Fibred sets within a predicative and constructive variant of Hyland's effective topos

Samuele Maschio

(j.w.w. Cipriano Junior Cioffo and Maria Emilia Maietti)

Dipartimento di Matematica "Tullio Levi-Civita" Università di Padova

> *CCC 2023* Kyoto, 25/09/2023

(Maietti, Sambin 2005) conceptual design (Maietti 2009) two-level formal system

(Maietti, Sambin 2005) conceptual design (Maietti 2009) two-level formal system MF is a foundation for constructive mathematics compatible with the main constructive and classical, predicative and impredicative, foundational theories in the literature.

(Maietti, Sambin 2005) conceptual design (Maietti 2009) two-level formal system

MF is a foundation for constructive mathematics compatible with the main constructive and classical, predicative and impredicative, foundational theories in the literature.

It consists of two levels both formulated as variants of Martin-Löf type theory:

Intensional level (mTT) Extensional level (emTT)

Computational content Actual mathematics

(Maietti, Sambin 2005) conceptual design (Maietti 2009) two-level formal system

MF is a foundation for constructive mathematics compatible with the main constructive and classical, predicative and impredicative, foundational theories in the literature.

It consists of two levels both formulated as variants of Martin-Löf type theory:

The two levels are linked by a **setoid model** of emTT in mTT.

(Maietti, M. 2015/16) for mTT+CT+Ext in $\widehat{ID_1}$

- (Maietti, M. 2015/16) for mTT+CT+Ext in $\widehat{ID_1}$
- (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in $\widehat{ID_1}$

- (Maietti, M. 2015/16) for mTT+CT+Ext in $\widehat{ID_1}$
- (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in $\widehat{ID_1}$
- (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA

- (Maietti, M. 2015/16) for mTT+CT+Ext in $\widehat{ID_1}$
- (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in $\widehat{ID_1}$
- (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA
- (Maietti, M., Rathjen 2022) for mTT+AC+CT+Ind+Cind in CZF+uREA+RDC

- (Maietti, M. 2015/16) for mTT+CT+Ext in $\widehat{ID_1}$
- (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in $\widehat{ID_1}$
- (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA
- (Maietti, M., Rathjen 2022) for mTT+AC+CT+Ind+Cind in CZF+uREA+RDC

We are interested here in the last three of these models.

- (Maietti, M. 2015/16) for mTT+CT+Ext in $\widehat{ID_1}$
- (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in $\widehat{ID_1}$
- (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA
- (Maietti, M., Rathjen 2022) for mTT+AC+CT+Ind+Cind in CZF+uREA+RDC

We are interested here in the last three of these models. Recall that Feferman's $\widehat{ID_1}$ is classical but strictly predicative, while Aczel's CZF is constructive and predicative.

(Hyland, 1982) The effective topos **Eff**

(Hyland, 1982) The effective topos **Eff**

- an elementary topos which is not Grothendieck

(Hyland, 1982) The effective topos **Eff**

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics

(Hyland, 1982) The effective topos **Eff**

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics
- its internal logic coincides with Kleene realizability on natural numbers

(Hyland, 1982) The effective topos **Eff**

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics
- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

(Hyland, 1982) The effective topos **Eff**

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics
- its internal logic coincides with Kleene realizability on natural numbers
- It can be defined in four ways:
- (1) directly by describing its objects (A, R) and its arrows [F];

(Hyland, 1982) The effective topos **Eff**

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics
- its internal logic coincides with Kleene realizability on natural numbers
- It can be defined in four ways:
- (1) directly by describing its objects (A, R) and its arrows [F];
- (2) as the result of the tripos-to-topos construction applied to the realizability tripos, which is a uniform variant of Kleene realizability on **Set**;

(Hyland, 1982) The effective topos **Eff**

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics
- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

- (1) directly by describing its objects (A, R) and its arrows [F];
- (2) as the result of the tripos-to-topos construction applied to the realizability tripos, which is a uniform variant of Kleene realizability on **Set**;
- (3) as the result of the ex-reg completion applied to the category of assemblies $\ensuremath{\textbf{Asm}}.$

(Hyland, 1982) The effective topos **Eff**

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics
- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

- (1) directly by describing its objects (A, R) and its arrows [F];
- (2) as the result of the tripos-to-topos construction applied to the realizability tripos, which is a uniform variant of Kleene realizability on **Set**;
- (3) as the result of the ex-reg completion applied to the category of assemblies $\ensuremath{\textbf{Asm}}.$
- (4) as the result of the ex-lex completion applied to the category of partitioned assemblies **pAsm**.

