Predicative presentation of stably locally compact locales

Tatsuji Kawai

Kochi University

CCC 2023, 25 September 2023

1

Every stably compact locale is an adjoint retract of the ideals of a distributive lattice.

Every stably compact locale is an adjoint retract of the ideals of a distributive lattice.

Proof.

If X is a stably compact locale, its ideal completion (the class of ideals over X seen as a distributive lattice) satisfies the required condition.

Every stably compact locale is an adjoint retract of the ideals of a distributive lattice.

Proof.

If X is a stably compact locale, its ideal completion (the class of ideals over X seen as a distributive lattice) satisfies the required condition.

Theorem (This talk)

Every stably (**locally**) compact locale is a dual frame adjoint retract of the ideals of a (**0-bounded**) distributive lattice.

Every stably compact locale is an adjoint retract of the ideals of a distributive lattice.

Proof.

If X is a stably compact locale, its ideal completion (the class of ideals over X seen as a distributive lattice) satisfies the required condition.

Theorem (This talk)

Every stably (**locally**) compact locale is a dual frame adjoint retract of the ideals of a (**0-bounded**) distributive lattice.

The latter seems to capture the duality of stably (locally) compact locales better.

Preliminary

Domain theory

Definition

- ► A subset U of a poset (P, ≤) is directed if it is inhabited and any two elements of U have an upper bound in U.
- A dcpo is a poset (D, ≤) in which every directed subset U ⊆ D has a least upper bound, denoted by

$$\bigvee^{\uparrow} U :=$$
 the directed join of U .

For elements x, y of a dcpo D, we say that y is way-below x, denoted y ≪ x, if for every directed subset U ⊆ D, we have

$$x \leq \bigvee^{\uparrow} U \rightarrow \exists z \in U (y \leq z).$$

A continuous domain is a dcpo *D* in which every element is a directed join of elements way-below it, i.e., for each *x* ∈ *D*, the set ↓ *x* ^{def} { *y* ∈ *D* | *y* ≪ *x*} is directed and *x* = √[↑] ↓ *x*.

Definition

A preframe is a dcpo (P, ≤) with a meet semilattice structure (P, 1, ∧) where finite meets distribute over directed joins:

$$x \wedge \bigvee^{\uparrow} U = \bigvee_{y \in U}^{\uparrow} (x \wedge y).$$

- A frame is a complete lattice (X, 1, ∧, ∨) where finite meets distribute over all joins: x ∧ ∨ U = ∨_{y∈U}(x ∧ y).
- A frame is locally compact if it is a continuous domain.
- A locally compact frame is stably locally compact if

$$x \ll y \& x \ll z \to x \ll y \land z.$$

Definition

- Let P and Q be preframes. A function f: P → Q is a preframe homomorphism if f preserves finite meets and directed joins (i.e., Scott continuous meet semilattice homomorphism).
- Let X and Y be frames. A function f: X → Y is a frame homomorphism if f preserves finite meets and joins.

Let X be a frame.

Definition

A Scott open filter on X is a filter $\alpha \subseteq X$ such that

$$\bigvee^{\uparrow} U \in \alpha \ \rightarrow \ \exists y \in U \, (y \in \alpha)$$

SOF(*X*): the collection of Scott open filters on *X*.

Lemma

There exists a bijective correspondence between Scott open filters on *X* and preframe homomorphisms from *X* to Pow(1).

• We identify $\mathbf{SOF}(X)$ with $\operatorname{PreFrm}(X, \operatorname{Pow}(1))$.

Lemma

- **1.** SOF(X) forms a preframe.
- 2. Every (pre-)frame homomorphism f: X → Y between frames X and Y induces a preframe homomorphism
 f^d: SOF(Y) → SOF(X) h: Y → Pow(1) ↦ h ∘ f.

Proposition

If X is stably locally compact, then SOF(X) has binary joins

$$\alpha \lor \beta \stackrel{\text{def}}{=} \uparrow \{a \land b \mid a \in \alpha, b \in \beta\}$$
$$= \{x \in X \mid \exists a \in \alpha \exists b \in \beta \ (a \land b \le x)\}$$

which distribute over finite meets (i.e., it is almost a frame).

