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Introduction

Theorem (See, e.g. Johnstone (1982))
Every stably compact locale is an adjoint retract of the ideals of a
distributive lattice.

Proof.
If X is a stably compact locale, its ideal completion (the class of
ideals over X seen as a distributive lattice) satisfies the required
condition.

Theorem (This talk)
Every stably (locally) compact locale is a dual frame adjoint retract
of the ideals of a (0-bounded) distributive lattice.

☛ The latter seems to capture the duality of stably (locally)
compact locales better.
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Preliminary
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Domain theory

Definition
▶ A subset U of a poset (P,≤) is directed if it is inhabited and

any two elements of U have an upper bound in U.
▶ A dcpo is a poset (D,≤) in which every directed subset

U ⊆ D has a least upper bound, denoted by∨↑
U := the directed join of U.

▶ For elements x, y of a dcpo D, we say that y is way-below x,
denoted y ≪ x, if for every directed subset U ⊆ D, we have

x ≤
∨↑

U → ∃z ∈ U (y ≤ z) .

▶ A continuous domain is a dcpo D in which every element is a
directed join of elements way-below it, i.e., for each x ∈ D, the
set

↠

x def
= {y ∈ D | y ≪ x} is directed and x =

∨↑ ↠

x.
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Locale (frame) theory

Definition
▶ A preframe is a dcpo (P,≤) with a meet semilattice structure

(P, 1,∧) where finite meets distribute over directed joins:

x ∧
∨↑

U =
∨↑

y∈U

(x ∧ y).

▶ A frame is a complete lattice (X, 1,∧,
∨
) where finite meets

distribute over all joins: x ∧
∨

U =
∨

y∈U(x ∧ y).
▶ A frame is locally compact if it is a continuous domain.
▶ A locally compact frame is stably locally compact if

x ≪ y & x ≪ z → x ≪ y ∧ z.
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Morphisms

Definition
▶ Let P and Q be preframes. A function f : P → Q is a preframe

homomorphism if f preserves finite meets and directed joins
(i.e., Scott continuous meet semilattice homomorphism).

▶ Let X and Y be frames. A function f : X → Y is a frame
homomorphism if f preserves finite meets and joins.
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Scott open filters

Let X be a frame.
Definition
A Scott open filter on X is a filter α ⊆ X such that∨↑

U ∈ α → ∃y ∈ U (y ∈ α) .

SOF(X): the collection of Scott open filters on X.
Lemma
There exists a bijective correspondence between Scott open filters
on X and preframe homomorphisms from X to Pow(1).
☛ We identify SOF(X) with PreFrm(X,Pow(1)).
Lemma

1. SOF(X) forms a preframe.
2. Every (pre-)frame homomorphism f : X → Y between frames X

and Y induces a preframe homomorphism
f d : SOF(Y) → SOF(X) h : Y → Pow(1) 7→ h ◦ f .
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Dual frame homomorphisms

Proposition
If X is stably locally compact, then SOF(X) has binary joins

α ∨ β
def
= ↑ {a ∧ b | a ∈ α, b ∈ β}
= {x ∈ X | ∃a ∈ α∃b ∈ β (a ∧ b ≤ x)}

which distribute over finite meets (i.e., it is almost a frame).

Definition
A frame homomorphism f : X → Y between stably locally compact
frames X and Y is said to be dual if f d : SOF(Y) → SOF(X)
preserves binary joins.
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Categories of stably locally compact frames

SLCF: Category of stably locally compact frames and
frame homomorphisms.

SLCFD: Category of stably locally compact frames and
dual frame homomorphisms.
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Splitting of idempotents
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Splitting of idempotents

Definition
Let C be a category.
▶ An idempotent is a morphism f : A → A such that f ◦ f = f .
▶ An idempotent f : A → A splits if there exist morphisms

r : A → B and s : B → A such that s ◦ r = f and r ◦ s = idB.

A
f //

r ��

A

B
s

??

Proposition
In SLCF and SLCFD, every idempotent splits.

Proof.
If f : X → X is an idempotent in SLCF (for example), f factors
through Xf = f [X] as X

f //

f ↾X
�� ��

X

Xf
/� i

?? .
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Karoubi envelop

Definition
Let C be a category. The Karoubi envelop (or splitting of
idempotents) of C is a category Karoubi(C) where
▶ objects are idempotents in C,
▶ morphisms h : (f : A → A) → (g : B → B) are morphisms

h : A → B in C such that g ◦ h = h = h ◦ f :
A

f
��

h

##

h // B
g
��

A
h
// B

Proposition
Let C be a category in which every idempotent splits (e.g. SLCF,
SLCFD). If D is a full subcategory of C such that every object in C is
a retract of an object of D, C is equivalent to Karoubi(D).

