Fibred sets within a predicative and constructive variant of Hyland's effective topos

Samuele Maschio
(j.w.w. Cipriano Junior Cioffo and Maria Emilia Maietti)

$$
\begin{gathered}
\text { CCC 2023 } \\
\text { Kyoto, } 25 / 09 / 2023
\end{gathered}
$$

The Minimalist Foundation (MF)

(Maietti, Sambin 2005) conceptual design
(Maietti 2009) two-level formal system

The Minimalist Foundation (MF)

(Maietti, Sambin 2005) conceptual design
(Maietti 2009) two-level formal system
MF is a foundation for constructive mathematics compatible with the main constructive and classical, predicative and impredicative, foundational theories in the literature.

The Minimalist Foundation (MF)

(Maietti, Sambin 2005) conceptual design
(Maietti 2009) two-level formal system
MF is a foundation for constructive mathematics compatible with the main constructive and classical, predicative and impredicative, foundational theories in the literature.
It consists of two levels both formulated as variants of Martin-Löf type theory:

Intensional level (mTT)
Computational content

Extensional level (emTT)
Actual mathematics

The Minimalist Foundation (MF)

(Maietti, Sambin 2005) conceptual design
(Maietti 2009) two-level formal system
MF is a foundation for constructive mathematics compatible with the main constructive and classical, predicative and impredicative, foundational theories in the literature.
It consists of two levels both formulated as variants of Martin-Löf type theory:

Intensional level (mTT)
Computational content

Extensional level (emTT)
Actual mathematics

The two levels are linked by a setoid model of emTT in mTT.

Realizability models for MF

Realizability models for MF

(1) (Maietti, M. 2015/16) for mTT $+\mathrm{CT}+$ Ext in $\widehat{\mathrm{D}_{1}}$

Realizability models for MF

(1) (Maietti, M. 2015/16) for mTT $+\mathrm{CT}+$ Ext in $\widehat{\mathrm{D}_{1}}$
(2) (Ishihara, Maietti, M. , Streicher 2018) for $m T T+A C+C T$ in $\widehat{\mathrm{D}_{1}}$

Realizability models for MF

(1) (Maietti, M. 2015/16) for mTT+CT+Ext in $\widehat{\mathrm{D}_{1}}$
(2) (Ishihara, Maietti, M. , Streicher 2018) for mTT $+\mathrm{AC}+\mathrm{CT}$ in $\widehat{\mathrm{D}_{1}}$
(3aietti, M. , Rathjen 2021) for mTT + AC + CT + Ind in CZF+REA

Realizability models for MF

(1) (Maietti, M. 2015/16) for $\mathrm{mTT}+\mathrm{CT}+$ Ext in $\widehat{\mathrm{D}_{1}}$
(2) (Ishihara, Maietti, M. , Streicher 2018) for mTT $+\mathrm{AC}+\mathrm{CT}$ in $\widehat{\mathrm{D}_{1}}$
(3) (Maietti, M. , Rathjen 2021) for mTT +AC+CT + Ind in CZF+REA
(1) (Maietti, M. , Rathjen 2022) for mTT+AC+CT+Ind+Cind in CZF+uREA+RDC

Realizability models for MF

(1) (Maietti, M. 2015/16) for $m T T+C T+E x t$ in $\widehat{\mathrm{D}_{1}}$
(2) (Ishihara, Maietti, M. , Streicher 2018) for mTT $+\mathrm{AC}+\mathrm{CT}$ in $\widehat{\mathrm{D}_{1}}$
(3) (Maietti, M. , Rathjen 2021) for mTT + AC + CT + Ind in CZF+REA

- (Maietti, M. , Rathjen 2022) for mTT+AC+CT+Ind+Cind in CZF+uREA+RDC
We are interested here in the last three of these models.

Realizability models for MF

(1) (Maietti, M. 2015/16) for $\mathrm{mTT}+\mathrm{CT}+$ Ext in $\widehat{\mathrm{D}_{1}}$
(2) (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in $\widehat{\mathrm{D}_{1}}$
(3) Maietti, M. , Rathjen 2021) for mTT + AC+CT + Ind in CZF+REA
((Maietti, M. , Rathjen 2022) for mTT+AC+CT+Ind+Cind in CZF+uREA+RDC
We are interested here in the last three of these models. Recall that Feferman's $\widehat{\mathrm{D}_{1}}$ is classical but strictly predicative, while Aczel's CZF is constructive and predicative.

Hyland's Effective Topos

(Hyland, 1982)
The effective topos Eff

Hyland's Effective Topos

(Hyland, 1982)
The effective topos Eff

- an elementary topos which is not Grothendieck

Hyland's Effective Topos

(Hyland, 1982)
The effective topos Eff

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics

Hyland's Effective Topos

(Hyland, 1982)
The effective topos Eff

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics
- its internal logic coincides with Kleene realizability on natural numbers

Hyland's Effective Topos

(Hyland, 1982)
The effective topos Eff

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics
- its internal logic coincides with Kleene realizability on natural numbers It can be defined in four ways:

Hyland's Effective Topos

(Hyland, 1982)
The effective topos Eff

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics
- its internal logic coincides with Kleene realizability on natural numbers It can be defined in four ways:
(1) directly by describing its objects (A, R) and its arrows [F];

Hyland's Effective Topos

(Hyland, 1982)
The effective topos Eff

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics
- its internal logic coincides with Kleene realizability on natural numbers It can be defined in four ways:
(1) directly by describing its objects (A, R) and its arrows $[F]$;
(2) as the result of the tripos-to-topos construction applied to the realizability tripos, which is a uniform variant of Kleene realizability on Set;

Hyland's Effective Topos

(Hyland, 1982)
The effective topos Eff

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics
- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:
(1) directly by describing its objects (A, R) and its arrows $[F]$;
(2) as the result of the tripos-to-topos construction applied to the realizability tripos, which is a uniform variant of Kleene realizability on Set;
(3) as the result of the ex-reg completion applied to the category of assemblies Asm.

