More on the Intuitionistic Borel Hierarchy

Takayuki Kihara

Nagoya University, Japan

CCC 2023: Continuity, Computability, Constructivity, From Logic to Algorithms, Kyoto, Japan, September 27, 2023 In classical theory, the following result is well known:

The set of all eventually zero sequences is Σ_2^0 -complete.

• i.e., $FIN = \{x \in \mathbb{N}^{\mathbb{N}} : \exists n \forall m > n. x(m) = 0\}$ is Σ_2^0 -complete.

Here, for $A, B \subseteq \mathbb{N}^{\mathbb{N}}$:

• A is reducible to B (written $A \leq B$) iff

 \exists continuous $\varphi \forall x (x \in A \iff \varphi(x) \in B)$

• A is Γ -complete if A is a \leq -greatest element among Γ sets.

The same result holds if "continuous" is changed to "computable".

 Σ_2^0 -completeness of *FIN* is "*trivial*" to those of us familiar with classical theory, but it is not necessarily true in intuitionistic mathematics.

Theorem (Veldman 2008)

In a certain intuitionistic system,

$$FIN = \{x \in \mathbb{N}^{\mathbb{N}} : \exists n \forall m > n. x(m) = 0\}$$
 is not Σ_{2}^{0} -complete.

- One of the key intuitionistic principles assumed by Veldman is Brouwer's continuity principle.
- The details of Veldman's assumptions are not explained here.

Veldman also showed other results that contradict those in the classical theory.

Theorem (Veldman 2022)

In a certain intuitionistic system, the set of (the codes of) trees which are ill-founded w.r.t. the Kleene-Brouwer ordering is not Σ_1^1 -complete.

Objective

- We clarify that Veldman's results are valuable not only in intuitionistic mathematics, but also in classical math.
 - Veldman's results can be understood as results about "Levin reducibility" in classical math.
- Further refine Veldman's results using techniques in classical math.
 - Veldman's insights provide a new refinement to the classical arithmetical/Borel hierarchy.

What is "Levin reducibility"?

- Introduced by Leonid Levin in 1973.
- Levin's 1973 paper is a monumental paper in complexity theory that showed NP-completeness of *SAT*, but what Levin was really dealing with was "Levin reducibility" between search problems.

- A search problem is a binary relation $R \subseteq \Sigma^* \times \Sigma^*$.
- Any y satisfying R(x, y) is called a witness for $x \in |R|$, where $|R| = \{x : \exists y R(x, y)\}$.

Definition (Levin 1973)

For a complexity class *C* and search problems *A* and *B*, *A* is *C*-Levin reducible to *B* if there exist *C*-functions φ , ℓ , *r* such that for any $x, y, z \in \Sigma^*$ the following holds:

- $x \in |A| \text{ if and only if } \varphi(x) \in |B|.$
- 2 If y is a witness for $x \in |A|$ then r(x, y) is a witness for $\varphi(x) \in |B|$.
- **③** If *z* is a witness for $\varphi(x) \in |B|$ then $\ell(x, z)$ is a witness for *x* ∈ |A|.
 - φ is a reduction for $|A| \leq |B|$
 - *r* is a realizer for " $x \in |A| \implies \varphi(x) \in |B|$ "
 - ℓ is a realizer for " $x \in |A| \iff \varphi(x) \in |B|$ "

The "standard model" of intuitionistic math that satisfies Veldman's assumptions would be those based on Kleene's second algebra K_2 .

Thee main "algebras" ($\mathbb{A}, \mathbb{A}_{e\!f\!f}, *$):

- Kleene's first algebra K_1
 - ▶ The algebra of computability on natural numbers.
 - $\triangleright \mathbb{A} = \mathbb{A}_{eff} = \mathbb{N} \text{ and } e * x = \varphi_e(x)$
 - ▶ where φ_e is the *e*th partial computable function on \mathbb{N} .
- Kleene's second algebra K_2
 - > The algebra of continuity on infinite strings.
 - $\triangleright \mathbb{A} = \mathbb{A}_{eff} = \mathbb{N}^{\mathbb{N}}, \text{ and } e * x = \psi_e(x)$
 - ▷ where ψ_e is the partial continuous function on $\mathbb{N}^{\mathbb{N}}$ coded by *e*.
- Kleene-Vesley algebra KV
 - ▶ The algebra of computability on infinite strings.

▶ $\mathbb{A} = \mathbb{N}^{\mathbb{N}}, \mathbb{A}_{eff}$ = computable strings, and $e * x = \psi_e(x)$

Let $(\mathbb{A}, \mathbb{A}_{eff}, *)$ be a relative pca, i.e, K_1, K_2, KV or so.

• An represented space is a pair of a set X and a partial surjection $\delta :\subseteq \mathbb{A} \to X$.

▷ If $\delta(p) = x$ then *p* is called a name of $x \in X$.

A function f: X → Y is realizable if there exists a ∈ A_{eff} such that if p is a name of x ∈ X then a * p is a name of f(x) ∈ Y

A represented space is also known as a modest set.

- Fact: The category of represented spaces and realizable functions is a locally cartesian closed category with NNO, whose internal logic corresponds to the realizability interpretation.
- The standard model of intuitionistic mathematics satisfying Veldman's assumptions would be the category *Rep(K₂)* of *K₂*-represented spaces (or the realizability topos *RT(K₂)* over *K₂*).

In the category of represented spaces:

 A formula is interpreted as something like a "witness-search problem (or a realizer-search problem)"

Example: The type $\mathbb{N}^{\mathbb{N}}$ formula " $\varphi(x) \equiv \exists n \forall m \ge n$. x(m) = 0" is interpreted as a subobject *FIN* $\mapsto \mathbb{N}^{\mathbb{N}}$ such that

- the underlying set is $\{x \in \mathbb{N}^{\mathbb{N}} : \exists n \forall m \geq n. x(m) = 0\}$
- a name of $x \in FIN$ is a pair of $\langle x, n \rangle$, where *n* is an existential witness.

