More on the Intuitionistic Borel Hierarchy

Takayuki Kihara
Nagoya University, Japan

CCC 2023: Continuity, Computability, Constructivity, From Logic to Algorithms, Kyoto, Japan, September 27, 2023

In classical theory, the following result is well known:
The set of all eventually zero sequences is $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{0}}$-complete.

- i.e., $F I N=\left\{x \in \mathbb{N}^{\mathbb{N}}: \exists n \forall m>n . x(m)=0\right\}$ is Σ_{2}^{0}-complete.

Here, for $\boldsymbol{A}, \boldsymbol{B} \subseteq \mathbb{N}^{\mathbb{N}}$:

- \boldsymbol{A} is reducible to \boldsymbol{B} (written $\boldsymbol{A} \leq \boldsymbol{B}$) iff
\exists continuous $\varphi \forall x(x \in A \Longleftrightarrow \varphi(x) \in B)$
- \boldsymbol{A} is $\boldsymbol{\Gamma}$-complete if \boldsymbol{A} is a s-greatest element among $\boldsymbol{\Gamma}$ sets.

The same result holds if "continuous" is changed to "computable".
Σ_{2}^{0}-completeness of $\boldsymbol{F I N}$ is "trivial" to those of us familiar with classical theory, but it is not necessarily true in intuitionistic mathematics.

Theorem (Veldman 2008)

In a certain intuitionistic system,
$\boldsymbol{F I N}=\left\{\boldsymbol{x} \in \mathbb{N}^{\mathbb{N}}: \exists \boldsymbol{n} \forall \boldsymbol{m}>\boldsymbol{n} . \boldsymbol{x}(\boldsymbol{m})=\mathbf{0}\right\}$ is not $\boldsymbol{\Sigma}_{2}^{0}$-complete.

- One of the key intuitionistic principles assumed by Veldman is Brouwer's continuity principle.
- The details of Veldman's assumptions are not explained here.

Veldman also showed other results that contradict those in the classical theory.

Theorem (Veldman 2022)

In a certain intuitionistic system, the set of (the codes of) trees which are ill-founded w.r.t. the Kleene-Brouwer ordering is not Σ_{1}^{1}-complete.

Objective

- We clarify that Veldman's results are valuable not only in intuitionistic mathematics, but also in classical math.
- Veldman's results can be understood as results about "Levin reducibility" in classical math.
- Further refine Veldman's results using techniques in classical math.
\triangleright Veldman's insights provide a new refinement to the classical arithmetical/Borel hierarchy.

What is "Levin reducibility"?

- Introduced by Leonid Levin in 1973.
- Levin's 1973 paper is a monumental paper in complexity theory that showed NP-completeness of SAT, but what Levin was really dealing with was "Levin reducibility" between search problems.
- A search problem is a binary relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$.
- Any y satisfying $R(x, y)$ is called a witness for $x \in|R|$, where $|R|=\{x: \exists y R(x, y)\}$.

Definition (Levin 1973)

For a complexity class C and search problems \boldsymbol{A} and \boldsymbol{B}, \boldsymbol{A} is \boldsymbol{C}-Levin reducible to \boldsymbol{B} if there exist \boldsymbol{C}-functions $\varphi, \boldsymbol{\ell}, \boldsymbol{r}$ such that for any $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \Sigma^{*}$ the following holds:
(1) $x \in|A|$ if and only if $\varphi(\boldsymbol{x}) \in|\boldsymbol{B}|$.
(2) If y is a witness for $x \in|A|$ then $r(x, y)$ is a witness for $\varphi(x) \in|\boldsymbol{B}|$.
(3) If z is a witness for $\varphi(x) \in|\boldsymbol{B}|$ then $\ell(x, z)$ is a witness for $\boldsymbol{x} \in|\boldsymbol{A}|$.

- φ is a reduction for $|\boldsymbol{A}| \leq|\boldsymbol{B}|$
- r is a realizer for " $x \in|A| \Longrightarrow \varphi(x) \in|B|$ "
- ℓ is a realizer for " $x \in|A| \Longleftarrow \varphi(x) \in|B|$ "

The "standard model" of intuitionistic math that satisfies Veldman's assumptions would be those based on Kleene's second algebra $\boldsymbol{K}_{\mathbf{2}}$.