In order to define constructive and/or predicative variants of ${\ensuremath{\text{Eff}}}$ we consider the fourth option.

In order to define constructive and/or predicative variants of **Eff** we consider the fourth option. In particular, we consider a rendering of the full subcategory of **pAsm** consisting of subsets of \mathbb{N} and (restrictions of) recursive functions between them.

In order to define constructive and/or predicative variants of **Eff** we consider the fourth option. In particular, we consider a rendering of the full subcategory of **pAsm** consisting of subsets of \mathbb{N} and (restrictions of) recursive functions between them. We also exploit the fact that the ex-lex completion is exactly the elementary quotient completion in (Maietti, Rosolini 2013) applied to the weak subobject doctrine.

(Maietti, M. 2021)

(Maietti, M. 2021)

Worked out in $\widehat{ID_1}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).

(Maietti, M. 2021)

Worked out in $\widehat{ID_1}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).

(Maietti, M. 2021)

Worked out in $\widehat{ID_1}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).

We start from a categorical account of the structures behind realizability models 2,3 and 4.

C_r: the category of definable classes of natural numbers and (restrictions of) computable functions between them (represented by numerals).

(Maietti, M. 2021)

Worked out in $\widehat{ID_1}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).

- C_r: the category of definable classes of natural numbers and (restrictions of) computable functions between them (represented by numerals).
- Old Col^r: C^{op}_r → Cat is the indexed category of dependent definable classes and computable functions between them (represented by numerals and possibly depending on data in the indexing classes).

(Maietti, M. 2021)

Worked out in $\widehat{ID_1}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).

- C_r: the category of definable classes of natural numbers and (restrictions of) computable functions between them (represented by numerals).
- Old Col^r: C^{op}_r → Cat is the indexed category of dependent definable classes and computable functions between them (represented by numerals and possibly depending on data in the indexing classes).
- **9 Prop**^{*r*} : $C_r^{op} \rightarrow$ **preHeyt** is the preorder reflection of **Col**^{*r*}.

(Maietti, M. 2021)

Worked out in $\widehat{ID_1}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).

- C_r: the category of definable classes of natural numbers and (restrictions of) computable functions between them (represented by numerals).
- Old Col^r: C^{op}_r → Cat is the indexed category of dependent definable classes and computable functions between them (represented by numerals and possibly depending on data in the indexing classes).
- **9 Prop**^{*r*} : $C_r^{op} \rightarrow$ **preHeyt** is the preorder reflection of **Col**^{*r*}.
- Set^r: C^{op}_r → Cat is an indexed subcategory of Col^r defined using a fix point universe representing realizability interpretations of sets of mTT.

(Maietti, M. 2021)

Worked out in $\widehat{ID_1}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).

- C_r: the category of definable classes of natural numbers and (restrictions of) computable functions between them (represented by numerals).
- Old Col^r: C^{op}_r → Cat is the indexed category of dependent definable classes and computable functions between them (represented by numerals and possibly depending on data in the indexing classes).
- **9 Prop**^{*r*} : $C_r^{op} \rightarrow$ **preHeyt** is the preorder reflection of **Col**^{*r*}.
- Set^r: C^{op}_r → Cat is an indexed subcategory of Col^r defined using a fix point universe representing realizability interpretations of sets of mTT.
- **9 Prop**^{*r*} : $C_r^{op} \rightarrow$ **preHeyt** is the preorder reflection of **Set**^{*r*}.

