
Fibred sets within a predicative and constructive

variant of Hyland’s e↵ective topos

Samuele Maschio
(j.w.w. Cipriano Junior Cio↵o and Maria Emilia Maietti)

Dipartimento di Matematica “Tullio Levi-Civita”
Università di Padova

CCC 2023

Kyoto, 25/09/2023



The Minimalist Foundation (MF)

(Maietti, Sambin 2005) conceptual design
(Maietti 2009) two-level formal system

MF is a foundation for constructive mathematics compatible with the main
constructive and classical, predicative and impredicative, foundational theories in
the literature.
It consists of two levels both formulated as variants of Martin-Löf type theory:

Intensional level (mTT) Extensional level (emTT)

Computational content Actual mathematics

Set �
�

// Col Set �
�

// Col

Props
� �

//

?�

OO

Prop
?�

OO

Props
� �

//

?�

OO

Prop
?�

OO

The two levels are linked by a setoid model of emTT in mTT.



The Minimalist Foundation (MF)

(Maietti, Sambin 2005) conceptual design
(Maietti 2009) two-level formal system
MF is a foundation for constructive mathematics compatible with the main
constructive and classical, predicative and impredicative, foundational theories in
the literature.

It consists of two levels both formulated as variants of Martin-Löf type theory:

Intensional level (mTT) Extensional level (emTT)

Computational content Actual mathematics

Set �
�

// Col Set �
�

// Col

Props
� �

//

?�

OO

Prop
?�

OO

Props
� �

//

?�

OO

Prop
?�

OO

The two levels are linked by a setoid model of emTT in mTT.



The Minimalist Foundation (MF)

(Maietti, Sambin 2005) conceptual design
(Maietti 2009) two-level formal system
MF is a foundation for constructive mathematics compatible with the main
constructive and classical, predicative and impredicative, foundational theories in
the literature.
It consists of two levels both formulated as variants of Martin-Löf type theory:

Intensional level (mTT) Extensional level (emTT)

Computational content Actual mathematics

Set �
�

// Col Set �
�

// Col

Props
� �

//

?�

OO

Prop
?�

OO

Props
� �

//

?�

OO

Prop
?�

OO

The two levels are linked by a setoid model of emTT in mTT.



The Minimalist Foundation (MF)

(Maietti, Sambin 2005) conceptual design
(Maietti 2009) two-level formal system
MF is a foundation for constructive mathematics compatible with the main
constructive and classical, predicative and impredicative, foundational theories in
the literature.
It consists of two levels both formulated as variants of Martin-Löf type theory:

Intensional level (mTT) Extensional level (emTT)

Computational content Actual mathematics

Set �
�

// Col Set �
�

// Col

Props
� �

//

?�

OO

Prop
?�

OO

Props
� �

//

?�

OO

Prop
?�

OO

The two levels are linked by a setoid model of emTT in mTT.



Realizability models for MF

1 (Maietti, M. 2015/16) for mTT+CT+Ext in �ID1

2 (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in �ID1

3 (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA
4 (Maietti, M. , Rathjen 2022) for mTT+AC+CT+Ind+Cind in

CZF+uREA+RDC

We are interested here in the last three of these models.
Recall that Feferman’s �ID1 is classical but strictly predicative, while Aczel’s CZF is
constructive and predicative.



Realizability models for MF

1 (Maietti, M. 2015/16) for mTT+CT+Ext in �ID1

2 (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in �ID1

3 (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA
4 (Maietti, M. , Rathjen 2022) for mTT+AC+CT+Ind+Cind in

CZF+uREA+RDC

We are interested here in the last three of these models.
Recall that Feferman’s �ID1 is classical but strictly predicative, while Aczel’s CZF is
constructive and predicative.



Realizability models for MF

1 (Maietti, M. 2015/16) for mTT+CT+Ext in �ID1

2 (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in �ID1

3 (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA
4 (Maietti, M. , Rathjen 2022) for mTT+AC+CT+Ind+Cind in

CZF+uREA+RDC

We are interested here in the last three of these models.
Recall that Feferman’s �ID1 is classical but strictly predicative, while Aczel’s CZF is
constructive and predicative.