☛ Find a suitable D for SLCF and SLCFD.
12



0-bounded distributive lattices

Definition
▶ A 0-bounded distributive lattice (0-bounded distributive

lattice) is a distributive lattice with a least element 0.
▶ An ideal of a 0-bounded distributive lattice (S, 0,∨,∧) is a

subset I ⊆ S which is downset and closed under finite joints.
▶ The ideal completion Idl(S) of a 0-bounded distributive lattice

S is the collection of ideals of S.
Lemma
For any 0-bounded distributive lattice (S, 0,∨,∧), the ideal
completion Idl(S) is a stably locally compact frame.

Proof.
The frame structure of Idl(S) is given by

0 def
= ∅, I ∨ J def

= ↓ {a ∨ b | a ∈ I & b ∈ J} ,∨↑

k∈I

Ik
def
=

⋃
k∈K

Ik, I ∧ J def
= {a ∧ b | a ∈ I, b ∈ J} .
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Retraction

Theorem
Every stably locally compact frame is a dual frame retract of the
ideal completion of a 0-bounded distributive lattice.

Proof.
Let X be a stably locally compact frame.

First try (AVM 2023)
Consider X as a distributive lattice as in Johnstone (1982), and
define f : X → Idl(X) by f (x) =

↠

x. ✘ It is not dual.

Second try (Verona 2023)
Consider SOF(X)op, which is almost a frame (lacking the top). Let

S = (SOF(X)op, 1,∧,∨).

There exists a frame homomorphism f : X → Idl(S) defined by
f (x) def

= ↓ { ↠ a | a ≪ x} . ✘ Its retract is not a frame homomorphism.
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Retraction

Proof continued.

Third try (CCC 2023)
Consider SX = (Fin+(

↠

1),≤) where

A ≤ B def⇐⇒
∧

A ≤
∧

B &

∀C (B ≪U C → ∃D (A ≪U D &
∧

D ≤
∧

C))

where A ≪U B def⇐⇒ ∀b ∈ B∃a ∈ A (a ≪ b) .
Define a 0-bounded distributive lattice SX = (SX, 0,∨,∧) by

0 def
= {0} , A ∨ B def

= {a ∨ b | a ∈ A, b ∈ B} , A ∧ B def
= A ∪ B.

Lastly, define f : X → Idl(SX) by

f (x) def
= {A ∈ SX | ∃B (A ≪U B &

∧
B ≤ x)} .

" It works!
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Representations of stably locally compact frames

Definition (Subcategories of stably locally compact frames)

0-DLF: A full subcategory of SLCF consisting of ideal
completions of 0-bounded distributive lattices.

0-DLD: A full subcategory of SLCFD consisting of ideal
completions of 0-bounded distributive lattices.

Theorem
1. SLCF is equivalent to Karoubi(0-DLF).

2. SLCFD is equivalent to Karoubi(0-DLD).
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Strong quasi-proximity lattices
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Proximity relations

First, We look into SLCF ∼= Karoubi(0-DLF).

Aim
Give a predicative characterisation of 0-DLF.
☛ Then, we obtain a predicative representation of SLCF by the

construction Karoubi(0-DLF).

Definition
Let (S, 0,∨,∧) and (S′, 0′,∨′,∧′) be 0-bounded distributive lattices.
A proximity relation from S to S′ is a relation r ⊆ S × S′ such that

1. r−b def
= {a ∈ S | a r b} is an ideal of S,

2. ra def
= {b ∈ S′ | a r b} is a filter of S′,

3. a r 0′ → a = 0,
4. a r (b ∨′ c) → ∃b′ r b∃c′ r c (a ≤ b′ ∨ c′).
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Proximity relations

Proposition
Let (S, 0,∨,∧) and (S′, 0′,∨′,∧′) be 0-bounded distributive lattices.
▶ There exists a bijective correspondence between frame

homomorphisms f : Idl(S′) → Idl(S) and proximity relations
r : S → S′.

▶ The identity function on Idl(S) corresponds to the underlying
order ≤ on S.

▶ The composition of frame homomorphisms contravariantly
corresponds to the relational composition of proximity relations.