Definition

A frame homomorphism $f: X \to Y$ between stably locally compact frames X and Y is said to be **dual** if $f^d: \mathbf{SOF}(Y) \to \mathbf{SOF}(X)$ preserves binary joins.

SLCF: Category of stably locally compact frames and frame homomorphisms.

SLCF_D: Category of stably locally compact frames and dual frame homomorphisms.

Splitting of idempotents

Splitting of idempotents

Definition

Let \mathbb{C} be a category.

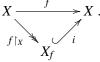
- An **idempotent** is a morphism $f: A \to A$ such that $f \circ f = f$.
- An idempotent $f: A \rightarrow A$ splits if there exist morphisms $r: A \to B$ and $s: B \to A$ such that $s \circ r = f$ and $r \circ s = id_B$.

Proposition

In SLCF and SLCF_D, every idempotent splits.

Proof.

If $f: X \to X$ is an idempotent in SLCF (for example), f factors through $X_f = f[X]$ as $X \xrightarrow{f} X$.



Definition

Let $\mathbb C$ be a category. The Karoubi envelop (or splitting of idempotents) of $\mathbb C$ is a category $Karoubi(\mathbb C)$ where

- ▶ objects are idempotents in C,
- morphisms h: (f: A → A) → (g: B → B) are morphisms h: A → B in C such that g ∘ h = h = h ∘ f:

Proposition

Let \mathbb{C} be a category in which every idempotent splits (e.g. SLCF, SLCF_D). If \mathbb{D} is a full subcategory of \mathbb{C} such that every object in \mathbb{C} is a retract of an object of \mathbb{D} , \mathbb{C} is equivalent to **Karoubi**(\mathbb{D}).

Find a suitable \mathbb{D} for SLCF and SLCF_D.

Definition

- A 0-bounded distributive lattice (0-bounded distributive lattice) is a distributive lattice with a least element 0.
- An ideal of a 0-bounded distributive lattice (S, 0, ∨, ∧) is a subset I ⊆ S which is downset and closed under finite joints.
- The ideal completion Idl(S) of a 0-bounded distributive lattice S is the collection of ideals of S.

Lemma

For any 0-bounded distributive lattice $(S, 0, \lor, \land)$, the ideal completion Idl(S) is a stably locally compact frame.

Proof.

The frame structure of Idl(S) is given by

$$\begin{array}{ll} 0 \stackrel{\mathsf{def}}{=} \emptyset, & I \lor J \stackrel{\mathsf{def}}{=} \downarrow \{ a \lor b \mid a \in I \& b \in J \} \,, \\ \bigvee_{k \in I}^{\uparrow} I_k \stackrel{\mathsf{def}}{=} \bigcup_{k \in K} I_k, & I \land J \stackrel{\mathsf{def}}{=} \{ a \land b \mid a \in I, b \in J \} \,. \end{array}$$

Theorem

Every stably locally compact frame is a dual frame retract of the ideal completion of a 0-bounded distributive lattice.

Proof.

Let *X* be a stably locally compact frame.

Theorem

Every stably locally compact frame is a dual frame retract of the ideal completion of a 0-bounded distributive lattice.

Proof.

Let X be a stably locally compact frame.

First try (AVM 2023)

Consider *X* as a distributive lattice as in Johnstone (1982), and define $f: X \to Idl(X)$ by $f(x) = \downarrow x$.

Theorem

Every stably locally compact frame is a dual frame retract of the ideal completion of a 0-bounded distributive lattice.

Proof.

Let X be a stably locally compact frame.

First try (AVM 2023)

Consider *X* as a distributive lattice as in Johnstone (1982), and define $f: X \to Idl(X)$ by $f(x) = \downarrow x$. X It is not dual.

Theorem

Every stably locally compact frame is a dual frame retract of the ideal completion of a 0-bounded distributive lattice.

Proof.

Let X be a stably locally compact frame.

First try (AVM 2023)

Consider *X* as a distributive lattice as in Johnstone (1982), and define $f: X \to Idl(X)$ by $f(x) = \downarrow x$. X It is not dual.

