Totalization of ODEs

Olivier Bournez Riccardo Gozzi

Kyoto CCC 2023

September 29, 2023

Olivier Bournez Riccardo Gozzi

Totalization of ODEs

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction

Introduction

Let $[a, b] \subset \mathbb{R}$, $E \subset \mathbb{R}^n$, $f : E \to E$ and $y_0 \in E$. We consider IVPs on [a, b] of the type:

 $\begin{cases} y' = f(y(t)) \\ y(a) = y_0 \end{cases}$

- Dynamic is given by ordinary differential equations with a unique solution
- $y : [a, b] \to E \subseteq \mathbb{R}^n$ is the unique solution.

Analysis

If f is continuous, obtain y as limit of a sequence of continuous functions

Computability

if f is continuous, compute y with the Ten thousand monkeys approach [CG09]

Olivier Bournez Riccardo Gozzi

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Motivation

Relaxing continuity for f

Question 1: analysis

Can we obtain y?

- Is it always the case that we can obtain y analytically?
- Which method should be used?

Question 2: definability

What is the set theoretical complexity of y relative to f?

- Can we rank these IVPs depending on how hard is to obtain the solution *y*?
- Boldface and lightface analysis

Antidifferentiation

Antidifferentiation is a particular type of ODE solving when the derivative is known explicitely

- Let $F : [a, b] \subseteq \mathbb{R} \to \mathbb{R}$ be a function differentiable on [a, b]
- Let $f : [a,b] \subseteq \mathbb{R} \to \mathbb{R}$ be such that F'(x) = f(x) for all $x \in [a,b]$

Antidifferentiation

Can we obtain F from f? How?

- Lebesgue integration is not general enough
- Investigate antidifferentiation for non-Lebesgue integrable derivatives
- Denjoy totalization 1912, [Den12]

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Denjoy totalization

Condition on f: f is a derivative

Definition 1 (Nonsummable points of f)

Let *E* be a closed set $E \subseteq [a, b]$ and *f* a Lebesgue measurable function. A point $x \in E$ is a nonsummable point of f on E if f is not Lebesgue integrable in every $I \in E$, I an open interval containing x.

Theorem 2

If F is a differentiable function on [a, b] and $E \subseteq [a, b]$ is closed, then the nonsummable points of f on E form a closed nowhere dense set¹ in E

¹A subset A of a topological space X is nowhere dense in X if the closure of A has empty interior ▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ Olivier Bournez Riccardo Gozzi 5 / 15

Transfinite process

- Let E₁ = {x ∈ [a, b] such that x is a nonsummable point of f on [a, b]}, and let {(a_i, b_i)}_i be its contiguous intervals
- Obtain F(d) F(c) for all $[c,d] \subseteq [a,b]$ such that $[c,d] \cap E_1 = \emptyset$
- Since F is continuous, take limits to obtain $F(b_i) F(a_i)$ for all i.

Inductive step

Let $E_2 = \{x \in E_1 \text{ such that } x \text{ is a nonsummable point of } f \text{ on } E_1\}$

- We know by the same theorem that E_2 is nowhere dense in E_1
- Repeat the above for E₂
- Proceed by transfinite induction, taking intersections at limit ordinals

- If $E_{\alpha+1} \subseteq E_{\alpha}$ with $E_{\alpha+1}$ nowhere dense in E_{α} , $\Rightarrow E_{\alpha+1} \subset E_{\alpha}$
- The process converges due to Cantor-Baire stationary principle [EV10] $\Rightarrow E_{\alpha} = \emptyset$ for some $\alpha < \omega_1$
- We obtain F(d) F(c) for all [c, d] ⊆ [a, b] ⇒ Totalization leads to the antiderivative in the most general setting

Theorem 3 ([DK91])

The operation of antidifferentiation is not Borel.²

Theorem 4 ([Wes20])

The set $\{f \in M(I) : f \text{ is Denjoy integrable}\}$ is Π_1^1 -complete.

