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Introduction

Theorem (See, e.g. Johnstone (1982))

Every stably compact locale is an adjoint retract of the ideals of a
distributive lattice.

Proof.

If X is a stably compact locale, its ideal completion (the class of
ideals over X seen as a distributive lattice) satisfies the required
condition. n

Theorem (This talk)
Every stably (locally) compact locale is a dual frame adjoint retract
of the ideals of a (0-bounded) distributive lattice.

@ The latter seems to capture the duality of stably (locally)
compact locales better.
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Definition
» A subset U of a poset (P, <) is directed if it is inhabited and
any two elements of U have an upper bound in U.

» A dcpo is a poset (D, <) in which every directed subset
U C D has a least upper bound, denoted by

\/T U := the directed join of U.

» For elements x,y of a dcpo D, we say that y is way-below x,
denoted y < x, if for every directed subset U C D, we have

x < \/TU — JzeU(y<z).

» A continuous domain is a dcpo D in which every element is a

directed join of elements way-below it, i.e., for each x € D, the

+
set {x & {y € D|y < x} is directed and x = \/ L x.



Locale (frame) theory

Definition
» A preframe is a dcpo (P, <) with a meet semilattice structure
(P, 1, A) where finite meets distribute over directed joins:

XA \/TU: \/T(x/\y).

yeU

» A frame is a complete lattice (X, 1, A, \/) where finite meets
distribute over all joins: x A \/ U =\, (x A y).

» A frame is locally compact if it is a continuous domain.
» A locally compact frame is stably locally compact if

XxLy&x <€z > x<LKyNz.



Definition
> Let P and Q be preframes. A function f: P — Q is a preframe
homomorphism if f preserves finite meets and directed joins
(i.e., Scott continuous meet semilattice homomorphism).
> Let X and Y be frames. A function f: X — Y is a frame
homomorphism if f preserves finite meets and joins.



Scott open filters

Let X be a frame.
Definition
A Scott open filter on X is a filter o C X such that
0
\/ Ucea — yelU(yea).

SOF(X): the collection of Scott open filters on X.

Lemma
There exists a bijective correspondence between Scott open filters
on X and preframe homomorphisms from X to Pow(1).

@ We identify SOF(X) with PreFrm(X, Pow(1)).
Lemma
1. SOF(X) forms a preframe.

2. Every (pre-)frame homomorphism f: X — Y between frames X
and Y induces a preframe homomorphism
f9: SOF(Y) — SOF(X) h:Y — Pow(l) + hof.



Dual frame homomorphisms

Proposition
If X is stably locally compact, then SOF(X) has binary joins

aVp dZEfT{a/\b|a€oz,b€ﬂ}

={xeX|Jacadbefanb<x)}
which distribute over finite meets (i.e., it is almost a frame).

Definition

A frame homomorphism f: X — Y between stably locally compact
frames X and Y is said to be dual if f4: SOF(Y) — SOF(X)
preserves binary joins.



Categories of stably locally compact frames

SLCF: Category of stably locally compact frames and
frame homomorphisms.

SLCFp: Category of stably locally compact frames and
dual frame homomorphisms.
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Splitting of idempotents

Definition
Let C be a category.
» An idempotent is a morphismf: A — A such thatf o f = f.

> Anidempotent f: A — A splits if there exist morphisms
r:A— Bands: B—Asuchthatsor=fandros=idp.
P

A———A
N
B

Proposition
In SLCF and SLCFp, every idempotent splits.

Proof.
If f: X — X is an idempotent in SLCF (for example), f factors
through Xy = f[X] as

X— >

I x.
flx /
¥

X



Karoubi envelop

Definition
Let C be a category. The Karoubi envelop (or splitting of
idempotents) of C is a category Karoubi(C) where

» objects are idempotents in C,

» morphisms i: (f: A — A) — (g: B — B) are morphisms
h:A— BinCsuchthatgoh=h=nhof:
h

A——B
f i X j{g
A — B
Proposition
Let C be a category in which every idempotent splits (e.g. SLCF,

SLCFp). If D is a full subcategory of C such that every object in C is
a retract of an object of D, C is equivalent to Karoubi(D).