Second try (Verona 2023)

Consider $SOF(X)^{op}$, which is almost a frame (lacking the top). Let

$$S = (\mathbf{SOF}(X)^{\mathsf{op}}, 1, \wedge, \vee).$$

There exists a frame homomorphism $f: X \to Idl(S)$ defined by $f(x) \stackrel{\text{def}}{=} \downarrow \{\uparrow a \mid a \ll x\}$.

Theorem

Every stably locally compact frame is a dual frame retract of the ideal completion of a 0-bounded distributive lattice.

Proof.

Let X be a stably locally compact frame.

First try (AVM 2023)

Consider *X* as a distributive lattice as in Johnstone (1982), and define $f: X \to Idl(X)$ by $f(x) = \downarrow x$. X It is not dual.

Second try (Verona 2023)

Consider $SOF(X)^{op}$, which is almost a frame (lacking the top). Let

$$S = (\mathbf{SOF}(X)^{\mathsf{op}}, 1, \wedge, \vee).$$

There exists a frame homomorphism $f: X \to Idl(S)$ defined by $f(x) \stackrel{\text{def}}{=} \downarrow \{\uparrow a \mid a \ll x\}$. X Its retract is not a frame homomorphism.

Proof continued.

Third try (CCC 2023)

Consider $S_X = (\mathsf{Fin}^+(\downarrow 1), \leq)$ where

$$A \leq B \iff \bigwedge A \leq \bigwedge B \&$$
$$\forall C (B \ll_U C \to \exists D (A \ll_U D \& \bigwedge D \leq \bigwedge C))$$

where $A \ll_U B \iff \forall b \in B \exists a \in A \ (a \ll b)$. Define a 0-bounded distributive lattice $S_X = (S_X, 0, \lor, \land)$ by

$$0 \stackrel{\mathsf{def}}{=} \{0\} \,, \ A \lor B \stackrel{\mathsf{def}}{=} \{a \lor b \mid a \in A, b \in B\} \,, \ A \land B \stackrel{\mathsf{def}}{=} A \cup B.$$

Lastly, define $f: X \to Idl(S_X)$ by

$$f(x) \stackrel{\mathsf{def}}{=} \{A \in S_X \mid \exists B (A \ll_U B \& \bigwedge B \leq x)\}.$$

Proof continued.

Third try (CCC 2023)

Consider $S_X = (\mathsf{Fin}^+(\downarrow 1), \leq)$ where

$$A \leq B \stackrel{\text{def}}{\iff} \bigwedge A \leq \bigwedge B \&$$
$$\forall C (B \ll_U C \to \exists D (A \ll_U D \& \bigwedge D \leq \bigwedge C))$$

where $A \ll_U B \iff \forall b \in B \exists a \in A \ (a \ll b)$. Define a 0-bounded distributive lattice $S_X = (S_X, 0, \lor, \land)$ by

$$0 \stackrel{\mathsf{def}}{=} \{0\}, A \lor B \stackrel{\mathsf{def}}{=} \{a \lor b \mid a \in A, b \in B\}, A \land B \stackrel{\mathsf{def}}{=} A \cup B.$$

Lastly, define $f: X \to Idl(S_X)$ by

$$f(x) \stackrel{\mathsf{def}}{=} \{A \in S_X \mid \exists B (A \ll_U B \& \bigwedge B \leq x)\}. \checkmark \mathsf{It works!} \quad \Box$$

Definition (Subcategories of stably locally compact frames)

- 0-DL_F: A full subcategory of SLCF consisting of ideal completions of 0-bounded distributive lattices.
- 0-DL_D: A full subcategory of SLCF_D consisting of ideal completions of 0-bounded distributive lattices.

Theorem

- **1.** SLCF is equivalent to $Karoubi(0-DL_F)$.
- **2.** SLCF_D is equivalent to $Karoubi(0-DL_D)$.

Strong quasi-proximity lattices

First, We look into SLCF \cong Karoubi(0-DL_F).

Aim

Give a predicative characterisation of 0-DL_F.