Realizability models for MF

1 (Maietti, M. 2015/16) for mTT+CT+Ext in �ID1

2 (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in �ID1

3 (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA

4 (Maietti, M. , Rathjen 2022) for mTT+AC+CT+Ind+Cind in
CZF+uREA+RDC

We are interested here in the last three of these models.
Recall that Feferman’s �ID1 is classical but strictly predicative, while Aczel’s CZF is
constructive and predicative.



Realizability models for MF

1 (Maietti, M. 2015/16) for mTT+CT+Ext in �ID1

2 (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in �ID1

3 (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA
4 (Maietti, M. , Rathjen 2022) for mTT+AC+CT+Ind+Cind in

CZF+uREA+RDC

We are interested here in the last three of these models.
Recall that Feferman’s �ID1 is classical but strictly predicative, while Aczel’s CZF is
constructive and predicative.



Realizability models for MF

1 (Maietti, M. 2015/16) for mTT+CT+Ext in �ID1

2 (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in �ID1

3 (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA
4 (Maietti, M. , Rathjen 2022) for mTT+AC+CT+Ind+Cind in

CZF+uREA+RDC

We are interested here in the last three of these models.

Recall that Feferman’s �ID1 is classical but strictly predicative, while Aczel’s CZF is
constructive and predicative.



Realizability models for MF

1 (Maietti, M. 2015/16) for mTT+CT+Ext in �ID1

2 (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in �ID1

3 (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA
4 (Maietti, M. , Rathjen 2022) for mTT+AC+CT+Ind+Cind in

CZF+uREA+RDC

We are interested here in the last three of these models.
Recall that Feferman’s �ID1 is classical but strictly predicative, while Aczel’s CZF is
constructive and predicative.



Hyland’s E↵ective Topos

(Hyland, 1982)
The e↵ective topos E↵

- an elementary topos which is not Grothendieck

- an adequate mathematical framework for computable mathematics

- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

(1) directly by describing its objects (A,R) and its arrows [F ];
(2) as the result of the tripos-to-topos construction applied to the realizability

tripos, which is a uniform variant of Kleene realizability on Set;

(3) as the result of the ex-reg completion applied to the category of assemblies
Asm.

(4) as the result of the ex-lex completion applied to the category of partitioned
assemblies pAsm.



Hyland’s E↵ective Topos

(Hyland, 1982)
The e↵ective topos E↵

- an elementary topos which is not Grothendieck

- an adequate mathematical framework for computable mathematics

- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

(1) directly by describing its objects (A,R) and its arrows [F ];
(2) as the result of the tripos-to-topos construction applied to the realizability

tripos, which is a uniform variant of Kleene realizability on Set;

(3) as the result of the ex-reg completion applied to the category of assemblies
Asm.

(4) as the result of the ex-lex completion applied to the category of partitioned
assemblies pAsm.



Hyland’s E↵ective Topos

(Hyland, 1982)
The e↵ective topos E↵

- an elementary topos which is not Grothendieck

- an adequate mathematical framework for computable mathematics

- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

(1) directly by describing its objects (A,R) and its arrows [F ];
(2) as the result of the tripos-to-topos construction applied to the realizability

tripos, which is a uniform variant of Kleene realizability on Set;

(3) as the result of the ex-reg completion applied to the category of assemblies
Asm.

(4) as the result of the ex-lex completion applied to the category of partitioned
assemblies pAsm.



Hyland’s E↵ective Topos

(Hyland, 1982)
The e↵ective topos E↵

- an elementary topos which is not Grothendieck

- an adequate mathematical framework for computable mathematics

- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

(1) directly by describing its objects (A,R) and its arrows [F ];
(2) as the result of the tripos-to-topos construction applied to the realizability

tripos, which is a uniform variant of Kleene realizability on Set;

(3) as the result of the ex-reg completion applied to the category of assemblies
Asm.

(4) as the result of the ex-lex completion applied to the category of partitioned
assemblies pAsm.



Hyland’s E↵ective Topos

(Hyland, 1982)
The e↵ective topos E↵

- an elementary topos which is not Grothendieck

- an adequate mathematical framework for computable mathematics

- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

(1) directly by describing its objects (A,R) and its arrows [F ];
(2) as the result of the tripos-to-topos construction applied to the realizability

tripos, which is a uniform variant of Kleene realizability on Set;

(3) as the result of the ex-reg completion applied to the category of assemblies
Asm.