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal reflection of **Prop**^r to produce a category **pEff** and a first-order hyperdoctrine **pEff**_{*prop*} of propositions over it.

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal reflection of **Prop**^{*r*} to produce a category **pEff** and a first-order hyperdoctrine **pEff**_{prop} of propositions over it. One can also define a subdoctrine **pEff**_{props} of **peff**_{props} of small propositions over **pEff** using **Prop**^{*r*}_{*s*}.

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal reflection of **Prop**^{*r*} to produce a category **pEff** and a first-order hyperdoctrine **pEff**_{prop} of propositions over it. One can also define a subdoctrine **pEff**_{prop} of small propositions over **pEff** using **Prop**^{*r*}_s. So we started from a square of embeddings over C_r

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal reflection of **Prop**^{*r*} to produce a category **pEff** and a first-order hyperdoctrine **pEff**_{prop} of propositions over it. One can also define a subdoctrine **pEff**_{prop}, of **pEff**_{prop} of small propositions over **pEff** using **Prop**^{*r*}_s. So we started from a square of embeddings over C_r

and we obtained a partial square over **pEff**

Structuring families over a predicative effective topos

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal reflection of **Prop**^{*r*} to produce a category **pEff** and a first-order hyperdoctrine **pEff**_{prop} of propositions over it. One can also define a subdoctrine **pEff**_{prop} of small propositions over **pEff** using **Prop**^{*r*}_s. So we started from a square of embeddings over C_r

and we obtained a partial square over **pEff**

The top right corner can be filled by shifting to fibrations and considering the codomain fibration of \mathbf{pEff} ,

Structuring families over a predicative effective topos

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal reflection of **Prop**^{*r*} to produce a category **pEff** and a first-order hyperdoctrine **pEff**_{prop} of propositions over it. One can also define a subdoctrine **pEff**_{prop} of small propositions over **pEff** using **Prop**^{*r*}_s. So we started from a square of embeddings over C_r

and we obtained a partial square over **pEff**

The top right corner can be filled by shifting to fibrations and considering the codomain fibration of **pEff**, however **how can we fill the top left corner?**

In order to answer this question, we first have to shift to a more computationally informative version \mathbf{pEff}^c of \mathbf{pEff} .

In order to answer this question, we first have to shift to a more computationally informative version \mathbf{pEff}^c of \mathbf{pEff} . The difference between \mathbf{pEff}^c and \mathbf{pEff} is that in the first we keep track of realizers which are kept in the meta-level in the second case.

In order to answer this question, we first have to shift to a more computationally informative version \mathbf{pEff}^c of \mathbf{pEff} . The difference between \mathbf{pEff}^c and \mathbf{pEff} is that in the first we keep track of realizers which are kept in the meta-level in the second case. The idea is to see an equivalence relation as a proof-relevant internal grupoid and propositions as actions on a grupoid.

In order to answer this question, we first have to shift to a more computationally informative version **pEff**^c of **pEff**. The difference between **pEff**^c and **pEff** is that in the first we keep track of realizers which are kept in the meta-level in the second case. The idea is to see an equivalence relation as a proof-relevant internal grupoid and propositions as actions on a grupoid. If we allow the axiom of countable choice in the meta-level, then the two categories become equivalent.

OBJECTS: dependent collections (B, S, σ) :

(1) B is an object of $Col^{r}(A)$: a dependent collection over A

OBJECTS: dependent collections (B, S, σ) :

B is an object of Col^r(A): a dependent collection over A
 S ∈ Prop^r(Σ(A, B × B): a dependent equivalence relation on B with a parameter in A

- (1) B is an object of $Col^{r}(A)$: a dependent collection over A
- (2) $S \in \mathbf{Prop}^{r}(\Sigma(A, B \times B))$: a dependent equivalence relation on B with a parameter in A
- (3) $\sigma : \mathbf{Col}_{\pi_1}^r(B) \times R \to \mathbf{Col}_{\pi_2}^r(B)$ a pseudo-action, that is:

- (1) B is an object of $Col^{r}(A)$: a dependent collection over A
- (2) $S \in \mathbf{Prop}^{r}(\Sigma(A, B \times B))$: a dependent equivalence relation on B with a parameter in A

(3)
$$\sigma : \operatorname{Col}_{\pi_1}^r(B) \times R \to \operatorname{Col}_{\pi_2}^r(B)$$
 a pseudo-action, that is:
(a) $S_a(b,b') \Rightarrow S_{a'}(\sigma_{a,a'}(r,b), \sigma_{a,a'}(r,b'))$

OBJECTS: dependent collections (B, S, σ) :

- (1) B is an object of $Col^{r}(A)$: a dependent collection over A
- (2) $S \in \mathbf{Prop}^{r}(\Sigma(A, B \times B))$: a dependent equivalence relation on B with a parameter in A

(3)
$$\sigma : \mathbf{Col}_{\pi_1}^r(\mathsf{B}) \times \mathsf{R} \to \mathbf{Col}_{\pi_2}^r(\mathsf{B})$$
 a pseudo-action, that is:

(a) $S_a(b,b') \Rightarrow S_{a'}(\sigma_{a,a'}(r,b), \sigma_{a,a'}(r,b'))$ (preserving dependent equivalence relations)

- (1) B is an object of $Col^{r}(A)$: a dependent collection over A
- (2) $S \in \mathbf{Prop}^{r}(\Sigma(A, B \times B))$: a dependent equivalence relation on B with a parameter in A

(3)
$$\sigma : \mathbf{Col}_{\pi_1}^r(\mathsf{B}) \times \mathsf{R} \to \mathbf{Col}_{\pi_2}^r(\mathsf{B})$$
 a pseudo-action, that is:

- (a) $S_a(b, b') \Rightarrow S_{a'}(\sigma_{a,a'}(r, b), \sigma_{a,a'}(r, b'))$ (preserving dependent equivalence relations) (b) $S_{a'}(\sigma_{a,a'}(r,b),\sigma_{a,a'}(r',b))$

- (1) B is an object of $\mathbf{Col}^{r}(A)$: a dependent collection over A
- (2) $S \in \mathbf{Prop}^{r}(\Sigma(A, B \times B))$: a dependent equivalence relation on B with a parameter in A

(3)
$$\sigma : \mathbf{Col}'_{\pi_1}(\mathsf{B}) \times \mathsf{R} \to \mathbf{Col}'_{\pi_2}(\mathsf{B})$$
 a pseudo-action, that is:

- (a) $S_a(b,b') \Rightarrow S_{a'}(\sigma_{a,a'}(r,b), \sigma_{a,a'}(r,b'))$ (preserving dependent equivalence relations)
- (b) $S_{a'}(\sigma_{a,a'}(r,b),\sigma_{a,a'}(r',b))$ (not depending on realizers)

- (1) B is an object of $\mathbf{Col}^{r}(A)$: a dependent collection over A
- (2) S ∈ Prop^r(Σ(A, B × B): a dependent equivalence relation on B with a parameter in A

(3)
$$\sigma : \mathbf{Col}_{\pi_1}^r(B) \times R \to \mathbf{Col}_{\pi_2}^r(B)$$
 a pseudo-action, that is:

- (a) $S_a(b,b') \Rightarrow S_{a'}(\sigma_{a,a'}(r,b),\sigma_{a,a'}(r,b'))$ (preserving dependent equivalence relations)
- (b) $S_{a'}(\sigma_{a,a'}(r,b),\sigma_{a,a'}(r',b))$ (not depending on realizers)
- (c) $S_a(b, \sigma_{a,a}(r, b))$ for $r \Vdash R(a, a)$

- (1) B is an object of $\mathbf{Col}^{r}(A)$: a dependent collection over A
- (2) $S \in \mathbf{Prop}^{r}(\Sigma(A, B \times B))$: a dependent equivalence relation on B with a parameter in A