 Then, we obtain a predicative representation of SLCF by the construction Karoubi(0-DL_F).

Definition

Let $(S, 0, \lor, \land)$ and $(S', 0', \lor', \land')$ be 0-bounded distributive lattices. A **proximity relation** from *S* to *S'* is a relation $r \subseteq S \times S'$ such that

1.
$$r^{-}b \stackrel{\text{def}}{=} \{a \in S \mid a \ r \ b\}$$
 is an ideal of *S*,

2.
$$ra \stackrel{\text{def}}{=} \{b \in S' \mid a \ r \ b\}$$
 is a filter of S' ,

3.
$$a \ r \ 0' \rightarrow a = 0$$
,
4. $a \ r \ (b \lor c) \rightarrow \exists b' \ r \ b \exists c' \ r \ c \ (a \le b' \lor c')$

Proximity relations

Proposition

Let $(S, 0, \lor, \land)$ and $(S', 0', \lor', \land')$ be 0-bounded distributive lattices.

- ► There exists a bijective correspondence between frame homomorphisms f: Idl(S') → Idl(S) and proximity relations r: S → S'.
- ► The identity function on Idl(S) corresponds to the underlying order ≤ on S.
- The composition of frame homomorphisms contravariantly corresponds to the relational composition of proximity relations.

0-DL_{PX} : Category of 0-b. dist. lattices and **proximity relations**. Corollary

- ► 0-DL_{PX} is dually equivalent to 0-DL_F.
- ► Karoubi(0-DL_{PX}) is dually equivalent to Karoubi(0-DL_F).
- ► Karoubi(0-DL_{PX}) is equivalent to SLCF^{op}.

An explicit description of Karoubi(0-DL_{PX}).

Definition

A quasi-proximity lattice is a structure $(S, 0, \lor, \land, \prec)$ where $(S, 0, \lor, \land)$ is a 0-bounded distributive lattice and \prec is a relation on *S* satisfying

1.
$$\prec \circ \prec = \prec$$
,
2. $\downarrow_{\prec} a \stackrel{\text{def}}{=} \{ b \in S \mid b \prec a \}$ is an ideal of *S*,
3. $\uparrow^{\succ} a \stackrel{\text{def}}{=} \{ b \in S \mid b \succ a \}$ is a filter of *S*,
4. $a \prec 0 \rightarrow a = 0$,
5. $a \prec (b \lor c) \rightarrow \exists b' \prec b \exists c' \prec c \ (a \leq (b' \lor c')).$

Definition

Let $(S, 0, \lor, \land, \prec)$ and $(S', 0', \lor', \land', \prec')$ be quasi-proximity lattices. A **proximity relation** from *S* to *S'* is a relation $r \subseteq S \times S'$ such that

$$1. \prec' \circ r = r = r \circ \prec,$$

- **2.** r^-b is an ideal of *S*,
- **3.** ra is a filter of S',

4.
$$a \ r \ 0' \ \to \ a = 0$$
,

5.
$$a r (b \lor' c) \rightarrow \exists b' r b \exists c' r c (a \le b' \lor c').$$

qPxL : Category of quasi-proximity lattices and proximity relations.

Theorem (Predicative presentation of SLCF)

 $\mathsf{qPxL} := \mathbf{Karoubi}(\mathsf{0}\text{-}\mathsf{DL}_\mathsf{PX}) \cong \mathbf{Karoubi}(\mathsf{0}\text{-}\mathsf{DL}_\mathsf{F})^{\mathsf{op}} \cong \mathsf{SLCF}^{\mathsf{op}}.$

Using representation $SLCF_D \cong Karoubi(0-DL_D)$, we refine qPxL to obtain a stronger structure.

Definition

Let $(S, 0, \lor, \land)$ and $(S', 0', \lor', \land')$ be 0-bounded distributive lattices. A **dual proximity relation** from *S* to *S'* is a proximity relation $r \subseteq S \times S'$ which satisfies

$$(a \wedge b) \ r \ c \ \rightarrow \ \exists a', b' \in S' \ \left(a \ r \ a' \ \& \ b \ r \ b' \ \& \ (a' \wedge b') \leq' c\right).$$

Proposition

Let $(S, 0, \lor, \land)$ and $(S', 0', \lor', \land')$ be 0-bounded distributive lattices. Then, the bijection between frame homomorphisms $f: \operatorname{Idl}(S') \to \operatorname{Idl}(S)$ and proximity relations $r: S \to S'$ restricts to dual frame homomorphisms and dual proximity relations.