0-DLPX : Category of 0-b. dist. lattices and proximity relations.
Corollary
▶ 0-DLPX is dually equivalent to 0-DLF.
▶ Karoubi(0-DLPX) is dually equivalent to Karoubi(0-DLF).
▶ Karoubi(0-DLPX) is equivalent to SLCFop.
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Quasi-proximity lattices

An explicit description of Karoubi(0-DLPX).

Definition
A quasi-proximity lattice is a structure (S, 0,∨,∧,≺) where
(S, 0,∨,∧) is a 0-bounded distributive lattice and ≺ is a relation on
S satisfying

1. ≺ ◦ ≺ = ≺,
2. ↓≺a def

= {b ∈ S | b ≺ a} is an ideal of S,

3. ↑≻a def
= {b ∈ S | b ≻ a} is a filter of S,

4. a ≺ 0 → a = 0,
5. a ≺ (b ∨ c) → ∃b′ ≺ b∃c′ ≺ c (a ≤ (b′ ∨ c′)).
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Proximity relations

Definition
Let (S, 0,∨,∧,≺) and (S′, 0′,∨′,∧′,≺′) be quasi-proximity lattices.
A proximity relation from S to S′ is a relation r ⊆ S × S′ such that

1. ≺′ ◦ r = r = r ◦ ≺,
2. r−b is an ideal of S,
3. ra is a filter of S′,
4. a r 0′ → a = 0,
5. a r (b ∨′ c) → ∃b′ r b∃c′ r c (a ≤ b′ ∨ c′).

qPxL : Category of quasi-proximity lattices and proximity relations.

Theorem (Predicative presentation of SLCF)
qPxL := Karoubi(0-DLPX) ∼= Karoubi(0-DLF)

op ∼= SLCFop.
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Strong quasi-proximity lattices

Using representation SLCFD ∼= Karoubi(0-DLD), we refine qPxL to
obtain a stronger structure.

Definition
Let (S, 0,∨,∧) and (S′, 0′,∨′,∧′) be 0-bounded distributive lattices.
A dual proximity relation from S to S′ is a proximity relation
r ⊆ S × S′ which satisfies

(a ∧ b) r c → ∃a′, b′ ∈ S′
(
a r a′ & b r b′ & (a′ ∧ b′) ≤′ c

)
.

Proposition
Let (S, 0,∨,∧) and (S′, 0′,∨′,∧′) be 0-bounded distributive lattices.
Then, the bijection between frame homomorphisms
f : Idl(S′) → Idl(S) and proximity relations r : S → S′ restricts to dual
frame homomorphisms and dual proximity relations.
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Strong quasi-proximity lattices

0-DLDPX: Category of 0-bounded distributive lattices and
dual proximity relations.

Corollary
▶ 0-DLDPX is dually equivalent to 0-DLD.
▶ Karoubi(0-DLDPX) is dually equivalent to Karoubi(0-DLD).
▶ Karoubi(0-DLDPX) is equivalent to SLCFD

op.

Definition (Objects of Karoubi(0-DLDPX))
A strong quasi-proximity lattice is a quasi-proximity lattice
(S, 0,∨,∧,≺) which satisfies

(a ∧ b) ≺ c → ∃a′ ≻ a∃b′ ≻ b
(
(a′ ∧ b′) ≤ c

)
.

SqPxL: Full subcategory of qPxL consisting of strong
quasi-proximity lattices.

Theorem
SqPxL is equivalent to SLCFop.
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Logical characterisation
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Finitary formal topologies

A finitary formal topology is a structure (S,∧,�), where (S,∧) is
a semilattice and � ⊆ S × Fin(S) is a relation satisfying

a ∈ A
a � A

a � A A � B
a � B

a � A
a ∧ b � A

a � A a � B
a � A ∧ B

A � B def⇐⇒ ∀a ∈ A (a � B) ,

A ∧ B def
= {a ∧ b | a ∈ A, b ∈ B} .

Theorem (Negri (1996). Stone representation)
A finitary formal topology (S,∧,�) determines a 0-bounded
distributive lattice L(S,∧,�) = (Fin(S)/∼, 0,∨,∧) where

A ∼ B def
= A � B & B � A,

0 def
= ∅, A ∨ B def

= A ∪ B, A ∧ B def
= A ∧ B.