(4) as the result of the ex-lex completion applied to the category of partitioned
assemblies pAsm.



Hyland’s E↵ective Topos

(Hyland, 1982)
The e↵ective topos E↵

- an elementary topos which is not Grothendieck

- an adequate mathematical framework for computable mathematics

- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

(1) directly by describing its objects (A,R) and its arrows [F ];

(2) as the result of the tripos-to-topos construction applied to the realizability
tripos, which is a uniform variant of Kleene realizability on Set;

(3) as the result of the ex-reg completion applied to the category of assemblies
Asm.

(4) as the result of the ex-lex completion applied to the category of partitioned
assemblies pAsm.



Hyland’s E↵ective Topos

(Hyland, 1982)
The e↵ective topos E↵

- an elementary topos which is not Grothendieck

- an adequate mathematical framework for computable mathematics

- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

(1) directly by describing its objects (A,R) and its arrows [F ];
(2) as the result of the tripos-to-topos construction applied to the realizability

tripos, which is a uniform variant of Kleene realizability on Set;

(3) as the result of the ex-reg completion applied to the category of assemblies
Asm.

(4) as the result of the ex-lex completion applied to the category of partitioned
assemblies pAsm.



Hyland’s E↵ective Topos

(Hyland, 1982)
The e↵ective topos E↵

- an elementary topos which is not Grothendieck

- an adequate mathematical framework for computable mathematics

- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

(1) directly by describing its objects (A,R) and its arrows [F ];
(2) as the result of the tripos-to-topos construction applied to the realizability

tripos, which is a uniform variant of Kleene realizability on Set;

(3) as the result of the ex-reg completion applied to the category of assemblies
Asm.

(4) as the result of the ex-lex completion applied to the category of partitioned
assemblies pAsm.



Hyland’s E↵ective Topos

(Hyland, 1982)
The e↵ective topos E↵

- an elementary topos which is not Grothendieck

- an adequate mathematical framework for computable mathematics

- its internal logic coincides with Kleene realizability on natural numbers

It can be defined in four ways:

(1) directly by describing its objects (A,R) and its arrows [F ];
(2) as the result of the tripos-to-topos construction applied to the realizability

tripos, which is a uniform variant of Kleene realizability on Set;

(3) as the result of the ex-reg completion applied to the category of assemblies
Asm.

(4) as the result of the ex-lex completion applied to the category of partitioned
assemblies pAsm.



In order to define constructive and/or predicative variants of E↵ we consider the
fourth option.

In particular, we consider a rendering of the full subcategory of
pAsm consisting of subsets of N and (restrictions of) recursive functions between
them. We also exploit the fact that the ex-lex completion is exactly the
elementary quotient completion in (Maietti, Rosolini 2013) applied to the weak
subobject doctrine.



In order to define constructive and/or predicative variants of E↵ we consider the
fourth option. In particular, we consider a rendering of the full subcategory of
pAsm consisting of subsets of N and (restrictions of) recursive functions between
them.

We also exploit the fact that the ex-lex completion is exactly the
elementary quotient completion in (Maietti, Rosolini 2013) applied to the weak
subobject doctrine.



In order to define constructive and/or predicative variants of E↵ we consider the
fourth option. In particular, we consider a rendering of the full subcategory of
pAsm consisting of subsets of N and (restrictions of) recursive functions between
them. We also exploit the fact that the ex-lex completion is exactly the
elementary quotient completion in (Maietti, Rosolini 2013) applied to the weak
subobject doctrine.



A predicative variant of Hyland’s e↵ective topos

(Maietti, M. 2021)

Worked out in �ID1, but it can also be defined in the same way using
extensions of CZF thanks to the intepretations in
(Maietti, M., Rathjen 2021, 2022).

We start from a categorical account of the structures behind realizability
models 2,3 and 4.

1 Cr : the category of definable classes of natural numbers and (restrictions of)
computable functions between them (represented by numerals).

2 Colr ∶ Copr → Cat is the indexed category of dependent definable classes and
computable functions between them (represented by numerals and possibly
depending on data in the indexing classes).