Strong quasi-proximity lattices

0-DL_{DPX}: Category of 0-bounded distributive lattices and dual proximity relations.

Corollary

- 0-DL_{DPX} is dually equivalent to 0-DL_D.
- ► Karoubi(0-DL_{DPX}) is dually equivalent to Karoubi(0-DL_D).
- ► Karoubi(0-DL_{DPX}) is equivalent to SLCF_D^{op}.

Definition (Objects of $Karoubi(\text{0-DL}_{\text{DPX}}))$

A strong quasi-proximity lattice is a quasi-proximity lattice $(S,0,\vee,\wedge,\prec)$ which satisfies

$$(a \wedge b) \prec c \rightarrow \exists a' \succ a \exists b' \succ b ((a' \wedge b') \leq c).$$

SqPxL: Full subcategory of qPxL consisting of strong quasi-proximity lattices.

Theorem

SqPxL is equivalent to SLCF^{op}.

Logical characterisation

Finitary formal topologies

A finitary formal topology is a structure (S, \land, \lhd) , where (S, \land) is a semilattice and $\lhd \subseteq S \times Fin(S)$ is a relation satisfying

$$\frac{a \in A}{a \triangleleft A} \qquad \frac{a \triangleleft A \quad A \triangleleft B}{a \triangleleft B} \quad \frac{a \triangleleft A}{a \land b \triangleleft A} \quad \frac{a \triangleleft A \quad a \triangleleft B}{a \triangleleft A \land B}$$
$$A \triangleleft B \iff \forall a \in A (a \triangleleft B),$$
$$A \land B \stackrel{\mathsf{def}}{=} \{a \land b \mid a \in A, b \in B\}.$$

Theorem (Negri (1996). Stone representation)

A finitary formal topology (S, \land, \lhd) determines a 0-bounded distributive lattice $L(S, \land, \lhd) = (Fin(S)/_{\sim}, 0, \lor, \land)$ where

$$\begin{aligned} A \sim B \ \stackrel{\text{def}}{=} A \lhd B \& B \lhd A, \\ 0 \ \stackrel{\text{def}}{=} \emptyset, \qquad A \lor B \ \stackrel{\text{def}}{=} A \cup B, \qquad A \land B \ \stackrel{\text{def}}{=} A \land B. \end{aligned}$$

Conversely, any 0-bounded distributive lattice $(S, 0, \lor, \land)$ can be represented in this way by a finitary formal topology on (S, \land) :

$$a \triangleleft_{\lor} A \stackrel{\mathsf{def}}{=} a \leq \bigvee A.$$

A stably continuous cover is a structure (S, \land, \lhd, \prec) where (S, \land, \lhd) is a finitary formal topology and \prec is a relation on *S* s.t. 1. $\prec \circ \prec = \prec$, 2. $\downarrow_{\prec} a$ is downward closed, 3. $\uparrow^{\succ} a$ is a filter of *S*, 4. $a \land b \prec c \rightarrow \exists a' \succ a \exists b' \succ b ((a' \land b') \leq c),$ 5. $\exists b \in S (a \prec b \lhd A) \leftrightarrow \exists B \in \operatorname{Fin}(S) (a \lhd B \prec_L A),$ where $A \prec_L B \iff \forall a \in A \exists b \in B (a \prec b).$

Theorem (Stone representation (continuous version))

A stably continuous cover $S = (S, \land, \lhd, \prec)$ determines a strong quasi-proximity lattice $SqPL(S) = (L(S, \land, \lhd), \ll)$ where

$$A \ll B \stackrel{\mathsf{def}}{\iff} \exists C \in \mathsf{Fin}(S) \left(A \lhd C \prec_L B
ight).$$

Conversely, any strong quasi-proximity lattice $(S, 0, \lor, \land, \prec)$ can be represented in this way by $(S, \land, \lhd_\lor, \prec)$.