Conversely, any 0-bounded distributive lattice (S, 0,∨,∧) can be
represented in this way by a finitary formal topology on (S,∧):

a �∨ A def
= a ≤

∨
A. 25



Stably continuous covers

A stably continuous cover is a structure (S,∧,�,≺) where
(S,∧,�) is a finitary formal topology and ≺ is a relation on S s.t.

1. ≺ ◦ ≺ = ≺,
2. ↓≺a is downward closed,
3. ↑≻a is a filter of S,
4. a ∧ b ≺ c → ∃a′ ≻ a∃b′ ≻ b ((a′ ∧ b′) ≤ c),
5. ∃b ∈ S (a ≺ b � A) ↔ ∃B ∈ Fin(S) (a � B ≺L A) ,

where A ≺L B def⇐⇒ ∀a ∈ A∃b ∈ B (a ≺ b).

Theorem (Stone representation (continuous version))
A stably continuous cover S = (S,∧,�,≺) determines a strong
quasi-proximity lattice SqPL(S) = (L(S,∧,�),≪) where

A ≪ B def⇐⇒ ∃C ∈ Fin(S) (A � C ≺L B) .

Conversely, any strong quasi-proximity lattice (S, 0,∨,∧,≺) can be
represented in this way by (S,∧,�∨,≺).
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Patch topology
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Generated finitary formal topologies

Let (S,∧) be a semilattice. Given any relation �0 ⊆ S × Fin(S)
(called axioms), we can inductively generate a finitary formal
topology (S,∧,�) by the following rules:

a ∈ A
a � A

a � A
a ∧ b � A

a �0 A A ∧ b � B
a ∧ b � B

In this case, (S,∧,�) is said to be generated by �0.
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Patch topology

Let (S, 0,∨,∧,≺) be a strong quasi-proximity lattice.
Let P(S) def

= S × S, which is ordered by

(a, b) ≤ (c, d) def⇐⇒ c ≤ a & b ≤ d,

and is equipped with a semilattice structure

(a, b) ∧ (c, d) def⇐⇒ (a ∨ c, b ∧ d).

Let ≺ be an idempotent relation on P(S) defined by

(a, b) ≺ (c, d) def⇐⇒ c ≺ a & b ≺ d.

Let �PT be a finitary formal topology on (P(S),∧) generated by �0:

(a ∧ b, c)�0 {(a, c), (b, c)}
(a, b ∨ c)�0 {(a, b), (a, c)}

(a, b)�0 ∅ (b ≺ a)
(c, d)�0 {(c, b), (a, d)} (a ≺ b)

Patch(S) = (P(S),∧,�PT,≺) is a strong stably continuous cover.
29



Geometric interpretation

Definition
Let S = (S,∧,�,≺) be a stably continuous cover. A model of S is
a filter α ⊆ S of (S,∧) such that

1. a ∈ α ↔ ∃b ≺ a (b ∈ α),
2. a � B & a ∈ α → ∃b ∈ B (b ∈ α).

In other words, a model of S is a rounded prime filter.

Example
Let (S, 0,∨,∧,≺) be a strong quasi-proximity lattice.
A model of Patch(S) can be identified with a pair (L,U) of a rounded
prime ideal L and a rounded prime filter U on S such that
▶ L ∩ U = ∅ (disjoint),
▶ a ≺ b → a ∈ L or b ∈ U (located).

Example (Dedekind cuts)
Let S = (Q≥0, 0,max,min, <) be the upper half line.
A model of Patch(S) can be identified with a Dedekind cut.
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Universal property of Patch(S)

Definition
A strong quasi-proximity lattice (S, 0,∨,∧,≺) is regular if

∀x, a, b ∈ S [a ≺ b → ∃c ∈ S (c ∧ a = 0 & x ≺ c ∨ b)] .
Lemma
For any strong quasi-proximity lattice S, Patch(S) determines a
regular strong quasi-proximity lattice SqPL(Patch(S)).
Definition
A proximity relation r : S → S′ is a perfect map if

a ≺′ b → ∃c ∈ r−b (r−a ⊆ ↓≺c).
Theorem
Let (S, 0,∨,∧,≺) be a strong quasi-proximity lattice. There exists a
perfect map ε : SqPL(Patch(S)) → S such that for any perfect map
r : S′ → S where S′ is regular, there exists a unique perfect map
r̃ : S′ → SqPL(Patch(S)) such that S′ r̃ //

r
))

SqPL(Patch(S))
ε
��
S

.
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