(3)
$$\sigma : \mathbf{Col}_{\pi_1}^r(B) \times R \to \mathbf{Col}_{\pi_2}^r(B)$$
 a pseudo-action, that is:

- (a) $S_a(b,b') \Rightarrow S_{a'}(\sigma_{a,a'}(r,b),\sigma_{a,a'}(r,b'))$ (preserving dependent equivalence relations)
- (b) $S_{a'}(\sigma_{a,a'}(r,b),\sigma_{a,a'}(r',b))$ (not depending on realizers)
- (c) $S_a(b, \sigma_{a,a}(r, b))$ for $r \Vdash R(a, a)$ (identity on reflexivity)

- (1) B is an object of $Col^{r}(A)$: a dependent collection over A
- (2) $S \in \mathbf{Prop}^{r}(\Sigma(A, B \times B))$: a dependent equivalence relation on B with a parameter in A

(3)
$$\sigma : \mathbf{Col}_{\pi_1}^r(B) \times R \to \mathbf{Col}_{\pi_2}^r(B)$$
 a pseudo-action, that is:

(a)
$$S_a(b,b') \Rightarrow S_{a'}(\sigma_{a,a'}(r,b), \sigma_{a,a'}(r,b'))$$

(preserving dependent equivalence relations)
(b) $S_a(\sigma_{a,a'}(r,b), \sigma_{a,a'}(r,b'))$ (not depending on realizors)

- (b) $S_{a'}(\sigma_{a,a'}(r,b),\sigma_{a,a'}(r',b))$ (not depending on realizers)
- (c) $S_a(b, \sigma_{a,a}(r, b))$ for $r \Vdash R(a, a)$ (identity on reflexivity)
- (d) $S_{a''}(\sigma_{a',a''}(s,\sigma_{a,a'}(r,b)),\sigma_{a,a''}(t,b))$ for all $r \Vdash R(a,a'), s \Vdash R(a',a'')$ and $t \Vdash R(a,a'')$

- (1) B is an object of $Col^{r}(A)$: a dependent collection over A
- (2) $S \in \mathbf{Prop}^{r}(\Sigma(A, B \times B))$: a dependent equivalence relation on B with a parameter in A

(3)
$$\sigma : \mathbf{Col}_{\pi_1}^r(B) \times R \to \mathbf{Col}_{\pi_2}^r(B)$$
 a pseudo-action, that is:

- (a) S_a(b,b') ⇒ S_{a'}(σ_{a,a'}(r,b), σ_{a,a'}(r,b')) (preserving dependent equivalence relations)
 (b) S_{a'}(σ_{a,a'}(r,b), σ_{a,a'}(r',b)) (not depending on realizers)
- (b) $S_{a'}(\sigma_{a,a'}(r, b), \sigma_{a,a'}(r, b))$ (not depending on realizers)
- (c) $S_a(b, \sigma_{a,a}(r, b))$ for $r \Vdash R(a, a)$ (identity on reflexivity)
- (d) $S_{a''}(\sigma_{a',a''}(s,\sigma_{a,a'}(r,b)),\sigma_{a,a''}(t,b))$ for all $r \Vdash R(a,a'), s \Vdash R(a',a'')$ and $t \Vdash R(a,a'')$ (composition on transitivity)

OBJECTS: dependent collections (B, S, σ) :

- (1) B is an object of $Col^{r}(A)$: a dependent collection over A
- (2) $S \in \mathbf{Prop}^{r}(\Sigma(A, B \times B))$: a dependent equivalence relation on B with a parameter in A

(3)
$$\sigma : \mathbf{Col}_{\pi_1}^r(\mathsf{B}) \times \mathsf{R} \to \mathbf{Col}_{\pi_2}^r(\mathsf{B})$$
 a pseudo-action, that is:

(a)
$$S_a(b,b') \Rightarrow S_{a'}(\sigma_{a,a'}(r,b), \sigma_{a,a'}(r,b'))$$

(preserving dependent equivalence relations)
(b) $S_a(a,b) = (a',b)$ (set depending on malines)