Hyland's Effective Topos

(Hyland, 1982)
The effective topos Eff

- an elementary topos which is not Grothendieck
- an adequate mathematical framework for computable mathematics
- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:
(1) directly by describing its objects (A, R) and its arrows $[F]$;
(2) as the result of the tripos-to-topos construction applied to the realizability tripos, which is a uniform variant of Kleene realizability on Set;
(3) as the result of the ex-reg completion applied to the category of assemblies Asm.
(4) as the result of the ex-lex completion applied to the category of partitioned assemblies pAsm.

In order to define constructive and/or predicative variants of Eff we consider the fourth option.

In order to define constructive and/or predicative variants of Eff we consider the fourth option. In particular, we consider a rendering of the full subcategory of pAsm consisting of subsets of \mathbb{N} and (restrictions of) recursive functions between them.

In order to define constructive and/or predicative variants of Eff we consider the fourth option. In particular, we consider a rendering of the full subcategory of pAsm consisting of subsets of \mathbb{N} and (restrictions of) recursive functions between them. We also exploit the fact that the ex-lex completion is exactly the elementary quotient completion in (Maietti, Rosolini 2013) applied to the weak subobject doctrine.

A predicative variant of Hyland's effective topos
(Maietti, M. 2021)

A predicative variant of Hyland's effective topos

(Maietti, M. 2021)
Worked out in $\widehat{\mathrm{D}_{1}}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).

A predicative variant of Hyland's effective topos

(Maietti, M. 2021)
Worked out in $\widehat{\mathrm{D}_{1}}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).
We start from a categorical account of the structures behind realizability models 2,3 and 4 .

A predicative variant of Hyland's effective topos

(Maietti, M. 2021)
Worked out in $\widehat{\mathrm{D}_{1}}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).
We start from a categorical account of the structures behind realizability models 2,3 and 4 .
(1) \mathcal{C}_{r} : the category of definable classes of natural numbers and (restrictions of) computable functions between them (represented by numerals).

A predicative variant of Hyland's effective topos

(Maietti, M. 2021)
Worked out in $\widehat{\mathrm{D}_{1}}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).
We start from a categorical account of the structures behind realizability models 2,3 and 4.
(1) \mathcal{C}_{r} : the category of definable classes of natural numbers and (restrictions of) computable functions between them (represented by numerals).
(2) $\mathbf{C o l}^{r}: \mathcal{C}_{r}^{o p} \rightarrow \mathbf{C a t}$ is the indexed category of dependent definable classes and computable functions between them (represented by numerals and possibly depending on data in the indexing classes).

A predicative variant of Hyland's effective topos

(Maietti, M. 2021)
Worked out in $\widehat{\mathrm{D}_{1}}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).
We start from a categorical account of the structures behind realizability models 2,3 and 4.
(1) \mathcal{C}_{r} : the category of definable classes of natural numbers and (restrictions of) computable functions between them (represented by numerals).
(2) $\mathbf{C o l}^{r}: \mathcal{C}_{r}^{o p} \rightarrow \mathbf{C a t}$ is the indexed category of dependent definable classes and computable functions between them (represented by numerals and possibly depending on data in the indexing classes).
(0) Prop ${ }^{r}: \mathcal{C}_{r}^{o p} \rightarrow$ preHeyt is the preorder reflection of $\mathbf{C o l}^{r}$.

A predicative variant of Hyland's effective topos

(Maietti, M. 2021)
Worked out in $\widehat{\mathrm{D}_{1}}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).
We start from a categorical account of the structures behind realizability models 2,3 and 4.
(1) \mathcal{C}_{r} : the category of definable classes of natural numbers and (restrictions of) computable functions between them (represented by numerals).
(2) $\mathbf{C o l}^{r}: \mathcal{C}_{r}^{o p} \rightarrow \mathbf{C a t}$ is the indexed category of dependent definable classes and computable functions between them (represented by numerals and possibly depending on data in the indexing classes).
(3) Prop ${ }^{r}: \mathcal{C}_{r}^{o p} \rightarrow$ preHeyt is the preorder reflection of $\mathbf{C o l}^{r}$.
(1) Set ${ }^{r}: \mathcal{C}_{r}^{o p} \rightarrow$ Cat is an indexed subcategory of Col r defined using a fix point universe representing realizability interpretations of sets of mTT.

A predicative variant of Hyland's effective topos

(Maietti, M. 2021)
Worked out in $\widehat{\mathrm{D}_{1}}$, but it can also be defined in the same way using extensions of CZF thanks to the intepretations in (Maietti, M., Rathjen 2021, 2022).
We start from a categorical account of the structures behind realizability models 2,3 and 4.
(1) \mathcal{C}_{r} : the category of definable classes of natural numbers and (restrictions of) computable functions between them (represented by numerals).
(2) $\mathbf{C o l}^{r}: \mathcal{C}_{r}^{o p} \rightarrow$ Cat is the indexed category of dependent definable classes and computable functions between them (represented by numerals and possibly depending on data in the indexing classes).
(3) Prop ${ }^{r}: \mathcal{C}_{r}^{o p} \rightarrow$ preHeyt is the preorder reflection of $\mathbf{C o l}^{r}$.
(1) Set ${ }^{r}: \mathcal{C}_{r}^{o p} \rightarrow$ Cat is an indexed subcategory of Col r defined using a fix point universe representing realizability interpretations of sets of mTT .
(0) $\boldsymbol{P r o p}_{s}^{r}: \mathcal{C}_{r}^{o p} \rightarrow$ preHeyt is the preorder reflection of Set r.

