *c* in terms of adherent points ("positive")

The interior-closure problem

For an interior *i* ($ix \le iy$ iff $ix \le y$) and a closure *c* ($cx \le cy$ iff $x \le cy$) on an arbitrary poset:

Constrcutive and very general:

- no link between *i* and *c*
- no topology

Example: if ci = i (a version of Booleanness), then

(because ci = i implies ci = ici = i, and ci = ici is equivalent to cic = ic)

The present framework is a bit too general for studying Kuratowski's monoids...

There are 26 additional inequalities which could be imposed:

$$c = i, c = ici, c = ic, c = ci, c = cic, c = 1,$$

 $cic = i, cic = ici, cic = ic, cic = ci, cic \le 1, 1 \le cic,$
 $ic = i, ic = ici, ic \le ci, ic \le 1, 1 \le ic,$
 $ci = i, ci = ici, ci \le ic, ci \le 1, 1 \le ci,$
 $ici = i, ici \le 1, 1 \le ici,$
 $1 = i.$

Although some are equivalent...

$\textit{cic} \leq 1$	cic = i	
$1 \leq cic$	c = cic	
ic ≤ ci	cic = ci	ic = ici
$ic \leq 1$	ic = i	
$1 \leq ic$	c = ic	
$ci \leq ic$	cic = ic	ci = ici
<i>ci</i> ≤ 1	<i>ci</i> = <i>i</i>	
1 ≤ <i>ci</i>	c = ci	
<i>ici</i> ≤ 1	ici = i	
$1 \leq ici$	c = ici	

(items in the same row are equivalent).

These are the implications which hold in general:

(some counterexample still missing).

Closure via adherent points

In a topological space $p \in c(Y)$ if every (basic) open neighbourhood of p overlaps Y

if i(X) and c(Y) overlap each other, then in fact i(X) and Y overlap each other

In order to get a general algebraic version of this, we need a poset with overlap...

Overlap relations

Poset with overlap (L, \leq, \rtimes) = poset (L, \leq) + binary relation \rtimes on *L* s.t.

 $x \ge y \Rightarrow y \ge x$ (symmetry)

 $(x \ge y) \& (y \le z) \Rightarrow (x \ge z)$ (monotonicity)

 $\forall z \ (x \otimes z \Rightarrow y \otimes z) \Rightarrow x \leq y$

(density)

A "positive" link between interior and closure

Compatibility:

 $ix \otimes cy \Rightarrow ix \otimes y$

In a poset with \approx if *i* and *c* are compatible then: • *i* = 1 \Rightarrow *c* = 1

• ... • $c = ic \Rightarrow ci = i$

• $c = ci \Rightarrow ic = i$

•

TFAE: • LEM • $c = 1 \Rightarrow i = 1$ • $ci = i \Rightarrow c = ic$ • ... Example: two versions of Booleanness

ci = i(every open is closed)

c = ic (every closed is open)

The case of a Kolmogorov space

Example: two versions of Booleanness + T_0

$$(c = ic) + T_0 \iff \underbrace{i = 1}_{(discrete)}$$

$$[(\mathbf{C}\mathbf{i}=\mathbf{i})+\mathbf{T}_0\iff\mathbf{i}=1]$$
 iff LEM

The interior-pseudocomplement problem

Pseudo-complement operator – on a poset *L*:

 $x \leq -y \iff y \leq -x$

(- defines an antitone Galois connection on *L*)

Properties: $(1 \le --)$ $x \le --x$ $(1 \le --)$ $x \le y \Rightarrow -y \le -x$ (- is antitone)--x = -x(-- = -) $x \le --y \Leftrightarrow --x \le --y$ (-- is a closure operator)

As usual, let \underline{i} be an interior operator on L. Put $\underline{b = -i-}$ (closure operator).

31 possible combinations

20

Cayley graph of the monoid generated by i and -

$$i - b = i - -i - = i - i - i - i = -i$$

 $b - i = -i - -i = -i$

iwi = i - ifor every *w* with an odd number of -'s

 $iwi \in \{i, i - -i, ibi\}$ for every *w* with an even number of -'s

The pointfree Kuratowski's problem

L = poset (co-frame) of all sublocales of a given locale

 \leq is the sub-locale relation (opposite of the pointwise order on nuclei)

− is the co-pseudocomplement on the co-frame *L* $(-x \le y \Leftrightarrow -y \le x)$

i = the interior in the sense of sublocales (it is a closure operator on nuclei)

c = the closure in the sense of sublocales(it is an interior operator on nuclei)

Open and closed sublocales are complemented in *L*: the complement of an open sublocale is closed and the complement of a closed sublocale is open.

Consequences:

$$--i = i = -c - = i - - \le - - \le c - - = -i - \le c = - - c$$

 $-c \le i - \le - \le c - = -i$

Formally, the Kuratowski's problem for locales is a special case of the interior-pseudocomplement problem above...

Warning: since now — is a co-pseudocomplement, one has to apply the previous result with respect to the opposite order, and so the roles of the interior and closure operators are switched.

As i = -c-, we fall under the assumption about *b* above (where the closure *b* was supposed to be -i-).

Solution: (i) take the previous diagrams, (ii) reverse them, (iii) write *c* in place of *i*, (iv) then write *i* in place of *b*, and (v) simplify based on the previous facts.

$$c \neq -i-$$

X = the opposite of $\omega + 1$ (it's a cHa/frame/locale) Y = its smallest dense sublocale (it is defined by the double negation nucleus) so cY = X. But -Y = X and hence $-i - Y = \emptyset$ (the smallest sublocale of X).

References

C., Kuratowski's problem in constructive Topology, (submitted)

C., Overlap Algebras as Almost Discrete Locales, Logical Methods in Computer Science (to appear)

C. & Contente, Overlap Algebras: a constructive look at complete Boolean algebras, Logical Methods in Computer Science (2020)

C. & Maietti & Toto, Constructive version of Boolean algebra, Logic Journal of the IGPL (2012)

C. & Sambin, The overlap algebra of regular opens, Journal of Pure and Applied Algebra (2010)

Sambin, Positive Topology. A new practice in constructive mathematics, Clarendon Press, Cambridge (to appear)

Other references?

Al-Hassani & Mahesar & Sacerdoti Coen & Sorge, A term rewriting system for Kuratowski's closure-complement problem, 23rd International Conference on Rewriting Techniques and Applications (2012)

Gardner & MJackson, The Kuratowski closure-complement theorem, New Zealand J. Math. 38 (2008)

He & Zhang, Interior and boundary in a locale, Adv. Math. (China) 29 (2000)

Thank you!