3 Propr ∶ Copr → preHeyt is the preorder reflection of Colr .
4 Setr ∶ Copr → Cat is an indexed subcategory of Colr defined using a fix point

universe representing realizability interpretations of sets of mTT.
5 Proprs ∶ Copr → preHeyt is the preorder reflection of Setr .



A predicative variant of Hyland’s e↵ective topos

(Maietti, M. 2021)

Worked out in �ID1, but it can also be defined in the same way using
extensions of CZF thanks to the intepretations in
(Maietti, M., Rathjen 2021, 2022).

We start from a categorical account of the structures behind realizability
models 2,3 and 4.

1 Cr : the category of definable classes of natural numbers and (restrictions of)
computable functions between them (represented by numerals).

2 Colr ∶ Copr → Cat is the indexed category of dependent definable classes and
computable functions between them (represented by numerals and possibly
depending on data in the indexing classes).

3 Propr ∶ Copr → preHeyt is the preorder reflection of Colr .
4 Setr ∶ Copr → Cat is an indexed subcategory of Colr defined using a fix point

universe representing realizability interpretations of sets of mTT.
5 Proprs ∶ Copr → preHeyt is the preorder reflection of Setr .



A predicative variant of Hyland’s e↵ective topos

(Maietti, M. 2021)

Worked out in �ID1, but it can also be defined in the same way using
extensions of CZF thanks to the intepretations in
(Maietti, M., Rathjen 2021, 2022).

We start from a categorical account of the structures behind realizability
models 2,3 and 4.

1 Cr : the category of definable classes of natural numbers and (restrictions of)
computable functions between them (represented by numerals).

2 Colr ∶ Copr → Cat is the indexed category of dependent definable classes and
computable functions between them (represented by numerals and possibly
depending on data in the indexing classes).

3 Propr ∶ Copr → preHeyt is the preorder reflection of Colr .
4 Setr ∶ Copr → Cat is an indexed subcategory of Colr defined using a fix point

universe representing realizability interpretations of sets of mTT.
5 Proprs ∶ Copr → preHeyt is the preorder reflection of Setr .



A predicative variant of Hyland’s e↵ective topos

(Maietti, M. 2021)

Worked out in �ID1, but it can also be defined in the same way using
extensions of CZF thanks to the intepretations in
(Maietti, M., Rathjen 2021, 2022).

We start from a categorical account of the structures behind realizability
models 2,3 and 4.

1 Cr : the category of definable classes of natural numbers and (restrictions of)
computable functions between them (represented by numerals).

2 Colr ∶ Copr → Cat is the indexed category of dependent definable classes and
computable functions between them (represented by numerals and possibly
depending on data in the indexing classes).

3 Propr ∶ Copr → preHeyt is the preorder reflection of Colr .
4 Setr ∶ Copr → Cat is an indexed subcategory of Colr defined using a fix point

universe representing realizability interpretations of sets of mTT.
5 Proprs ∶ Copr → preHeyt is the preorder reflection of Setr .



A predicative variant of Hyland’s e↵ective topos

(Maietti, M. 2021)

Worked out in �ID1, but it can also be defined in the same way using
extensions of CZF thanks to the intepretations in
(Maietti, M., Rathjen 2021, 2022).

We start from a categorical account of the structures behind realizability
models 2,3 and 4.

1 Cr : the category of definable classes of natural numbers and (restrictions of)
computable functions between them (represented by numerals).

2 Colr ∶ Copr → Cat is the indexed category of dependent definable classes and
computable functions between them (represented by numerals and possibly
depending on data in the indexing classes).

3 Propr ∶ Copr → preHeyt is the preorder reflection of Colr .
4 Setr ∶ Copr → Cat is an indexed subcategory of Colr defined using a fix point

universe representing realizability interpretations of sets of mTT.
5 Proprs ∶ Copr → preHeyt is the preorder reflection of Setr .



A predicative variant of Hyland’s e↵ective topos

(Maietti, M. 2021)

Worked out in �ID1, but it can also be defined in the same way using
extensions of CZF thanks to the intepretations in
(Maietti, M., Rathjen 2021, 2022).

We start from a categorical account of the structures behind realizability
models 2,3 and 4.

1 Cr : the category of definable classes of natural numbers and (restrictions of)
computable functions between them (represented by numerals).

2 Colr ∶ Copr → Cat is the indexed category of dependent definable classes and
computable functions between them (represented by numerals and possibly
depending on data in the indexing classes).