• Ajtai, $F\in \Delta^1_1(f)$

²More precisely, there is no Borel set $B \subseteq C[a, b]^{\mathbb{N}}$ such that for f derivative $f \in B \iff F(b) - F(a) > 0$.

Olivier Bournez Riccardo Gozzi

Back to ordinary differential equations

 $\begin{cases} y' = f(y(t)) \\ y(a) = y_0 \end{cases}$

- We find a set of conditions on *f* that allows to apply a techinque inspired by the totalization method
- We isolate the problematic parts of *E* via transfinite recursion
- On the remaining parts we apply a search method inspired by the Ten thousand monkeys approach [CG09]

Nonsummability points -----> Discontinuity points

Lebesgue integration \longrightarrow Search method

Isolating the discontinuities

Definition 5 (sequence of f-removed sets on E)

Let $\{E_{\alpha}\}_{\alpha < \omega_1}$ be a transfinite sequence of sets and $\{f_{\alpha}\}_{\alpha < \omega_1}$ a transfinite sequence of functions $f_{\alpha} = f \upharpoonright_{E_{\alpha}} : E_{\alpha} \to \mathbb{R}^r$ defined as following:

- Let $E_0 = E$
- For all $\alpha = \beta + 1$ let $E_{\alpha} = \{x \in E_{\beta} : f_{\beta} \text{ is discontinuous in } x\}$
- For all α limit ordinal, let E_{α} be $E_{\alpha} = \cap_{\beta} E_{\beta}$ with $\beta < \alpha$

Connections with:

- [Her96]: continuous computational trees
- [dB14]: realizability of jump operators

Search method at step α

Definition 6 ((α)Monkeys approach)

We call the (α) Monkeys approach for (f, y_0) the following method: consider all tuples of the form $(X_{i,\beta,j}, h_{i,\beta,j}, B_{i,\beta,j}, C_{i,\beta,j}, Y_{i,\beta,j})$ for $i = 0, \ldots, l - 1, \beta < \alpha, j = 1, \ldots, m_{i,\beta}$, where $h_{i,\beta,j} \in \mathbb{Q}^+$, $l, m_i \in \mathbb{N}$ and $X_{i,\beta,j}$, $B_{i,\beta,j}$, $C_{i,\beta,j}$ and $Y_{i,\beta,j}$ are open rational boxes in *E*. A tuple is said to be valid if $y_0 \in \bigcup_{\beta,j} X_{0,\beta,j}$ and for all $i = 0, \ldots, l - 1, \beta < \alpha$, $j = 1, \ldots, m_{i,\beta}$:

- 1. Either $(B_{i,\beta,j} = \emptyset)$ or $(\overline{B}_{i,\beta,j} \cap E_{\beta} \neq \emptyset \text{ and } \overline{B}_{i,\beta,j} \cap E_{\beta+1} = \emptyset)$
- 2. $f_{\beta}\left(\overline{B}_{i,\beta,j}\right) \subset C_{i,\beta,j};$
- **3**. $X_{i,\beta,j} \cup Y_{i,\beta,j} \subset B_{i,\beta,j}$;
- 4. $X_{i,\beta,j} + h_{i,\beta,j}C_{i,\beta,j} \subset Y_{i,\beta,j};$
- **5**. $\bigcup_{\beta,j} Y_{i,\beta,j} \subset \bigcup_{\beta,j} X_{i+1,\beta,j};$

Conditions on right-hand term f

Solvable functions

A function f is called solvable if it is a function of class Baire one ³ and it is such that for every closed set $K \subseteq E$ the set of discontinuity points of function $f \upharpoonright_{K}$ is a closed set

Theorem 7 (Bournez and G.)

If f is solvable then there exists an ordinal $\alpha < \omega_1$ such that $E_\beta = \emptyset$ for all $\beta \ge \alpha$.