- (b) $S_{a'}(\sigma_{a,a'}(r,b),\sigma_{a,a'}(r',b))$ (not depending on realizers)
- (c) $S_a(b, \sigma_{a,a}(r, b))$ for $r \Vdash R(a, a)$ (identity on reflexivity)
- (d) $S_{a''}(\sigma_{a',a''}(s,\sigma_{a,a'}(r,b)),\sigma_{a,a''}(t,b))$ for all $r \Vdash R(a,a')$, $s \Vdash R(a',a'')$ and $t \Vdash R(a,a'')$ (composition on transitivity)

These conditions, expressed here informally, can be expressed in precise categorical terms.

(1) $f : B \to B'$ in **Col**^r(A) satisfies:

(1) $f : B \to B'$ in **Col**^r(A) satisfies: (a) $S_a(b, b') \Rightarrow S'_a(f_a(b), f'_a(b))$

(1) f: B → B' in Col^r(A) satisfies:
 (a) S_a(b, b') ⇒ S'_a(f_a(b), f'_a(b)) preserving dependent equivalence relations

(1) $f : B \to B'$ in **Col**'(A) satisfies:

(a) $S_a(b,b') \Rightarrow S'_a(f_a(b), f'_a(b))$ preserving dependent equivalence relations (b) $S_{a'}(f_{a'}(\sigma_{a,a'}(r,b)), \sigma'_{a,a'}(r,f_a(b)))$

(1) $f : B \to B'$ in **Col**^r(A) satisfies:

(a) $S_a(b,b') \Rightarrow S'_a(f_a(b), f'_a(b))$ preserving dependent equivalence relations (b) $S_{a'}(f_{a'}(\sigma_{a,a'}(r,b)), \sigma'_{a,a'}(r,f_a(b)))$ compatibility with pseudo-actions

(1) f: B → B' in Col^r(A) satisfies:
(a) S_a(b,b') ⇒ S'_a(f_a(b), f'_a(b)) preserving dependent equivalence relations
(b) S_{a'}(f_{a'}(σ_{a,a'}(r,b)), σ'_{a,a'}(r,f_a(b))) compatibility with pseudo-actions

(2) $f \cong g$ means $S_a(b, b') \Rightarrow S'_a(f_a(b), g_a(b))$

(1) f: B → B' in Col^r(A) satisfies:
(a) S_a(b,b') ⇒ S'_a(f_a(b), f'_a(b)) preserving dependent equivalence relations
(b) S_{a'}(f_{a'}(σ_{a,a'}(r,b)), σ'_{a,a'}(r,f_a(b))) compatibility with pseudo-actions

(2)
$$f \cong g$$
 means $S_a(b, b') \Rightarrow S'_a(f_a(b), g_a(b))$

These objects and arrows, together with the compositions and identities inherited from $\mathbf{Col}^{r}(A)$, define a category $\mathbf{pEff}_{col}^{c}(A, R)$.

Theorem

 $\mathbf{pEff}_{col}^{c}(A, R)$ is a locally cartesian closed list-arithmetic pretopos.

Theorem

 $pEff_{col}^{c}(A, R)$ is a locally cartesian closed list-arithmetic pretopos.

Theorem

There exists a functor $\mathbf{K} : \mathbf{pEff}_{col}^{c}(A, R) \to \mathbf{pEff}^{c}/(A, R)$ which is full, faithfull and essentially surjective on objects.

Theorem

 $pEff_{col}^{c}(A, R)$ is a locally cartesian closed list-arithmetic pretopos.

Theorem

There exists a functor $\mathbf{K} : \mathbf{pEff}_{col}^{c}(A, R) \to \mathbf{pEff}^{c}/(A, R)$ which is full, faithfull and essentially surjective on objects.

If one assumes the axiom of countable choice, we get that $\mathbf{pEff}_{col}^{c}(A, R)$ is equivalent to $\mathbf{pEff}^{c}/(A, R)$.