Structuring families over a predicative effective topos

 In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal reflection of Prop ${ }^{r}$ to produce a category $\mathbf{p E f f}$ and a first-order hyperdoctrine pEff ${ }_{\text {prop }}$ of propositions over it.
Structuring families over a predicative effective topos

 In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal reflection of Prop ${ }^{r}$ to produce a category pEff and a first-order hyperdoctrine pEff ${ }_{\text {prop }}$ of propositions over it. One can also define a subdoctrine $\mathbf{p E f f}$ prop $_{s}$ of pEff ${ }_{\text {prop }}$ of small propositions over pEff using Prop $_{s}^{r}$.
Structuring families over a predicative effective topos

 In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal reflection of Prop ${ }^{r}$ to produce a category pEff and a first-order hyperdoctrine pEff ${ }_{\text {prop }}$ of propositions over it. One can also define a subdoctrine $\mathbf{p E f f}$ prop $_{s}$ of pEff ${ }_{\text {prop }}$ of small propositions over pEff using Prop $_{s}^{r}$. So we started from a square of embeddings over \mathcal{C}_{r}

Structuring families over a predicative effective topos

 In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal reflection of Prop ${ }^{r}$ to produce a category $\mathbf{p E f f}$ and a first-order hyperdoctrine pEff ${ }_{\text {prop }}$ of propositions over it. One can also define a subdoctrine $\mathbf{p E f f}$ prop $_{s}$ of pEff ${ }_{\text {prop }}$ of small propositions over pEff using Prop $_{s}^{r}$. So we started from a square of embeddings over \mathcal{C}_{r}
and we obtained a partial square over pEff

Structuring families over a predicative effective topos

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal reflection of Prop ${ }^{r}$ to produce a category pEff and a first-order hyperdoctrine $\mathbf{p E f f}{ }_{\text {prop }}$ of propositions over it. One can also define a subdoctrine pEff prop $_{s}$ of pEff ${ }_{\text {prop }}$ of small propositions over pEff using Prop $_{s}^{r}$.
So we started from a square of embeddings over \mathcal{C}_{r}

and we obtained a partial square over pEff

The top right corner can be filled by shifting to fibrations and considering the codomain fibration of pEff,

Structuring families over a predicative effective topos

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal reflection of Prop ${ }^{r}$ to produce a category pEff and a first-order hyperdoctrine $\mathbf{p E f f}{ }_{\text {prop }}$ of propositions over it. One can also define a subdoctrine pEff prop $_{s}$ of pEff ${ }_{\text {prop }}$ of small propositions over pEff using Prop $_{s}^{r}$.
So we started from a square of embeddings over \mathcal{C}_{r}

and we obtained a partial square over pEff

The top right corner can be filled by shifting to fibrations and considering the codomain fibration of pEff, however how can we fill the top left corner?

Keeping more computational information

In order to answer this question, we first have to shift to a more computationally informative version $\mathbf{p E f f}{ }^{c}$ of $\mathbf{p E f f}$.

Keeping more computational information

In order to answer this question, we first have to shift to a more computationally informative version $\mathbf{p E f f}{ }^{c}$ of $\mathbf{p E f f}$. The difference between $\mathbf{p E f f}{ }^{c}$ and $\mathbf{p E f f}$ is that in the first we keep track of realizers which are kept in the meta-level in the second case.

Keeping more computational information

In order to answer this question, we first have to shift to a more computationally informative version $\mathbf{p E f f}{ }^{c}$ of $\mathbf{p E f f}$. The difference between $\mathbf{p E f f}{ }^{c}$ and $\mathbf{p E f f}$ is that in the first we keep track of realizers which are kept in the meta-level in the second case. The idea is to see an equivalence relation as a proof-relevant internal grupoid and propositions as actions on a grupoid.

Keeping more computational information

In order to answer this question, we first have to shift to a more computationally informative version $\mathbf{p E f f}{ }^{c}$ of $\mathbf{p E f f}$. The difference between $\mathbf{p E f f}{ }^{c}$ and $\mathbf{p E f f}$ is that in the first we keep track of realizers which are kept in the meta-level in the second case. The idea is to see an equivalence relation as a proof-relevant internal grupoid and propositions as actions on a grupoid. If we allow the axiom of countable choice in the meta-level, then the two categories become equivalent.

The category of dependent collections over (A, R) in $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$

The category of dependent collections over (A, R) in $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$

OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):

The category of dependent collections over (A, R) in $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$

OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):
(1) B is an object of $\mathrm{Col}^{r}(\mathrm{~A})$: a dependent collection over A

The category of dependent collections over (A, R) in

 $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):
(1) B is an object of $\mathbf{C o l}^{r}(A)$: a dependent collection over A
(2) $S \in \operatorname{Prop}^{r}(\Sigma(A, B \times B)$: a dependent equivalence relation on B with a parameter in A

The category of dependent collections over (A, R) in

 $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):
(1) B is an object of $\mathbf{C o l}^{r}(A)$: a dependent collection over A
(2) $S \in \operatorname{Prop}^{r}(\Sigma(A, B \times B)$: a dependent equivalence relation on B with a parameter in A
(3) $\sigma: \operatorname{Col}_{\pi_{1}}^{r}(\mathrm{~B}) \times \mathrm{R} \rightarrow \mathbf{C o l}_{\pi_{2}}^{r}(\mathrm{~B})$ a pseudo-action, that is:

The category of dependent collections over (A, R) in

 $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):
(1) B is an object of $\mathbf{C o l}^{r}(A)$: a dependent collection over A
(2) $S \in \operatorname{Prop}^{r}(\Sigma(A, B \times B)$: a dependent equivalence relation on B with a parameter in A
(3) $\sigma: \mathbf{C o l}_{\pi_{1}}^{r}(\mathrm{~B}) \times \mathrm{R} \rightarrow \mathbf{C o l}_{\pi_{2}}^{r}(\mathrm{~B})$ a pseudo-action, that is:
(a) $\mathrm{S}_{\mathrm{a}}\left(b, b^{\prime}\right) \Rightarrow \mathrm{S}_{a^{\prime}}\left(\sigma_{\mathrm{a}, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r, b^{\prime}\right)\right)$