³Let X, Y be two separable, complete metric spaces. A function $f : X \to Y$ is Baire one if there exists a sequence of continuous functions from X to Y, $\{f_m\}_m$, such that $\lim_{m\to\infty} f_m(x) = f(x)$ for all $x \in X$. Olivier Bournez Riccardo Gozzi Totalization of ODEs 11 / 15

Main result

Theorem 8 (Bournez and G.)

Consider a closed interval, a closed domain $E \subset \mathbb{R}^r$ for some $r \in \mathbb{N}$ and a function $f : E \to E$ such that, given an initial condition, the IVP with right-hand term f has a unique solution on the interval. If f is solvable, then we can obtain the solution analytically via transfinite recursion up to an ordinal α such that $\alpha < \omega_1$.

- The method is bound to terminate for some countable ordinal due to previous theorem
- The transfinite number of steps corresponds to the first ordinal α such that $E_{\alpha} = \emptyset$ and represents the complexity of ODEs solving for f on E

Obtaining the solution

- Given the domain *E*, construct the sequence of *f*-removed sets on *E*, obtaining the ordinal α < ω₁ such that *E*_α = Ø.
- For all n ∈ N, build a valid tuple of the (α)Monkeys approach such that rad (B_{i,β,j}) < δ_{i,β,j}(¹/_{2n}) for all i = 0,..., l − 1, β < α, j = 1,..., m_{i,β}. We can then choose rad (C_{i,β,j}) < ¹/_n, since f_β(B_{i,β,j}) ⊂ C_{i,β,j},
- For each valid tuple, define a sequence of times $\{t_i\}_{i=0,...,l}$ and a function $\eta_n : [a, t_l] \to E$ such that $\eta_n(a) = y_0$ and such that for all i < l we have $\eta_n(t_i) \in X_{i,\beta(i),j(i)}$ and $\eta'_n(t_i) \in C_{i,\beta(i),j(i)}$ for all i = 0, ..., l-1
- Take the limit of the sequence of functions $\{\eta_n\}_n$ on the interval [a, b]

Examples

Do solvable systems exist?

- We can transform discontinuous derivatives into right-hand terms for bidimensional IVPs
- We can construct an example of IVP of this type with $\textit{E}_{\alpha} \neq \emptyset$ for all $\alpha < \omega_1$

Are solvable systems useful?

Theorem 9 (Bournez and G.)

Let $h : \mathbb{N} \to \mathbb{N}$ be a total, one-to-one computable function enumerating the halting set and let $\mu = \sum_{i=0}^{\infty} 2^{-h(i)}$. Let $E = [0,5] \times [0,5]$. There exists an IVP with unique solution $y : [0,5] \to E$, rational initial condition and right-hand term computable everywhere on E except a straight-line, such that $y_2(5) = \mu$

Conclusions

- Question 1: there is an analytical method that leads to the solution of these discontinuous systems via transfinite recursion.
- Question 2: in parallel with results from [DK91] and [Wes20] for antidifferentiation we expect to obtain similar complexity results for ODEs solving

References

References I

- P. Collins and D. S. Graça, Effective computability of solutions of differential inclusions — the ten thousand monkeys approach, Journal of Universal Computer Science 15 (2009), no. 6, 1162–1185.
- Matthew de Brecht, *Levels of discontinuity, limit-computability, and jump operators*¹, Logic, computation, hierarchies **4** (2014), 79.
- Arnaud Denjoy, *Une extension de l'intégrale de m. lebesgue*, CR Acad. Sci. Paris **154** (1912), 859–862.
- Randall Dougherty and Alexander S Kechris, The complexity of antidifferentiation, Advances in Mathematics 88 (1991), no. 2, 145–169.
- R. Estrada and J. Vindas, On romanovski's lemma, Real Analysis Exchange 35 (2010), 431–444.

References

References II

- Peter Hertling, Topological complexity with continuous operations, Journal of Complexity 12 (1996), no. 4, 315–338.
- Linda Westrick, *An effective analysis of the denjoy rank*, Notre Dame Journal of Formal Logic **61** (2020), no. 2.

References

Thank you!

Olivier Bournez Riccardo Gozzi

Totalization of ODEs