@ Find a suitable D for SLCF and SLCFp.



0-bounded distributive lattices

Definition
> A 0-bounded distributive lattice (0-bounded distributive
lattice) is a distributive lattice with a least element 0.
» An ideal of a 0-bounded distributive lattice (S,0,V,A) is a
subset I C S which is downset and closed under finite joints.
» The ideal completion Idl(S) of a 0-bounded distributive lattice
S is the collection of ideals of S.

Lemma
For any 0-bounded distributive lattice (S,0,V, N\), the ideal
completion 1d1(S) is a stably locally compact frame.

Proof.
The frame structure of Id1(S) is given by
0Ly, IvIi® favblacl&bel},
Ve Uk 187 fanblacrbedy.
kel keK 13



Theorem
Every stably locally compact frame is a dual frame retract of the
ideal completion of a 0-bounded distributive lattice.

Proof.
Let X be a stably locally compact frame.



Theorem
Every stably locally compact frame is a dual frame retract of the
ideal completion of a 0-bounded distributive lattice.

Proof.
Let X be a stably locally compact frame.
First try (AVM 2023)

Consider X as a distributive lattice as in Johnstone (1982), and
define f: X — 1dI(X) by f(x) = { x.



Theorem
Every stably locally compact frame is a dual frame retract of the
ideal completion of a 0-bounded distributive lattice.

Proof.
Let X be a stably locally compact frame.
First try (AVM 2023)

Consider X as a distributive lattice as in Johnstone (1982), and
define f: X — IdI(X) by f(x) = L x. X Itis not dual.



Theorem
Every stably locally compact frame is a dual frame retract of the
ideal completion of a 0-bounded distributive lattice.

Proof.
Let X be a stably locally compact frame.

First try (AVM 2023)

Consider X as a distributive lattice as in Johnstone (1982), and
define f: X — IdI(X) by f(x) = L x. X Itis not dual.

Second try (Verona 2023)
Consider SOF(X)°?, which is almost a frame (lacking the top). Let

S = (SOF(X)°®, 1, A, V).

There exists a frame homomorphism f: X — 1d1(S) defined by
def

fix) = L {fala<kx}.



Theorem
Every stably locally compact frame is a dual frame retract of the
ideal completion of a 0-bounded distributive lattice.

Proof.
Let X be a stably locally compact frame.

First try (AVM 2023)

Consider X as a distributive lattice as in Johnstone (1982), and
define f: X — IdI(X) by f(x) = L x. X Itis not dual.

Second try (Verona 2023)
Consider SOF(X)°?, which is almost a frame (lacking the top). Let

S = (SOF(X)°®, 1, A, V).

There exists a frame homomorphism f: X — 1d1(S) defined by
def

fx) =

1 {ta|a< x}. X lts retract is not a frame homomorphism.
14



Proof continued.

Third try (CCC 2023)
Consider Sy = (Fin*({ 1), <) where

A<B & NA<AB &

VC(B<yC —-3ID(A<yD& AND<A\C))
where A <y B <& Vb e Blac A(a < b).
Define a 0-bounded distributive lattice Sx = (Sx, 0, V, A) by

0% {0}, AVBE {avb|lacAbeB}, ANBE AUB.

Lastly, define f: X — Id1(Sx) by

fx) ¥ {aesy | IBA<yB& NB<x)}.



Proof continued.

Third try (CCC 2023)
Consider Sy = (Fin*({ 1), <) where

A<B & NA<AB &

VC(B<yC —-3ID(A<yD& AND<A\C))
where A <y B <& Vb e Blac A(a < b).
Define a 0-bounded distributive lattice Sx = (Sx, 0, V, A) by

0% {0}, AVBE {avb|lacAbeB}, ANBE AUB.

Lastly, define f: X — Id1(Sx) by

fx) ¥ {aesy | BA<yB& AB<x)}.¢ Itworks! [



Representations of stably locally compact frames

Definition (Subcategories of stably locally compact frames)

0-DLg: A full subcategory of SLCF consisting of ideal
completions of 0-bounded distributive lattices.

0-DLp: A full subcategory of SLCFp consisting of ideal
completions of 0-bounded distributive lattices.