Thee main "algebras" ($\mathbb{A}, \mathbb{A}_{e f f}, *$):

- Kleene's first algebra K_{1}
\triangleright The algebra of computability on natural numbers.
$\triangleright \mathbb{A}=\mathbb{A}_{\text {eff }}=\mathbb{N}$ and $e * x=\varphi_{e}(x)$
\triangleright where φ_{e} is the e th partial computable function on \mathbb{N}.
- Kleene's second algebra \boldsymbol{K}_{2}
\triangleright The algebra of continuity on infinite strings.
$\triangleright \mathbb{A}=\mathbb{A}_{\text {eff }}=\mathbb{N}^{\mathbb{N}}$, and $e * x=\psi_{e}(x)$
\triangleright where ψ_{e} is the partial continuous function on $\mathbb{N}^{\mathbb{N}}$ coded by \boldsymbol{e}.
- Kleene-Vesley algebra $\boldsymbol{K} \boldsymbol{V}$
\triangleright The algebra of computability on infinite strings.
$\triangleright \mathbb{A}=\mathbb{N}^{\mathbb{N}}, \mathbb{A}_{\text {eff }}=$ computable strings, and $e * x=\psi_{e}(x)$

Let ($\mathbb{A}, \mathbb{A}_{\text {eff }}, *$) be a relative pca, i.e, $\boldsymbol{K}_{1}, \boldsymbol{K}_{2}, \boldsymbol{K} V$ or so.

- An represented space is a pair of a set \boldsymbol{X} and a partial surjection $\delta: \subseteq \mathbb{A} \rightarrow X$.
\triangleright If $\delta(p)=x$ then p is called a name of $\boldsymbol{x} \in \boldsymbol{X}$.
- A function $f: X \rightarrow \boldsymbol{Y}$ is realizable if there exists $\boldsymbol{a} \in \boldsymbol{A}_{\text {eff }}$ such that if \boldsymbol{p} is a name of $\boldsymbol{x} \in \boldsymbol{X}$ then $\boldsymbol{a} * \boldsymbol{p}$ is a name of $f(x) \in \boldsymbol{Y}$

A represented space is also known as a modest set.

- Fact: The category of represented spaces and realizable functions is a locally cartesian closed category with NNO, whose internal logic corresponds to the realizability interpretation.
- The standard model of intuitionistic mathematics satisfying Veldman's assumptions would be the category $\operatorname{Rep}\left(\boldsymbol{K}_{2}\right)$ of \boldsymbol{K}_{2}-represented spaces (or the realizability topos $\boldsymbol{R T}\left(\boldsymbol{K}_{\mathbf{2}}\right)$ over $\boldsymbol{K}_{\mathbf{2}}$).

In the category of represented spaces:

- A formula is interpreted as something like a "witness-search problem (or a realizer-search problem)"

Example: The type $\mathbb{N}^{\mathbb{N}}$ formula " $\varphi(x) \equiv \exists n \forall m \geq n . x(m)=0$ " is interpreted as a subobject $F I N \mapsto \mathbb{N}^{\mathbb{N}}$ such that

- the underlying set is $\left\{x \in \mathbb{N}^{\mathbb{N}}: \exists \boldsymbol{n} \forall \boldsymbol{m} \geq \boldsymbol{n} . \boldsymbol{x}(\boldsymbol{m})=\mathbf{0}\right\}$
- a name of $\boldsymbol{x} \in \boldsymbol{F I N}$ is a pair of $\langle\boldsymbol{x}, \boldsymbol{n}\rangle$, where \boldsymbol{n} is an existential witness.

Fact: Every subobject of \boldsymbol{X} has a representative of the following form:

- an underlying set \boldsymbol{A} is a subset of \boldsymbol{X}
- a name of $\boldsymbol{x} \in \boldsymbol{A}$ is the pair of a name \boldsymbol{p} of $\boldsymbol{x} \in \boldsymbol{X}$ and some $\boldsymbol{q} \in \mathbb{A}$. This \boldsymbol{q} is considered as a "witness".