Fact: Every subobject of *X* has a representative of the following form:

- an underlying set A is a subset of X
- a name of $x \in A$ is the pair of a name p of $x \in X$ and some $q \in A$. This q is considered as a "witness".

Roughly speaking:

- A subobject is a subset with witnesses.
- A regular subobject is a subset without witnesses.

Recall: for $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, A is reducible to B (written $A \leq B$) iff \exists continuous $\varphi \forall x \ (x \in A \iff \varphi(x) \in B)$ That is, $A = \varphi^{-1}[B]$.

Its categorical version would be something like:

Def: Let *X*, *Y* be objects in a category *C* having pullbacks. A mono $A \xrightarrow{\alpha} X$ is reducible to $B \xrightarrow{\beta} Y$ if $A \xrightarrow{\alpha} X$ is a pullback of $B \xrightarrow{\beta} Y$ along some morphism $\varphi \colon X \to Y$.

When this notion is interpreted in the category of represented spaces, we obtain (computable/continuous) Levin reducibility.

A subobject $A \rightarrow X \approx$ a subset with witnesses:

- an underlying set A is a subset of X
- a name for $x \in A$ is a pair of a name $x \in X$ and a witness.

For subobjects $A, B \rightarrow X, A$ is Levin reducible to B if there exist a morphism $\varphi: X \rightarrow X$ and realizable functions ℓ, r such that for any x, y, z the following holds:

- **1** $x \in A$ if and only if $\varphi(x) \in B$.
- ② If \dot{x} is a name of $x \in X$ and \dot{y} is a name of witness for $x \in A$ then $r(\dot{x}, \dot{y})$ is a witness for $\varphi(x) \in B$.
- ③ If \dot{x} is a name of $x \in X$ and \dot{z} is a name of $\varphi(x) \in B$ then $\ell(\dot{x}, \dot{z})$ is a witness for $x \in A$.
 - φ is a reduction for $A \leq B$ (on underlying sets)
 - *r* is a realizer for " $x \in A \implies \varphi(x) \in B$ "
 - ℓ is a realizer for " $x \in A \iff \varphi(x) \in B$ "

Theorem (Veldman 2008)

In a certain intuitionistic system,

 $FIN = \{x \in \mathbb{N}^{\mathbb{N}} : \exists n \forall m > n. x(m) = 0\}$ is not Σ_2^0 -complete.

This is because:

• The witness-search problem for *FIN* is not Levin-complete among the witness-search problems for Σ_2^0 formulas even in classical mathematics.

Theorem (Veldman 2022)

In a certain intuitionistic system, the set IF(KB) of trees which are ill-founded w.r.t. the Kleene-Brouwer ordering is not Σ_1^1 -complete.

This is because:

• The witness-search problem for IF(KB) is not Levin-complete among the witness-search problems for Σ_1^1 formulas even in classical mathematics.

- Our observation shows that Veldman's seemingly strange results can also be understood by classical mathematicians as results regarding Levin reducibility for witness-search problems.
- However, simply interpreting previous results in a different context is of course not very interesting.
 - It is interesting when the interpretation leads to a truly new discovery.
- One of our new discoveries is that the "three layers" of Σ⁰₂ formulas w.r.t Levin reducibility (in classical mathematics).

 Σ_2^0 subobject $\approx \Sigma_2^0$ subset with existential witnesses

Classification of Σ_2^0 formulas $\exists n \forall m \varphi(n, m)$:

- (Unique Witness) " $\exists n \forall m \varphi(n,m) \leftrightarrow \exists ! n \forall m \varphi(n,m)$ "
- (Increasing Witness) " $k \le n$ and $\forall m\varphi(k,m) \rightarrow \forall m\varphi(n,m)$ "

Definition:

- A u.w. Σ_2^0 subobject is a subobject defined by a Σ_2^0 formula satisfying (Unique Witness).
- A i.w. Σ_2^0 subobject is a subobject defined by a Σ_2^0 formula satisfying (Increasing Witness).

Example:

- $FIN = \{x \in \mathbb{N}^{\mathbb{N}} : \exists n \forall m \ge n. x(m) = 0\}$ is a u.w. Σ_2^0 subobj. of $\mathbb{N}^{\mathbb{N}}$.
- $Bdd = \{x \in \mathbb{N}^{\mathbb{N}} : \exists n \forall m. x(m) < n\}$ is an i.w. Σ_2^0 subobject of $\mathbb{N}^{\mathbb{N}}$.
- Every u.w. Σ_2^0 subobject is an i.w. Σ_2^0 subobject.

Classification of Σ_2^0 formulas $\exists n \forall m \varphi(n, m)$:

- (Unique Witness) " $\exists n \forall m \varphi(n,m) \leftrightarrow \exists ! n \forall m \varphi(n,m)$ "
- (Increasing Witness) " $k \le n$ and $\forall m\varphi(k,m) \rightarrow \forall m\varphi(n,m)$ "

Theorem

- *FIN* is Levin complete among u.w. Σ_2^0 subobjects.
- *Bdd* is Levin complete among i.w. Σ_2^0 subobjects.
- There is a Levin complete subobject among all Σ_2^0 subobjects.
- They have different Levin reducibility degrees from each other.

- *FIN* is Levin complete among u.w. Σ_2^0 subobjects.
- *Bdd* is Levin complete among i.w. Σ_2^0 subobjects.
- There is a Levin complete subobject among all Σ_2^0 subobjects.