3 Propr ∶ Copr → preHeyt is the preorder reflection of Colr .

4 Setr ∶ Copr → Cat is an indexed subcategory of Colr defined using a fix point
universe representing realizability interpretations of sets of mTT.

5 Proprs ∶ Copr → preHeyt is the preorder reflection of Setr .



A predicative variant of Hyland’s e↵ective topos

(Maietti, M. 2021)

Worked out in �ID1, but it can also be defined in the same way using
extensions of CZF thanks to the intepretations in
(Maietti, M., Rathjen 2021, 2022).

We start from a categorical account of the structures behind realizability
models 2,3 and 4.

1 Cr : the category of definable classes of natural numbers and (restrictions of)
computable functions between them (represented by numerals).

2 Colr ∶ Copr → Cat is the indexed category of dependent definable classes and
computable functions between them (represented by numerals and possibly
depending on data in the indexing classes).

3 Propr ∶ Copr → preHeyt is the preorder reflection of Colr .
4 Setr ∶ Copr → Cat is an indexed subcategory of Colr defined using a fix point

universe representing realizability interpretations of sets of mTT.

5 Proprs ∶ Copr → preHeyt is the preorder reflection of Setr .



A predicative variant of Hyland’s e↵ective topos

(Maietti, M. 2021)

Worked out in �ID1, but it can also be defined in the same way using
extensions of CZF thanks to the intepretations in
(Maietti, M., Rathjen 2021, 2022).

We start from a categorical account of the structures behind realizability
models 2,3 and 4.

1 Cr : the category of definable classes of natural numbers and (restrictions of)
computable functions between them (represented by numerals).

2 Colr ∶ Copr → Cat is the indexed category of dependent definable classes and
computable functions between them (represented by numerals and possibly
depending on data in the indexing classes).

3 Propr ∶ Copr → preHeyt is the preorder reflection of Colr .
4 Setr ∶ Copr → Cat is an indexed subcategory of Colr defined using a fix point

universe representing realizability interpretations of sets of mTT.
5 Proprs ∶ Copr → preHeyt is the preorder reflection of Setr .



Structuring families over a predicative e↵ective topos

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal
reflection of Propr to produce a category pE↵ and a first-order hyperdoctrine
pE↵prop of propositions over it.

One can also define a subdoctrine pE↵props of
pE↵prop of small propositions over pE↵ using Proprs .
So we started from a square of embeddings over Cr

Setr �
�

// Colr

Proprs
� �

//

?�

OO

Propr
?�

OO

and we obtained a partial square over pE↵

?? �
�

// ??

pE↵props

?�

OO

� �
// pE↵prop

?�

OO

The top right corner can be filled by shifting to fibrations and considering the
codomain fibration of pE↵, however how can we fill the top left corner?



Structuring families over a predicative e↵ective topos

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal
reflection of Propr to produce a category pE↵ and a first-order hyperdoctrine
pE↵prop of propositions over it. One can also define a subdoctrine pE↵props of
pE↵prop of small propositions over pE↵ using Proprs .

So we started from a square of embeddings over Cr
Setr �

�
// Colr

Proprs
� �

//

?�

OO

Propr
?�

OO

and we obtained a partial square over pE↵

?? �
�

// ??

pE↵props

?�

OO

� �
// pE↵prop

?�

OO

The top right corner can be filled by shifting to fibrations and considering the
codomain fibration of pE↵, however how can we fill the top left corner?



Structuring families over a predicative e↵ective topos

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal
reflection of Propr to produce a category pE↵ and a first-order hyperdoctrine
pE↵prop of propositions over it. One can also define a subdoctrine pE↵props of
pE↵prop of small propositions over pE↵ using Proprs .
So we started from a square of embeddings over Cr

Setr �
�

// Colr

Proprs
� �

//

?�

OO

Propr
?�

OO

and we obtained a partial square over pE↵

?? �
�

// ??

pE↵props

?�

OO

� �
// pE↵prop

?�

OO

The top right corner can be filled by shifting to fibrations and considering the
codomain fibration of pE↵, however how can we fill the top left corner?