Roughly speaking:

- A subobject is a subset with witnesses.
- A regular subobject is a subset without witnesses.

Recall: for $\boldsymbol{A}, \boldsymbol{B} \subseteq \mathbb{N}^{\mathbb{N}}, \boldsymbol{A}$ is reducible to \boldsymbol{B} (written $\boldsymbol{A} \leq \boldsymbol{B}$) iff \exists continuous $\varphi \forall x(x \in A \Longleftrightarrow \varphi(x) \in B)$
That is, $\boldsymbol{A}=\boldsymbol{\varphi}^{-1}[\boldsymbol{B}]$.
Its categorical version would be something like:
Def: Let $\boldsymbol{X}, \boldsymbol{Y}$ be objects in a category \boldsymbol{C} having pullbacks.
A mono $\boldsymbol{A} \stackrel{\alpha}{\mapsto} X$ is reducible to $\boldsymbol{B} \stackrel{\beta}{\mapsto} \boldsymbol{Y}$ if $\boldsymbol{A} \stackrel{\alpha}{\mapsto} X$ is a pullback of $\boldsymbol{B} \stackrel{\beta}{\mapsto} \boldsymbol{Y}$ along some morphism $\varphi: X \rightarrow Y$.

When this notion is interpreted in the category of represented spaces, we obtain (computable/continuous) Levin reducibility.

A subobject $\boldsymbol{A} \mapsto \boldsymbol{X} \approx$ a subset with witnesses:

- an underlying set \boldsymbol{A} is a subset of \boldsymbol{X}
- a name for $\boldsymbol{x} \in \boldsymbol{A}$ is a pair of a name $\boldsymbol{x} \in \boldsymbol{X}$ and a witness.

For subobjects $\boldsymbol{A}, \boldsymbol{B} \mapsto \boldsymbol{X}, \boldsymbol{A}$ is Levin reducible to \boldsymbol{B} if there exist a morphism $\varphi: X \rightarrow X$ and realizable functions ℓ, r such that for any $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ the following holds:
(1) $x \in \boldsymbol{A}$ if and only if $\varphi(\boldsymbol{x}) \in \boldsymbol{B}$.
(2) If \dot{x} is a name of $\boldsymbol{x} \in \boldsymbol{X}$ and \dot{y} is a name of witness for $\boldsymbol{x} \in \boldsymbol{A}$ then $\boldsymbol{r}(\dot{\boldsymbol{x}}, \dot{\boldsymbol{y}})$ is a witness for $\varphi(\boldsymbol{x}) \in \boldsymbol{B}$.
(3) If \dot{x} is a name of $\boldsymbol{x} \in \boldsymbol{X}$ and \dot{z} is a name of $\varphi(x) \in \boldsymbol{B}$ then $\boldsymbol{\ell}(\dot{\boldsymbol{x}}, \dot{\boldsymbol{z}})$ is a witness for $\boldsymbol{x} \in \boldsymbol{A}$.

- φ is a reduction for $\boldsymbol{A} \leq \boldsymbol{B}$ (on underlying sets)
- r is a realizer for " $x \in A \Longrightarrow \varphi(x) \in B$ "
- ℓ is a realizer for " $x \in A \Longleftarrow \varphi(x) \in B$ "

Theorem (Veldman 2008)

In a certain intuitionistic system,
$F I N=\left\{x \in \mathbb{N}^{\mathbb{N}}: \exists \boldsymbol{n} \forall m>\boldsymbol{n} . \boldsymbol{x}(\boldsymbol{m})=0\right\}$ is not Σ_{2}^{0}-complete.
This is because:

- The witness-search problem for FIN is not Levin-complete among the witness-search problems for $\Sigma_{2}^{\mathbf{0}}$ formulas even in classical mathematics.

Theorem (Veldman 2022)

In a certain intuitionistic system, the set $\boldsymbol{I F}(\boldsymbol{K B})$ of trees which are ill-founded w.r.t. the Kleene-Brouwer ordering is not $\boldsymbol{\Sigma}_{1}^{\mathbf{1}}$-complete.