The category of dependent collections over (A, R) in

 $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):
(1) B is an object of $\mathbf{C o l}^{r}(A)$: a dependent collection over A
(2) $S \in \operatorname{Prop}^{r}(\Sigma(A, B \times B)$: a dependent equivalence relation on B with a parameter in A
(3) $\sigma: \mathbf{C o l}_{\pi_{1}}^{r}(\mathrm{~B}) \times \mathrm{R} \rightarrow \mathbf{C o l}_{\pi_{2}}^{r}(\mathrm{~B})$ a pseudo-action, that is:
(a) $\mathrm{S}_{\mathrm{a}}\left(b, b^{\prime}\right) \Rightarrow \mathrm{S}_{a^{\prime}}\left(\sigma_{\mathrm{a}, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r, b^{\prime}\right)\right)$
(preserving dependent equivalence relations)

The category of dependent collections over (A, R) in

 $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):
(1) B is an object of $\mathbf{C o l}^{r}(A)$: a dependent collection over A
(2) $S \in \operatorname{Prop}^{r}(\Sigma(A, B \times B)$: a dependent equivalence relation on B with a parameter in A
(3) $\sigma: \mathbf{C o l}_{\pi_{1}}^{r}(\mathrm{~B}) \times \mathrm{R} \rightarrow \mathbf{C o l}_{\pi_{2}}^{r}(\mathrm{~B})$ a pseudo-action, that is:
(a) $\mathrm{S}_{\mathrm{a}}\left(b, b^{\prime}\right) \Rightarrow \mathrm{S}_{a^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r, b^{\prime}\right)\right)$
(preserving dependent equivalence relations)
(b) $\mathrm{S}_{a^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r^{\prime}, b\right)\right)$

The category of dependent collections over (A, R) in

 $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):
(1) B is an object of $\mathbf{C o l}^{r}(A)$: a dependent collection over A
(2) $S \in \operatorname{Prop}^{r}(\Sigma(A, B \times B)$: a dependent equivalence relation on B with a parameter in A
(3) $\sigma: \mathbf{C o l}_{\pi_{1}}^{r}(\mathrm{~B}) \times \mathrm{R} \rightarrow \mathbf{C o l}_{\pi_{2}}^{r}(\mathrm{~B})$ a pseudo-action, that is:
(a) $\mathrm{S}_{\mathrm{a}}\left(b, b^{\prime}\right) \Rightarrow \mathrm{S}_{a^{\prime}}\left(\sigma_{\mathrm{a}, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r, b^{\prime}\right)\right)$
(preserving dependent equivalence relations)
(b) $\mathrm{S}_{a^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r^{\prime}, b\right)\right)$ (not depending on realizers)

The category of dependent collections over (A, R) in

 $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):
(1) B is an object of $\mathbf{C o l}^{r}(A)$: a dependent collection over A
(2) $S \in \operatorname{Prop}^{r}(\Sigma(A, B \times B)$: a dependent equivalence relation on B with a parameter in A
(3) $\sigma: \mathbf{C o l}_{\pi_{1}}^{r}(\mathrm{~B}) \times \mathrm{R} \rightarrow \mathbf{C o l}_{\pi_{2}}^{r}(\mathrm{~B})$ a pseudo-action, that is:
(a) $\mathrm{S}_{\mathrm{a}}\left(b, b^{\prime}\right) \Rightarrow \mathrm{S}_{a^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r, b^{\prime}\right)\right)$
(preserving dependent equivalence relations)
(b) $\mathrm{S}_{\mathrm{a}^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r^{\prime}, b\right)\right)$ (not depending on realizers)
(c) $\mathrm{S}_{\mathrm{a}}\left(b, \sigma_{\mathrm{a}, \mathrm{a}}(r, b)\right)$ for $r \Vdash \mathrm{R}(a, a)$

The category of dependent collections over (A, R) in

 pEff ${ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):
(1) B is an object of $\mathbf{C o l}^{r}(A)$: a dependent collection over A
(2) $S \in \operatorname{Prop}^{r}(\Sigma(A, B \times B)$: a dependent equivalence relation on B with a parameter in A
(3) $\sigma: \mathbf{C o l}_{\pi_{1}}^{r}(\mathrm{~B}) \times \mathrm{R} \rightarrow \mathbf{C o l}_{\pi_{2}}^{r}(\mathrm{~B})$ a pseudo-action, that is:
(a) $\mathrm{S}_{\mathrm{a}}\left(b, b^{\prime}\right) \Rightarrow \mathrm{S}_{a^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r, b^{\prime}\right)\right)$
(preserving dependent equivalence relations)
(b) $\mathrm{S}_{a^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r^{\prime}, b\right)\right)$ (not depending on realizers)
(c) $\mathrm{S}_{\mathrm{a}}\left(b, \sigma_{\mathrm{a}, \mathrm{a}}(r, b)\right)$ for $r \Vdash \mathrm{R}(a, a)$ (identity on reflexivity)