Using the presentation of dependent collections over (A, R) one can define $\mathbf{pEff}_{set}^{c}(A, R)$ as the full subcategory of $\mathbf{pEff}_{col}^{c}(A, R)$ whose

Using the presentation of dependent collections over (A, R) one can define $\mathbf{pEff}_{set}^{c}(A, R)$ as the full subcategory of $\mathbf{pEff}_{col}^{c}(A, R)$ whose

OBJECTS are dependent collections (B, S, σ) with

Using the presentation of dependent collections over (A, R) one can define $\mathbf{pEff}_{set}^{c}(A, R)$ as the full subcategory of $\mathbf{pEff}_{col}^{c}(A, R)$ whose

OBJECTS are dependent collections (B, S, σ) with (a) B is an object of **Set**^r(A)

Using the presentation of dependent collections over (A, R) one can define $\mathbf{pEff}_{set}^{c}(A, R)$ as the full subcategory of $\mathbf{pEff}_{col}^{c}(A, R)$ whose

OBJECTS are dependent collections (B, S, σ) with (a) B is an object of **Set**['](A) (b) S \in **Prop**^r_s($\Sigma(A, B \times B)$)

Using the presentation of dependent collections over (A, R) one can define $\textbf{pEff}_{set}^c(A,R)$ as the full subcategory of $\textbf{pEff}_{col}^c(A,R)$ whose

OBJECTS are dependent collections (B, S, σ) with

(a) B is an object of $\mathbf{Set}^{r}(A)$ (b) $S \in \mathbf{Prop}_{c}^{r}(\Sigma(A, B \times B))$

Theorem

 $pEff_{set}^{c}(A, R)$ is a locally cartesian closed list-arithmetic pretopos and its embedding in $pEff_{col}^{c}(A, R)$ preserves all the structure.
The right notion of dependent proposition in this framework should keep track of some computational information:

The right notion of dependent proposition in this framework should keep track of some computational information:

A dependent proposition on (A, R) is a pair (P, ρ) where

The right notion of dependent proposition in this framework should keep track of some computational information:

A dependent proposition on (A, R) is a pair (P, ρ) where

(a) $P \in \mathbf{Prop}^r(A)$

The right notion of dependent proposition in this framework should keep track of some computational information:

A dependent proposition on (A, R) is a pair (P, ρ) where

(a)
$$P \in \mathbf{Prop}^r(A)$$

(b) $\rho: \mathbf{Col}_{\pi_1}^r(\mathsf{P}) \times \mathsf{R} \to \mathbf{Col}_{\pi_2}^r(\mathsf{P})$ is a realizer for the descent condition

The right notion of dependent proposition in this framework should keep track of some computational information:

A dependent proposition on (A, R) is a pair (P, ρ) where

(a) $P \in \mathbf{Prop}^r(A)$

(b) $\rho : \mathbf{Col}_{\pi_1}^r(\mathsf{P}) \times \mathsf{R} \to \mathbf{Col}_{\pi_2}^r(\mathsf{P})$ is a realizer for the descent condition

Moreover $(P, \rho) \leq (P', \rho')$ means $P \leq P'$ in **Prop**^{*r*}(A).

Theorem

Dependent propositions with the order just defined form a Heyting prealgebra $\mathbf{pEff}_{prop}^{c}(A, R)$. Moreover, $\mathbf{pEff}_{prop}^{c}(A, R)$ can be embedded in $\mathbf{pEff}_{col}^{c}(A, R)$ by the assignment

 $(\mathsf{P},\rho)\mapsto(\mathsf{P},\mathsf{T},\rho)$

Theorem

Dependent propositions with the order just defined form a Heyting prealgebra $\mathbf{pEff}_{prop}^{c}(A,R)$. Moreover, $\mathbf{pEff}_{prop}^{c}(A,R)$ can be embedded in $\mathbf{pEff}_{col}^{c}(A,R)$ by the assignment

 $(\mathsf{P},\rho)\mapsto (\mathsf{P},\mathsf{T},\rho)$

Similarly, one defines the Heyting prealgebra $\mathbf{pEff}_{prop_s}^c(A, R)$ of dependent small propositions (using \mathbf{Prop}_s^r instead of \mathbf{Prop}^r) and shows that it embeds in $\mathbf{pEff}_{set}^c(A, R)$.