Patch topology

Let (S, \wedge) be a semilattice. Given any relation $\triangleleft_0 \subseteq S \times Fin(S)$ (called **axioms**), we can inductively generate a finitary formal topology $(S, \wedge, \triangleleft)$ by the following rules:

$a \in A$	$a \lhd A$	$a \triangleleft_0 A A \land b \triangleleft B$
$a \lhd A$	$\overline{a \wedge b \triangleleft A}$	$a \wedge b \lhd B$

In this case, (S, \land, \lhd) is said to be **generated** by \lhd_0 .

Patch topology

Let $(S, 0, \lor, \land, \prec)$ be a strong quasi-proximity lattice. Let $P(S) \stackrel{\text{def}}{=} S \times S$, which is ordered by

$$(a,b) \leq (c,d) \iff c \leq a \And b \leq d,$$

and is equipped with a semilattice structure

$$(a,b) \wedge (c,d) \iff (a \lor c, b \land d).$$

Let \prec be an idempotent relation on P(S) defined by

$$(a,b) \prec (c,d) \iff c \prec a \And b \prec d.$$

Let \triangleleft_{PT} be a finitary formal topology on $(P(S), \wedge)$ generated by \triangleleft_0 :

$$\begin{array}{l} (a \wedge b, c) \triangleleft_0 \{(a, c), (b, c)\} \\ (a, b \lor c) \triangleleft_0 \{(a, b), (a, c)\} \\ (a, b) \triangleleft_0 \emptyset \qquad (b \prec a) \\ (c, d) \triangleleft_0 \{(c, b), (a, d)\} \qquad (a \prec b) \end{array}$$

 $\text{Patch}(S) = (\text{P}(S), \land, \lhd_{\text{PT}}, \prec)$ is a strong stably continuous cover.

Definition

Let $S = (S, \land, \lhd, \prec)$ be a stably continuous cover. A model of S is a filter $\alpha \subseteq S$ of (S, \land) such that

1.
$$a \in \alpha \leftrightarrow \exists b \prec a (b \in \alpha),$$

2.
$$a \triangleleft B \& a \in \alpha \rightarrow \exists b \in B (b \in \alpha).$$

In other words, a model of ${\mathcal S}$ is a rounded prime filter.

Example

Let $(S, 0, \lor, \land, \prec)$ be a strong quasi-proximity lattice. A model of Patch(S) can be identified with a pair (L, U) of a rounded prime ideal *L* and a rounded prime filter *U* on *S* such that

▶ $L \cap U = \emptyset$ (disjoint),

• $a \prec b \rightarrow a \in L \text{ or } b \in U$ (located).

Example (Dedekind cuts)

Let $S = (\mathbb{Q}^{\geq 0}, 0, \max, \min, <)$ be the upper half line. A model of Patch(S) can be identified with a Dedekind cut.

Definition

A strong quasi-proximity lattice $(S, 0, \lor, \land, \prec)$ is **regular** if

 $\forall x, a, b \in S \left[a \prec b \rightarrow \exists c \in S \left(c \land a = 0 \& x \prec c \lor b \right) \right].$

Lemma

For any strong quasi-proximity lattice S, Patch(S) determines a regular strong quasi-proximity lattice SqPL(Patch(S)).

Definition

A proximity relation $r: S \rightarrow S'$ is a **perfect map** if

$$a \prec' b \rightarrow \exists c \in r^{-}b \ (r^{-}a \subseteq \downarrow_{\prec} c).$$

Theorem

Let $(S, 0, \lor, \land, \prec)$ be a strong quasi-proximity lattice. There exists a perfect map ε : SqPL(Patch(S)) \rightarrow S such that for any perfect map $r: S' \rightarrow S$ where S' is regular, there exists a unique perfect map $\tilde{r}: S' \rightarrow$ SqPL(Patch(S)) such that $S' \xrightarrow{\tilde{r}}$ SqPL(Patch(S)).