The category of dependent collections over (A, R) in

 $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):
(1) B is an object of $\mathbf{C o l}^{r}(A)$: a dependent collection over A
(2) $S \in \operatorname{Prop}^{r}(\Sigma(A, B \times B)$: a dependent equivalence relation on B with a parameter in A
(3) $\sigma: \operatorname{Col}_{\pi_{1}}^{r}(\mathrm{~B}) \times \mathrm{R} \rightarrow \operatorname{Col}_{\pi_{2}}^{r}(\mathrm{~B})$ a pseudo-action, that is:
(a) $\mathrm{S}_{\mathrm{a}}\left(b, b^{\prime}\right) \Rightarrow \mathrm{S}_{a^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r, b^{\prime}\right)\right)$ (preserving dependent equivalence relations)
(b) $\mathrm{S}_{a^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r^{\prime}, b\right)\right)$ (not depending on realizers)
(c) $\mathrm{S}_{\mathrm{a}}\left(b, \sigma_{\mathrm{a}, \mathrm{a}}(r, b)\right)$ for $r \Vdash \mathrm{R}(a, a)$ (identity on reflexivity)
(d) $\mathrm{S}_{a^{\prime \prime}}\left(\sigma_{a^{\prime}, a^{\prime \prime}}\left(s, \sigma_{a, a^{\prime}}(r, b)\right), \sigma_{a, a^{\prime \prime}}(t, b)\right)$ for all $r \Vdash \mathrm{R}\left(a, a^{\prime}\right), s \Vdash \mathrm{R}\left(a^{\prime}, a^{\prime \prime}\right)$ and $t \Vdash \mathrm{R}\left(a, a^{\prime \prime}\right)$

The category of dependent collections over (A, R) in

 $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):
(1) B is an object of $\mathbf{C o l}^{r}(A)$: a dependent collection over A
(2) $S \in \operatorname{Prop}^{r}(\Sigma(A, B \times B)$: a dependent equivalence relation on B with a parameter in A
(3) $\sigma: \operatorname{Col}_{\pi_{1}}^{r}(\mathrm{~B}) \times \mathrm{R} \rightarrow \operatorname{Col}_{\pi_{2}}^{r}(\mathrm{~B})$ a pseudo-action, that is:
(a) $\mathrm{S}_{\mathrm{a}}\left(b, b^{\prime}\right) \Rightarrow \mathrm{S}_{a^{\prime}}\left(\sigma_{\mathrm{a}, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r, b^{\prime}\right)\right)$ (preserving dependent equivalence relations)
(b) $\mathrm{S}_{\mathrm{a}^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r^{\prime}, b\right)\right)$ (not depending on realizers)
(c) $\mathrm{S}_{\mathrm{a}}\left(b, \sigma_{\mathrm{a}, \mathrm{a}}(r, b)\right)$ for $r \Vdash \mathrm{R}(a, a)$ (identity on reflexivity)
(d) $\mathrm{S}_{a^{\prime \prime}}\left(\sigma_{a^{\prime}, a^{\prime \prime}}\left(s, \sigma_{a, a^{\prime}}(r, b)\right), \sigma_{a, a^{\prime \prime}}(t, b)\right)$ for all $r \Vdash \mathrm{R}\left(a, a^{\prime}\right), s \Vdash \mathrm{R}\left(a^{\prime}, a^{\prime \prime}\right)$ and $t \Vdash \mathrm{R}\left(a, a^{\prime \prime}\right)$ (composition on transitivity)

The category of dependent collections over (A, R) in

 $\mathbf{p E f f}{ }^{c}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$OBJECTS: dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$):
(1) B is an object of $\mathbf{C o l}^{r}(A)$: a dependent collection over A
(2) $S \in \operatorname{Prop}^{r}(\Sigma(A, B \times B)$: a dependent equivalence relation on B with a parameter in A
(3) $\sigma: \operatorname{Col}_{\pi_{1}}^{r}(\mathrm{~B}) \times \mathrm{R} \rightarrow \operatorname{Col}_{\pi_{2}}^{r}(\mathrm{~B})$ a pseudo-action, that is:
(a) $\mathrm{S}_{\mathrm{a}}\left(b, b^{\prime}\right) \Rightarrow \mathrm{S}_{a^{\prime}}\left(\sigma_{\mathrm{a}, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r, b^{\prime}\right)\right)$
(preserving dependent equivalence relations)
(b) $\mathrm{S}_{\mathrm{a}^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b), \sigma_{a, a^{\prime}}\left(r^{\prime}, b\right)\right)$ (not depending on realizers)
(c) $\mathrm{S}_{\mathrm{a}}\left(b, \sigma_{\mathrm{a}, \mathrm{a}}(r, b)\right)$ for $r \Vdash \mathrm{R}(a, a)$ (identity on reflexivity)
(d) $\mathrm{S}_{a^{\prime \prime}}\left(\sigma_{a^{\prime}, a^{\prime \prime}}\left(s, \sigma_{a, a^{\prime}}(r, b)\right), \sigma_{a, a^{\prime \prime}}(t, b)\right)$ for all $r \Vdash \mathrm{R}\left(a, a^{\prime}\right), s \Vdash \mathrm{R}\left(a^{\prime}, a^{\prime \prime}\right)$ and $t \Vdash \mathrm{R}\left(a, a^{\prime \prime}\right)$ (composition on transitivity)
These conditions, expressed here informally, can be expressed in precise categorical terms.

ARROWS: $[f]_{\cong}:(B, S, \sigma) \rightarrow\left(\mathrm{B}^{\prime}, \mathrm{S}^{\prime}, \sigma^{\prime}\right)$ where:

ARROWS: $[f]_{\cong}:(B, S, \sigma) \rightarrow\left(B^{\prime}, S^{\prime}, \sigma^{\prime}\right)$ where:
(1) $f: B \rightarrow B^{\prime}$ in $\mathbf{C o l}^{r}(A)$ satisfies:

ARROWS: $[f]_{\cong}:(B, S, \sigma) \rightarrow\left(B^{\prime}, S^{\prime}, \sigma^{\prime}\right)$ where:
(1) $f: B \rightarrow \mathrm{~B}^{\prime}$ in $\mathbf{C o l}^{r}(\mathrm{~A})$ satisfies:
(a) $\mathrm{S}_{\mathrm{a}}\left(b, b^{\prime}\right) \Rightarrow \mathrm{S}_{a}^{\prime}\left(f_{a}(b), f_{a}^{\prime}(b)\right)$