Structuring families over a predicative e↵ective topos

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal
reflection of Propr to produce a category pE↵ and a first-order hyperdoctrine
pE↵prop of propositions over it. One can also define a subdoctrine pE↵props of
pE↵prop of small propositions over pE↵ using Proprs .
So we started from a square of embeddings over Cr

Setr �
�

// Colr

Proprs
� �

//

?�

OO

Propr
?�

OO

and we obtained a partial square over pE↵

?? �
�

// ??

pE↵props

?�

OO

� �
// pE↵prop

?�

OO

The top right corner can be filled by shifting to fibrations and considering the
codomain fibration of pE↵, however how can we fill the top left corner?



Structuring families over a predicative e↵ective topos

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal
reflection of Propr to produce a category pE↵ and a first-order hyperdoctrine
pE↵prop of propositions over it. One can also define a subdoctrine pE↵props of
pE↵prop of small propositions over pE↵ using Proprs .
So we started from a square of embeddings over Cr

Setr �
�

// Colr

Proprs
� �

//

?�

OO

Propr
?�

OO

and we obtained a partial square over pE↵

?? �
�

// ??

pE↵props

?�

OO

� �
// pE↵prop

?�

OO

The top right corner can be filled by shifting to fibrations and considering the
codomain fibration of pE↵,

however how can we fill the top left corner?



Structuring families over a predicative e↵ective topos

In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal
reflection of Propr to produce a category pE↵ and a first-order hyperdoctrine
pE↵prop of propositions over it. One can also define a subdoctrine pE↵props of
pE↵prop of small propositions over pE↵ using Proprs .
So we started from a square of embeddings over Cr

Setr �
�

// Colr

Proprs
� �

//

?�

OO

Propr
?�

OO

and we obtained a partial square over pE↵

?? �
�

// ??

pE↵props

?�

OO

� �
// pE↵prop

?�

OO

The top right corner can be filled by shifting to fibrations and considering the
codomain fibration of pE↵, however how can we fill the top left corner?



Keeping more computational information

In order to answer this question, we first have to shift to a more computationally
informative version pE↵c of pE↵.

The di↵erence between pE↵c and pE↵ is that
in the first we keep track of realizers which are kept in the meta-level in the
second case. The idea is to see an equivalence relation as a proof-relevant internal
grupoid and propositions as actions on a grupoid. If we allow the axiom of
countable choice in the meta-level, then the two categories become equivalent.



Keeping more computational information

In order to answer this question, we first have to shift to a more computationally
informative version pE↵c of pE↵. The di↵erence between pE↵c and pE↵ is that
in the first we keep track of realizers which are kept in the meta-level in the
second case.

The idea is to see an equivalence relation as a proof-relevant internal
grupoid and propositions as actions on a grupoid. If we allow the axiom of
countable choice in the meta-level, then the two categories become equivalent.



Keeping more computational information

In order to answer this question, we first have to shift to a more computationally
informative version pE↵c of pE↵. The di↵erence between pE↵c and pE↵ is that
in the first we keep track of realizers which are kept in the meta-level in the
second case. The idea is to see an equivalence relation as a proof-relevant internal
grupoid and propositions as actions on a grupoid.

If we allow the axiom of
countable choice in the meta-level, then the two categories become equivalent.



Keeping more computational information

In order to answer this question, we first have to shift to a more computationally
informative version pE↵c of pE↵. The di↵erence between pE↵c and pE↵ is that
in the first we keep track of realizers which are kept in the meta-level in the
second case. The idea is to see an equivalence relation as a proof-relevant internal
grupoid and propositions as actions on a grupoid. If we allow the axiom of
countable choice in the meta-level, then the two categories become equivalent.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)

OBJECTS: dependent collections (B,S,�):
(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:

(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))
(preserving dependent equivalence relations)

(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)

(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b))

(not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)

(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a)

(identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)

(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and
t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)

(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



The category of dependent collections over (A,R) in
pE↵c

: pE↵c

col(A,R)
OBJECTS: dependent collections (B,S,�):

(1) B is an object of Colr(A): a dependent collection over A

(2) S ∈ Propr(⌃(A,B ×B): a dependent equivalence relation on B with a
parameter in A

(3) � ∶ Colr⇡1
(B) × R→ Colr⇡2

(B) a pseudo-action, that is:
(a) Sa(b,b′)⇒ Sa′(�a,a′(r ,b),�a,a′(r ,b′))

(preserving dependent equivalence relations)
(b) Sa′(�a,a′(r ,b),�a,a′(r ′,b)) (not depending on realizers)
(c) Sa(b,�a,a(r ,b)) for r � R(a, a) (identity on reflexivity)
(d) Sa′′(�a′,a′′(s,�a,a′(r ,b)),�a,a′′(t,b)) for all r � R(a, a′), s � R(a′, a′′) and

t � R(a, a′′)(composition on transitivity)

These conditions, expressed here informally, can be expressed in precise
categorical terms.