This is because:

- The witness-search problem for $\boldsymbol{I F}(\mathbf{K B})$ is not Levin-complete among the witness-search problems for Σ_{1}^{1} formulas even in classical mathematics.
- Our observation shows that Veldman's seemingly strange results can also be understood by classical mathematicians as results regarding Levin reducibility for witness-search problems.
- However, simply interpreting previous results in a different context is of course not very interesting.
\triangleright It is interesting when the interpretation leads to a truly new discovery.
- One of our new discoveries is that the "three layers" of $\boldsymbol{\Sigma}_{2}^{0}$ formulas w.r.t Levin reducibility (in classical mathematics).
Σ_{2}^{0} subobject $\approx \Sigma_{2}^{0}$ subset with existential witnesses
Classification of $\boldsymbol{\Sigma}_{2}^{\mathbf{0}}$ formulas $\exists \boldsymbol{Z} \forall \boldsymbol{m} \varphi(\boldsymbol{n}, \boldsymbol{m})$:
- (Unique Witness) " $\exists \boldsymbol{n} \forall m \varphi(n, m) \leftrightarrow \exists!\boldsymbol{n} \forall m \varphi(n, m) "$
- (Increasing Witness) " $k \leq n$ and $\forall m \varphi(k, m) \rightarrow \forall m \varphi(n, m)$ "

Definition:

- A u.w. Σ_{2}^{0} subobject is a subobject defined by a Σ_{2}^{0} formula satisfying (Unique Witness).
- A i.w. Σ_{2}^{0} subobject is a subobject defined by a $\boldsymbol{\Sigma}_{2}^{\mathbf{0}}$ formula satisfying (Increasing Witness).

Example:

- $F I N=\left\{x \in \mathbb{N}^{\mathbb{N}}: \exists n \forall m \geq n . x(m)=0\right\}$ is a u.w. Σ_{2}^{0} subobj. of $\mathbb{N}^{\mathbb{N}}$.
- Bdd $=\left\{x \in \mathbb{N}^{\mathbb{N}}: \exists \boldsymbol{n} \forall m . x(\boldsymbol{m})<\boldsymbol{n}\right\}$ is an i.w. Σ_{2}^{0} subobject of $\mathbb{N}^{\mathbb{N}}$.
- Every u.w. $\boldsymbol{\Sigma}_{2}^{\mathbf{0}}$ subobject is an i.w. $\boldsymbol{\Sigma}_{2}^{\mathbf{0}}$ subobject.

Classification of $\boldsymbol{\Sigma}_{2}^{\mathbf{0}}$ formulas $\exists \boldsymbol{Z} \forall \boldsymbol{m} \varphi(\boldsymbol{n}, \boldsymbol{m})$:

- (Unique Witness) " $\boldsymbol{\exists} \boldsymbol{n} \forall \boldsymbol{m} \varphi(\boldsymbol{n}, \boldsymbol{m}) \leftrightarrow \exists!\boldsymbol{n} \forall \boldsymbol{m} \varphi(\boldsymbol{n}, \boldsymbol{m})$ "
- (Increasing Witness) " $k \leq n$ and $\forall m \varphi(k, m) \rightarrow \forall m \varphi(n, m)$ "

Theorem

- FIN is Levin complete among u.w. $\boldsymbol{\Sigma}_{2}^{0}$ subobjects.
- Bdd is Levin complete among i.w. $\boldsymbol{\Sigma}_{2}^{0}$ subobjects.
- There is a Levin complete subobject among all $\Sigma_{2}^{\mathbf{0}}$ subobjects.
- They have different Levin reducibility degrees from each other.

- FIN is Levin complete among u.w. $\boldsymbol{\Sigma}_{2}^{0}$ subobjects.
- $\boldsymbol{B d} \boldsymbol{d}$ is Levin complete among i.w. $\boldsymbol{\Sigma}_{2}^{\mathbf{0}}$ subobjects.
- There is a Levin complete subobject among all $\boldsymbol{\Sigma}_{2}^{\mathbf{0}}$ subobjects.