ARROWS: $[f]_{\cong}:(B, S, \sigma) \rightarrow\left(B^{\prime}, S^{\prime}, \sigma^{\prime}\right)$ where:
(1) $f: B \rightarrow B^{\prime}$ in Col $^{r}(A)$ satisfies:
(a) $S_{a}\left(b, b^{\prime}\right) \Rightarrow S_{a}^{\prime}\left(f_{a}(b), f_{a}^{\prime}(b)\right)$ preserving dependent equivalence relations

ARROWS: $[f]_{\cong}:(B, S, \sigma) \rightarrow\left(B^{\prime}, S^{\prime}, \sigma^{\prime}\right)$ where:
(1) $f: B \rightarrow \mathrm{~B}^{\prime}$ in $\mathbf{C o l}^{r}(\mathrm{~A})$ satisfies:
(a) $S_{a}\left(b, b^{\prime}\right) \Rightarrow S_{a}^{\prime}\left(f_{a}(b), f_{a}^{\prime}(b)\right)$ preserving dependent equivalence relations
(b) $\mathrm{S}_{a^{\prime}}\left(f_{a^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b)\right), \sigma_{a, a^{\prime}}^{\prime}\left(r, f_{a}(b)\right)\right)$

ARROWS: $[f]_{\cong}:(B, S, \sigma) \rightarrow\left(B^{\prime}, S^{\prime}, \sigma^{\prime}\right)$ where:
(1) $f: B \rightarrow \mathrm{~B}^{\prime}$ in $\mathbf{C o l}^{r}(\mathrm{~A})$ satisfies:
(a) $\mathrm{S}_{\mathrm{a}}\left(b, b^{\prime}\right) \Rightarrow \mathrm{S}_{a}^{\prime}\left(f_{\mathrm{a}}(b), f_{a}^{\prime}(b)\right)$ preserving dependent equivalence relations
(b) $\mathrm{S}_{a^{\prime}}\left(f_{a^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b)\right), \sigma_{a, a^{\prime}}^{\prime}\left(r, f_{a}(b)\right)\right)$ compatibility with pseudo-actions

ARROWS: $[f]_{\underline{\cong}}:(\mathrm{B}, \mathrm{S}, \sigma) \rightarrow\left(\mathrm{B}^{\prime}, \mathrm{S}^{\prime}, \sigma^{\prime}\right)$ where:
(1) $f: B \rightarrow \mathrm{~B}^{\prime}$ in $\mathbf{C o l}^{r}(\mathrm{~A})$ satisfies:
(a) $\mathrm{S}_{\mathrm{a}}\left(b, b^{\prime}\right) \Rightarrow \mathrm{S}_{a}^{\prime}\left(f_{\mathrm{a}}(b), f_{a}^{\prime}(b)\right)$ preserving dependent equivalence relations
(b) $\mathrm{S}_{a^{\prime}}\left(f_{a^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b)\right), \sigma_{a, a^{\prime}}^{\prime}\left(r, f_{a}(b)\right)\right)$ compatibility with pseudo-actions
(2) $f \cong g$ means $S_{a}\left(b, b^{\prime}\right) \Rightarrow S_{a}^{\prime}\left(f_{a}(b), g_{a}(b)\right)$

ARROWS: $[f]_{\cong}:(B, S, \sigma) \rightarrow\left(B^{\prime}, S^{\prime}, \sigma^{\prime}\right)$ where:
(1) $f: B \rightarrow \mathrm{~B}^{\prime}$ in $\mathbf{C o l}^{r}(\mathrm{~A})$ satisfies:
(a) $S_{a}\left(b, b^{\prime}\right) \Rightarrow S_{a}^{\prime}\left(f_{a}(b), f_{a}^{\prime}(b)\right)$ preserving dependent equivalence relations
(b) $\mathrm{S}_{a^{\prime}}\left(f_{a^{\prime}}\left(\sigma_{a, a^{\prime}}(r, b)\right), \sigma_{a, a^{\prime}}^{\prime}\left(r, f_{a}(b)\right)\right)$ compatibility with pseudo-actions
(2) $f \cong g$ means $S_{a}\left(b, b^{\prime}\right) \Rightarrow S_{a}^{\prime}\left(f_{a}(b), g_{a}(b)\right)$

These objects and arrows, together with the compositions and identities inherited from $\mathbf{C o l}^{r}(\mathrm{~A})$, define a category $\mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$.

Theorem pEff ${ }_{c o l}^{c}(A, R)$ is a locally cartesian closed list-arithmetic pretopos.

Theorem
pEff ${ }_{c o l}^{c}(A, R)$ is a locally cartesian closed list-arithmetic pretopos.

Theorem
There exists a functor $\mathbf{K}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R}) \rightarrow \mathbf{p E f f}^{c} /(\mathrm{A}, \mathrm{R})$ which is full, faithfull and essentially surjective on objects.

Theorem
pEff ${ }_{c o l}^{c}(A, R)$ is a locally cartesian closed list-arithmetic pretopos.
Theorem
There exists a functor $\mathbf{K}: \mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R}) \rightarrow \mathbf{p E f f}^{c} /(\mathrm{A}, \mathrm{R})$ which is full, faithfull and essentially surjective on objects.

If one assumes the axiom of countable choice, we get that $\mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$ is equivalent to $\mathbf{p E f f}{ }^{c} /(A, R)$.

