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The Minimalist Foundation (MF)

(Maietti, Sambin 2005) conceptual design
(Maietti 2009) two-level formal system

MF is a foundation for constructive mathematics compatible with the main
constructive and classical, predicative and impredicative, foundational theories in
the literature.
It consists of two levels both formulated as variants of Martin-Löf type theory:
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Realizability models for MF

1 (Maietti, M. 2015/16) for mTT+CT+Ext in �ID1

2 (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in �ID1

3 (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA
4 (Maietti, M. , Rathjen 2022) for mTT+AC+CT+Ind+Cind in

CZF+uREA+RDC

We are interested here in the last three of these models.
Recall that Feferman’s �ID1 is classical but strictly predicative, while Aczel’s CZF is
constructive and predicative.
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Hyland’s E↵ective Topos

(Hyland, 1982)
The e↵ective topos E↵

- an elementary topos which is not Grothendieck

- an adequate mathematical framework for computable mathematics

- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

(1) directly by describing its objects (A,R) and its arrows [F ];
(2) as the result of the tripos-to-topos construction applied to the realizability

tripos, which is a uniform variant of Kleene realizability on Set;

(3) as the result of the ex-reg completion applied to the category of assemblies
Asm.

(4) as the result of the ex-lex completion applied to the category of partitioned
assemblies pAsm.
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In order to define constructive and/or predicative variants of E↵ we consider the
fourth option.

In particular, we consider a rendering of the full subcategory of
pAsm consisting of subsets of N and (restrictions of) recursive functions between
them. We also exploit the fact that the ex-lex completion is exactly the
elementary quotient completion in (Maietti, Rosolini 2013) applied to the weak
subobject doctrine.
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A predicative variant of Hyland’s e↵ective topos

(Maietti, M. 2021)

Worked out in �ID1, but it can also be defined in the same way using
extensions of CZF thanks to the intepretations in
(Maietti, M., Rathjen 2021, 2022).

We start from a categorical account of the structures behind realizability
models 2,3 and 4.

1 Cr : the category of definable classes of natural numbers and (restrictions of)
computable functions between them (represented by numerals).

2 Colr ∶ Copr → Cat is the indexed category of dependent definable classes and
computable functions between them (represented by numerals and possibly
depending on data in the indexing classes).

3 Propr ∶ Copr → preHeyt is the preorder reflection of Colr .
4 Setr ∶ Copr → Cat is an indexed subcategory of Colr defined using a fix point

universe representing realizability interpretations of sets of mTT.
5 Proprs ∶ Copr → preHeyt is the preorder reflection of Setr .
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Structuring families over a predicative e↵ective topos

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal
reflection of Propr to produce a category pE↵ and a first-order hyperdoctrine
pE↵prop of propositions over it.

One can also define a subdoctrine pE↵props of
pE↵prop of small propositions over pE↵ using Proprs .
So we started from a square of embeddings over Cr

Setr �
�

// Colr

Proprs
� �

//

?�

OO

Propr
?�

OO

and we obtained a partial square over pE↵

?? �
�

// ??

pE↵props

?�

OO

� �
// pE↵prop

?�

OO

The top right corner can be filled by shifting to fibrations and considering the
codomain fibration of pE↵, however how can we fill the top left corner?
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Keeping more computational information

In order to answer this question, we first have to shift to a more computationally
informative version pE↵c of pE↵.

The di↵erence between pE↵c and pE↵ is that
in the first we keep track of realizers which are kept in the meta-level in the
second case. The idea is to see an equivalence relation as a proof-relevant internal
grupoid and propositions as actions on a grupoid. If we allow the axiom of
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The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)

OBJECTS: dependent collections (B,S,�):
(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.
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ARROWS: [f ]≅ ∶ (B,S,�)→ (B′,S′,�′) where:

(1) f ∶ B→ B′ in Colr(A) satisfies:
(a) Sa(b,b′)⇒ S′a(fa(b), f ′a (b)) preserving dependent equivalence relations
(b) Sa′(fa′(�a,a′(r ,b)),�′a,a′(r , fa(b))) compatibility with pseudo-actions

(2) f ≅ g means Sa(b,b′)⇒ S′a(fa(b),ga(b))
These objects and arrows, together with the compositions and identities inherited
from Colr(A), define a category pE↵c

col(A,R).
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Theorem

pE↵c
col(A,R) is a locally cartesian closed list-arithmetic pretopos.

Theorem

There exists a functor K ∶ pE↵c
col(A,R)→ pE↵c�(A,R) which is full, faithfull and

essentially surjective on objects.

If one assumes the axiom of countable choice, we get that pE↵c
col(A,R) is

equivalent to pE↵c�(A,R).
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The category of dependent sets over (A,R) in pE↵c
:

pE↵c

set(A,R)
Using the presentation of dependent collections over (A,R) one can define
pE↵c

set(A,R) as the full subcategory of pE↵c
col(A,R) whose

OBJECTS are dependent collections (B,S,�) with
(a) B is an object of Setr(A)
(b) S ∈ Propr

s(⌃(A,B ×B))
Theorem

pE↵c
set(A,R) is a locally cartesian closed list-arithmetic pretopos and its

embedding in pE↵c
col(A,R) preserves all the structure.
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(P) is a realizer for the descent condition

Moreover (P,⇢) ≤ (P′,⇢′) means P ≤ P′ in Propr(A).
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Now, the best currently available way to produce a square over pE↵c is by means
of fibrations, as follows:

pE↵c →
props
� �

//

� _

✏✏

pE↵c →
prop� _

✏✏

pE↵c →
set

cod
$$

� �
// pE↵c →

cod
zz

pE↵c

where b ∶ (C,T)→ (A,R) is in
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Remarks

If we consider the formalization of pE↵c in CZF + REA we gain:
1 a fully constructive predicative e↵ective topos
2 pE↵c models MF + inductive formal topologies thanks to (Maietti, M.,

Rathjen 2021) and all inductive definitions thanks to (Maietti, Sabelli 2023)

If we consider the formalization in CZF + uREA + RDC , pE↵c models MF +
inductive formal topologies + coinductive topological definitions thanks to
(Maietti, M., Rathjen 2022) and all coinductive definitions thanks to (PhD thesis
Sabelli 2023)
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Thanks for your attention!