The picture over (A, R)

The picture over (A, R)

Now, the best currently available way to produce a square over \mathbf{pEff}^c is by means of fibrations, as follows:

Now, the best currently available way to produce a square over \mathbf{pEff}^c is by means of fibrations, as follows:

Now, the best currently available way to produce a square over \mathbf{pEff}^c is by means of fibrations, as follows:

where $b: (C, T) \rightarrow (A, R)$ is in

Now, the best currently available way to produce a square over \mathbf{pEff}^c is by means of fibrations, as follows:

where $b: (C,T) \rightarrow (A,R)$ is in **pEff**^{c \rightarrow}: if $b \cong \mathbf{K}(B,S,\sigma)$ for some (B,S,σ) in $\mathbf{pEff}_{set}^{c}(A,R)$

Now, the best currently available way to produce a square over \mathbf{pEff}^c is by means of fibrations, as follows:

where $b: (C, T) \rightarrow (A, R)$ is in **a pEff**^c_{set}: if $b \cong \mathbf{K}(B, S, \sigma)$ for some (B, S, σ) in **pEff**^c_{set}(A, R)**a pEff**^c_{prop}: if $b \cong \mathbf{K}(P, T, \rho)$ for some (P, ρ) in **pEff**^c_{prop}(A, R)

Now, the best currently available way to produce a square over \mathbf{pEff}^c is by means of fibrations, as follows:

where $b: (C, T) \rightarrow (A, R)$ is in **a** $pEff_{set}^{c \rightarrow}$: if $b \cong K(B, S, \sigma)$ for some (B, S, σ) in $pEff_{set}^{c}(A, R)$ **a** $pEff_{prop}^{c \rightarrow}$: if $b \cong K(P, T, \rho)$ for some (P, ρ) in $pEff_{prop}^{c}(A, R)$ **b** $pEff_{props}^{c \rightarrow}$: if $b \cong K(P, T, \rho)$ for some (P, ρ) in $pEff_{props}^{c}(A, R)$

Now, the best currently available way to produce a square over \mathbf{pEff}^c is by means of fibrations, as follows:

where $b: (C, T) \rightarrow (A, R)$ is in **a** $pEff_{set}^{c \rightarrow}$: if $b \cong K(B, S, \sigma)$ for some (B, S, σ) in $pEff_{set}^{c}(A, R)$ **a** $pEff_{prop}^{c \rightarrow}$: if $b \cong K(P, T, \rho)$ for some (P, ρ) in $pEff_{prop}^{c}(A, R)$ **b** $pEff_{props}^{c \rightarrow}$: if $b \cong K(P, T, \rho)$ for some (P, ρ) in $pEff_{props}^{c}(A, R)$

Remarks

If we consider the formalization of \mathbf{pEff}^c in CZF + REA we gain:

If we consider the formalization of \mathbf{pEff}^{c} in CZF + REA we gain:

I a fully constructive predicative effective topos

Remarks

If we consider the formalization of \mathbf{pEff}^c in CZF + REA we gain:

- I a fully constructive predicative effective topos
- **pEff**^c models MF + inductive formal topologies thanks to (Maietti, M., Rathjen 2021) and all inductive definitions thanks to (Maietti, Sabelli 2023)

Remarks

If we consider the formalization of \mathbf{pEff}^c in CZF + REA we gain:

- I a fully constructive predicative effective topos
- **pEff**^c models MF + inductive formal topologies thanks to (Maietti, M., Rathjen 2021) and all inductive definitions thanks to (Maietti, Sabelli 2023)

If we consider the formalization in CZF + uREA + RDC, **pEff**^c models MF + inductive formal topologies + coinductive topological definitions thanks to (Maietti, M., Rathjen 2022) and all coinductive definitions thanks to (PhD thesis Sabelli 2023)

Thanks for your attention!