The category of dependent sets over (A, R) in $\mathbf{p E f f}^{c}$:

 $\mathbf{p E f f}{ }_{\text {set }}^{c}(\mathrm{~A}, \mathrm{R})$Using the presentation of dependent collections over (A, R) one can define $\mathbf{p E f f}{ }_{\text {set }}^{c}(\mathrm{~A}, \mathrm{R})$ as the full subcategory of $\mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$ whose

The category of dependent sets over (A, R) in $\mathbf{p E f f}^{c}$:

 $\mathbf{p E f f}{ }_{\text {set }}^{c}(\mathrm{~A}, \mathrm{R})$Using the presentation of dependent collections over (A, R) one can define $\mathbf{p E f f}{ }_{\text {set }}^{c}(\mathrm{~A}, \mathrm{R})$ as the full subcategory of $\mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$ whose

OBJECTS are dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$) with

The category of dependent sets over (A, R) in $\mathbf{p E f f}^{c}$:

 $\mathbf{p E f f}{ }_{\text {set }}^{c}(\mathrm{~A}, \mathrm{R})$Using the presentation of dependent collections over (A, R) one can define $\mathbf{p E f f}{ }_{\text {set }}^{c}(\mathrm{~A}, \mathrm{R})$ as the full subcategory of $\mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$ whose

OBJECTS are dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$) with
(a) B is an object of $\operatorname{Set}^{r}(\mathrm{~A})$

The category of dependent sets over (A, R) in $\mathbf{p E f f}^{c}$:

 $\mathbf{p E f f}$ set (A, R)Using the presentation of dependent collections over (A, R) one can define $\mathbf{p E f f}{ }_{\text {set }}^{c}(\mathrm{~A}, \mathrm{R})$ as the full subcategory of $\mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$ whose

OBJECTS are dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$) with
(a) B is an object of $\operatorname{Set}^{r}(A)$
(b) $S \in \operatorname{Prop}_{s}^{r}(\Sigma(A, B \times B))$

The category of dependent sets over (A, R) in $\mathbf{p E f f}{ }^{c}$: $\mathbf{p E f f}$ set $\mathrm{c}(\mathrm{A}, \mathrm{R})$

Using the presentation of dependent collections over (A, R) one can define $\mathbf{p E f f}{ }_{\text {set }}^{c}(\mathrm{~A}, \mathrm{R})$ as the full subcategory of $\mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$ whose

OBJECTS are dependent collections ($\mathrm{B}, \mathrm{S}, \sigma$) with
(a) B is an object of $\operatorname{Set}^{r}(\mathrm{~A})$
(b) $\mathrm{S} \in \operatorname{Prop}_{s}^{r}(\Sigma(\mathrm{~A}, \mathrm{~B} \times \mathrm{B}))$

Theorem
$\mathbf{p E f f}{ }_{\text {set }}^{c}(\mathrm{~A}, \mathrm{R})$ is a locally cartesian closed list-arithmetic pretopos and its embedding in $\mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$ preserves all the structure.

Dependent propositions and small propositions

The right notion of dependent proposition in this framework should keep track of some computational information:

Dependent propositions and small propositions

The right notion of dependent proposition in this framework should keep track of some computational information:

A dependent proposition on (A, R) is a pair (P, ρ) where

Dependent propositions and small propositions

The right notion of dependent proposition in this framework should keep track of some computational information:

A dependent proposition on (A, R) is a pair (P, ρ) where
(a) $\mathrm{P} \in \operatorname{Prop}^{r}(\mathrm{~A})$

Dependent propositions and small propositions

The right notion of dependent proposition in this framework should keep track of some computational information:

A dependent proposition on (A,R) is a pair (P, ρ) where
(a) $\mathrm{P} \in \operatorname{Prop}^{r}(\mathrm{~A})$
(b) $\rho: \operatorname{Col}_{\pi_{1}}^{r}(\mathrm{P}) \times \mathrm{R} \rightarrow \operatorname{Col}_{\pi_{2}}^{r}(\mathrm{P})$ is a realizer for the descent condition

Dependent propositions and small propositions

The right notion of dependent proposition in this framework should keep track of some computational information:

A dependent proposition on (A,R) is a pair (P, ρ) where
(a) $\mathrm{P} \in \operatorname{Prop}^{r}(\mathrm{~A})$
(b) $\rho: \operatorname{Col}_{\pi_{1}}^{r}(\mathrm{P}) \times \mathrm{R} \rightarrow \operatorname{Col}_{\pi_{2}}^{r}(\mathrm{P})$ is a realizer for the descent condition Moreover $(\mathrm{P}, \rho) \leq\left(\mathrm{P}^{\prime}, \rho^{\prime}\right)$ means $\mathrm{P} \leq \mathrm{P}^{\prime}$ in $\operatorname{Prop}^{r}(\mathrm{~A})$.

Theorem
Dependent propositions with the order just defined form a Heyting prealgebra pEff ${ }_{\text {prop }}^{c}(\mathrm{~A}, \mathrm{R})$. Moreover, $\mathbf{p E f f}{ }_{\text {prop }}^{c}(\mathrm{~A}, \mathrm{R})$ can be embedded in $\mathbf{p E f f}{ }_{c o l}^{c}(\mathrm{~A}, \mathrm{R})$ by the assignment

$$
(\mathrm{P}, \rho) \mapsto(\mathrm{P}, \mathrm{~T}, \rho)
$$

Theorem
Dependent propositions with the order just defined form a Heyting prealgebra $\mathbf{p E f f}{ }_{\text {prop }}^{c}(\mathrm{~A}, \mathrm{R})$. Moreover, $\mathbf{p} \mathrm{Eff}_{\text {prop }}^{c}(\mathrm{~A}, \mathrm{R})$ can be embedded in $\mathbf{p} \mathrm{Eff}_{\text {col }}^{c}(\mathrm{~A}, \mathrm{R})$ by the assignment

$$
(\mathrm{P}, \rho) \mapsto(\mathrm{P}, \mathrm{~T}, \rho)
$$

Similarly, one defines the Heyting prealgebra pEff ${ }_{\text {props }}^{c}(A, R)$ of dependent small propositions (using Prop ${ }_{s}^{r}$ instead of Prop r) and shows that it embeds in $\mathbf{p E f f}{ }_{\text {set }}^{c}(\mathrm{~A}, \mathrm{R})$.