Theorem
1. SLCF is equivalent to Karoubi(0-DL).

2. SLCFp is equivalent to Karoubi(0-DLp).



Strong quasi-proximity lattices



Proximity relations

First, We look into SLCF = Karoubi(0-DL).
Aim
Give a predicative characterisation of 0-DLk.

@ Then, we obtain a predicative representation of SLCF by the
construction Karoubi(0-DLg).

Definition
Let (S,0,V,A) and (8,0, V', \") be 0-bounded distributive lattices.
A proximity relation from S to &' is a relation r C S x S’ such that

b ¥ {a € S| arb}isanideal of S,

2. ra & {be S |arb}isafilterof &,

3.ar00 — a=0,
4 ar (bV'e) — I rb3d re(a<b' v{).



Proximity relations

Proposition
Let (S,0,V,A)and (S',0', V', \') be 0-bounded distributive lattices.
» There exists a bijective correspondence between frame
homomorphisms f: 1d1(S") — 1d1(S) and proximity relations
r:§— 9.
» The identity function on 1d1(S) corresponds to the underlying
order < on S.
» The composition of frame homomorphisms contravariantly
corresponds to the relational composition of proximity relations.
0-DLpy : Category of 0-b. dist. lattices and proximity relations.
Corollary
» 0-DLpy is dually equivalent to 0-DLE.
» Karoubi(0-DLpyx) is dually equivalent to Karoubi(0-DLg).
» Karoubi(0-DLpy) is equivalent to SLCFP.



Quasi-proximity lattices

An explicit description of Karoubi(0-DLpy).

Definition

A quasi-proximity lattice is a structure (S, 0, V, A, <) where
(S,0,V,A) is a 0-bounded distributive lattice and < is a relation on
S satisfying

1. o< =<,
2. |_a o {b€S|b=<a}isanideal of S,

3. 7"a = {beS|b> a}isafilerof S,

4. a <0 — a=0,

5. a< (bVec) — I <b3’ <c(a< (V' V)).

def

20



Proximity relations

Definition
Let (S,0,V, A, <) and (8,0, V', A/, <") be quasi-proximity lattices.
A proximity relation from S to ' is a relation r C S x S’ such that

1. <'or=r=ro<=,

2. r"bis anideal of S,

3. rais afilter of &,

4. ar0 — a=0,

5. ar(bV'¢) — I rb3d’ re(a<d' v{).

gPxL : Category of quasi-proximity lattices and proximity relations.

Theorem (Predicative presentation of SLCF)
gPxL := Karoubi(0-DLpx) = Karoubi(0-DLg)°® = SLCF°P,

21



Strong quasi-proximity lattices

Using representation SLCFp = Karoubi(0-DLp), we refine gPxL to
obtain a stronger structure.

Definition

Let (S,0,V,A) and (8,0, V', \") be 0-bounded distributive lattices.
A dual proximity relation from S to S’ is a proximity relation

r C S x S’ which satisfies

(anb)rc — Ela/,b/ES'(ara/&brb/&(a’/\b’) S’c).

Proposition

Let (S,0,V,A) and (S',0',V', A") be 0-bounded distributive lattices.
Then, the bijection between frame homomorphisms

S+ 1dI(S") — 1d1(S) and proximity relations r: S — S’ restricts to dual
frame homomorphisms and dual proximity relations.

22



Strong quasi-proximity lattices

0-DLppx: Category of 0-bounded distributive lattices and
dual proximity relations.

Corollary
» 0-DLppx is dually equivalent to 0-DLp.
» Karoubi(0-DLppy) is dually equivalent to Karoubi(0-DLp).
» Karoubi(0-DLppyx) is equivalent to SLCFp°P.

Definition (Objects of Karoubi(0-DLppy))
A strong quasi-proximity lattice is a quasi-proximity lattice
(S,0,V, A, <) which satisfies
(anb)<c — Fd =ad - b((d Nb)<c).
SgPxL: Full subcategory of gPxL consisting of strong
quasi-proximity lattices.

Theorem

SqPxL is equivalent to SLCF®P. .