The picture over (A, R)

The picture over (A, R)

The global picture

The global picture

Now, the best currently available way to produce a square over $\mathbf{p E f f}^{c}$ is by means of fibrations, as follows:

The global picture

Now, the best currently available way to produce a square over $\mathbf{p E f f}^{c}$ is by means of fibrations, as follows:

The global picture

Now, the best currently available way to produce a square over $\mathbf{p E f f}^{c}$ is by means of fibrations, as follows:

where $b:(\mathrm{C}, \mathrm{T}) \rightarrow(\mathrm{A}, \mathrm{R})$ is in

The global picture

Now, the best currently available way to produce a square over $\mathbf{p E f f}^{c}$ is by means of fibrations, as follows:

where $b:(\mathrm{C}, \mathrm{T}) \rightarrow(\mathrm{A}, \mathrm{R})$ is in
(1) $\mathbf{p E f f}$ set $c \rightarrow$ if $b \cong \mathbf{K}(\mathrm{~B}, \mathrm{~S}, \sigma)$ for some $(\mathrm{B}, \mathrm{S}, \sigma)$ in $\mathbf{p E f f}{ }_{\text {set }}^{c}(\mathrm{~A}, \mathrm{R})$

The global picture

Now, the best currently available way to produce a square over $\mathbf{p E f f}^{c}$ is by means of fibrations, as follows:

where $b:(\mathrm{C}, \mathrm{T}) \rightarrow(\mathrm{A}, \mathrm{R})$ is in
(1) pEff set $c \rightarrow$ if $b \cong \mathbf{K}(\mathrm{~B}, \mathrm{~S}, \sigma)$ for some $(\mathrm{B}, \mathrm{S}, \sigma)$ in $\mathbf{p E f f}$ set (A, R)
(2) pEfffrop $\underset{\text { pro }}{c \rightarrow}$: if $b \cong \mathbf{K}(\mathrm{P}, \mathrm{T}, \rho)$ for some (P, ρ) in $\mathbf{p E f f}$ prop (A, R)

The global picture

Now, the best currently available way to produce a square over $\mathbf{p E f f}^{c}$ is by means of fibrations, as follows:

where $b:(\mathrm{C}, \mathrm{T}) \rightarrow(\mathrm{A}, \mathrm{R})$ is in
(1) pEff set $c \rightarrow$ if $b \cong \mathbf{K}(\mathrm{~B}, \mathrm{~S}, \sigma)$ for some $(\mathrm{B}, \mathrm{S}, \sigma)$ in $\mathbf{p E f f}$ set (A, R)
(2) pEff ${ }_{\text {prop }}^{c \rightarrow}$: if $b \cong \mathbf{K}(\mathrm{P}, \mathrm{T}, \rho)$ for some (P, ρ) in $\mathbf{p E f f}{ }_{p \text { rop }}^{c}(\mathrm{~A}, \mathrm{R})$
(0) pEff prop $_{s}^{c}$: if $b \cong \mathbf{K}(\mathrm{P}, \mathrm{T}, \rho)$ for some (P, ρ) in $\mathbf{p E f f}$ prop $_{s}^{c}(\mathrm{~A}, \mathrm{R})$

The global picture

Now, the best currently available way to produce a square over $\mathbf{p E f f}^{c}$ is by means of fibrations, as follows:

where $b:(\mathrm{C}, \mathrm{T}) \rightarrow(\mathrm{A}, \mathrm{R})$ is in
(1) pEff set $c \rightarrow$ if $b \cong \mathbf{K}(\mathrm{~B}, \mathrm{~S}, \sigma)$ for some $(\mathrm{B}, \mathrm{S}, \sigma)$ in $\mathbf{p E f f}$ set (A, R)
(2) pEff ${ }_{\text {prop }}^{c \rightarrow}$: if $b \cong \mathbf{K}(\mathrm{P}, \mathrm{T}, \rho)$ for some (P, ρ) in $\mathbf{p E f f}{ }_{p \text { rop }}^{c}(\mathrm{~A}, \mathrm{R})$
(0) pEff prop $_{s}^{c}$: if $b \cong \mathbf{K}(\mathrm{P}, \mathrm{T}, \rho)$ for some (P, ρ) in $\mathbf{p E f f}$ prop $_{s}^{c}(\mathrm{~A}, \mathrm{R})$

Remarks

Remarks

If we consider the formalization of $\mathbf{p E f f}{ }^{c}$ in $C Z F+R E A$ we gain:

Remarks

If we consider the formalization of $\mathbf{p E f f}{ }^{c}$ in $C Z F+R E A$ we gain:
(1) a fully constructive predicative effective topos

Remarks

If we consider the formalization of $\mathbf{p E f f}{ }^{c}$ in $C Z F+R E A$ we gain:
(1) a fully constructive predicative effective topos
(2) pEff^{c} models MF + inductive formal topologies thanks to (Maietti, M., Rathjen 2021) and all inductive definitions thanks to (Maietti, Sabelli 2023)

Remarks

If we consider the formalization of $\mathbf{p E f f}{ }^{c}$ in $C Z F+R E A$ we gain:
(1) a fully constructive predicative effective topos
(2) pEff^{c} models MF + inductive formal topologies thanks to (Maietti, M., Rathjen 2021) and all inductive definitions thanks to (Maietti, Sabelli 2023)
If we consider the formalization in CZF + uREA + RDC, pEff ${ }^{c}$ models MF + inductive formal topologies + coinductive topological definitions thanks to (Maietti, M., Rathjen 2022) and all coinductive definitions thanks to (PhD thesis Sabelli 2023)

Thanks for your attention!