Logical characterisation

24



Finitary formal topologies

A finitary formal topology is a structure (S, A, <), where (S, A) is
a semilattice and <« C S x Fin(S) is a relation satisfying
acA a<lA A<B a<A a<lA a<B
a<A a<lB aNb <A a<lANB

A<B & Va € A(a<B),

ANB ¥ {anb|lacAbeBY).

Theorem (Negri (1996). Stone representation)
A finitary formal topology (S, A\, <1) determines a 0-bounded
distributive lattice L(S, A\, <1) = (Fin(S)/~,0, V, A\) where

A~BE AqB&B <A,

0%9  AvB®auB, AABE AnB

Conversely, any 0-bounded distributive lattice (S,0, V, A) can be
represented in this way by a finitary formal topology on (S, \):

a<lyA d:ef CZS\/A

25



Stably continuous covers

A stably continuous cover is a structure (S, A, <, <) where
(S, A, <) is a finitary formal topology and < is a relation on S s.t.
1. <o< =<,
2. | _ais downward closed,
3. 17 ais afilter of S,
4. aNb<c — Fd = a3 - b((d NV) <c),

5. 3be S(a<b<A) <« IBcFin(S)(a<B=<LA),

where A <, B <& Va € A3b € B(a < b).

Theorem (Stone representation (continuous version))
A stably continuous cover S = (S, A\, <, <) determines a strong
quasi-proximity lattice SQPL(S) = (L(S, A, <), <) where
A<B & 3CeFinS)(A<C <. B).
Conversely, any strong quasi-proximity lattice (S,0,V, A, <) can be
represented in this way by (S, A\, <v, <).
26



Patch topology

27



Generated finitary formal topologies

Let (S, A) be a semilattice. Given any relation <ip C S x Fin(S)
(called axioms), we can inductively generate a finitary formal
topology (S, A, <) by the following rules:

acA a<lA a<lgA AANb<B
a<lA aNb<A aANb<B

In this case, (S, A, <) is said to be generated by <.

28



Patch topology

Let (8,0, V, A, <) be a strong quasi-proximity lattice.

Let P(S) %' § x S, which is ordered by

(a,b) < (c,d) Lt c<a&b<d,

and is equipped with a semilattice structure

(@,b) A(e,d) <& (aVe,bAd).

Let < be an idempotent relation on P(S) defined by

(a,b) < (c,d) Lo <akb<d.

Let <pr be a finitary formal topology on (P(S), A) generated by <:
(aNb,c)<p{(a,c),(b,c)}
(a,bV c) <o {(a,b),(a,c)}
(a,b) <o 0 (b < a)
(c,d) <9 {(c,b),(a,d)} (a < b)

Patch(S) = (P(S), A, <pr, <) is a strong stably continuous cover. 20



Geometric interpretation

Definition
Let S = (S, A, <, <) be a stably continuous cover. A model of S is
afilter o C S of (S, A) such that

l.aca~Ib<albea),
2. a<B&aca — dbeB(bea).
In other words, a model of S is a rounded prime filter.

Example
Let (S,0,V, A, <) be a strong quasi-proximity lattice.
A model of Patch(S) can be identified with a pair (L, U) of a rounded
prime ideal L and a rounded prime filter U on S such that

> LN U = (disjoint),

> a<b — aecLorb e U (located).
Example (Dedekind cuts)
Let S = (Q=,0, max, min, <) be the upper half line.
A model of Patch(S) can be identified with a Dedekind cut.

30



Universal property of Patch(S)

Definition
A strong quasi-proximity lattice (S, 0, V, A, <) is regular if

Vx,a,b€Sla<b — Jce€S(cNha=0&x<cVb)|.
Lemma
For any strong quasi-proximity lattice S, Patch(S) determines a
regular strong quasi-proximity lattice SqPL(Patch(S)).
Definition
A proximity relation r: S — S’ is a perfect map if

a<'b — Jcerb(racl,e).

Theorem
Let (S,0,V, A, <) be a strong quasi-proximity lattice. There exists a
perfect map e: SqPL(Patch(S)) — S such that for any perfect map
r: 8" — S where S is regular, there exists a unique perfect map

7: 8" — SqPL(Patch(S)) such that §' — = SqPL(Patch(S)) .

it
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