ARROWS: [f ]≅ ∶ (B,S,�)→ (B′,S′,�′) where:

(1) f ∶ B→ B′ in Colr(A) satisfies:
(a) Sa(b,b′)⇒ S′a(fa(b), f ′a (b)) preserving dependent equivalence relations
(b) Sa′(fa′(�a,a′(r ,b)),�′a,a′(r , fa(b))) compatibility with pseudo-actions

(2) f ≅ g means Sa(b,b′)⇒ S′a(fa(b),ga(b))
These objects and arrows, together with the compositions and identities inherited
from Colr(A), define a category pE↵c

col(A,R).



ARROWS: [f ]≅ ∶ (B,S,�)→ (B′,S′,�′) where:
(1) f ∶ B→ B′ in Colr(A) satisfies:

(a) Sa(b,b′)⇒ S′a(fa(b), f ′a (b)) preserving dependent equivalence relations
(b) Sa′(fa′(�a,a′(r ,b)),�′a,a′(r , fa(b))) compatibility with pseudo-actions

(2) f ≅ g means Sa(b,b′)⇒ S′a(fa(b),ga(b))
These objects and arrows, together with the compositions and identities inherited
from Colr(A), define a category pE↵c

col(A,R).



ARROWS: [f ]≅ ∶ (B,S,�)→ (B′,S′,�′) where:
(1) f ∶ B→ B′ in Colr(A) satisfies:

(a) Sa(b,b′)⇒ S′a(fa(b), f ′a (b))

preserving dependent equivalence relations
(b) Sa′(fa′(�a,a′(r ,b)),�′a,a′(r , fa(b))) compatibility with pseudo-actions

(2) f ≅ g means Sa(b,b′)⇒ S′a(fa(b),ga(b))
These objects and arrows, together with the compositions and identities inherited
from Colr(A), define a category pE↵c

col(A,R).



ARROWS: [f ]≅ ∶ (B,S,�)→ (B′,S′,�′) where:
(1) f ∶ B→ B′ in Colr(A) satisfies:

(a) Sa(b,b′)⇒ S′a(fa(b), f ′a (b)) preserving dependent equivalence relations

(b) Sa′(fa′(�a,a′(r ,b)),�′a,a′(r , fa(b))) compatibility with pseudo-actions

(2) f ≅ g means Sa(b,b′)⇒ S′a(fa(b),ga(b))
These objects and arrows, together with the compositions and identities inherited
from Colr(A), define a category pE↵c

col(A,R).



ARROWS: [f ]≅ ∶ (B,S,�)→ (B′,S′,�′) where:
(1) f ∶ B→ B′ in Colr(A) satisfies:

(a) Sa(b,b′)⇒ S′a(fa(b), f ′a (b)) preserving dependent equivalence relations
(b) Sa′(fa′(�a,a′(r ,b)),�′a,a′(r , fa(b)))

compatibility with pseudo-actions

(2) f ≅ g means Sa(b,b′)⇒ S′a(fa(b),ga(b))
These objects and arrows, together with the compositions and identities inherited
from Colr(A), define a category pE↵c

col(A,R).



ARROWS: [f ]≅ ∶ (B,S,�)→ (B′,S′,�′) where:
(1) f ∶ B→ B′ in Colr(A) satisfies:

(a) Sa(b,b′)⇒ S′a(fa(b), f ′a (b)) preserving dependent equivalence relations
(b) Sa′(fa′(�a,a′(r ,b)),�′a,a′(r , fa(b))) compatibility with pseudo-actions

(2) f ≅ g means Sa(b,b′)⇒ S′a(fa(b),ga(b))
These objects and arrows, together with the compositions and identities inherited
from Colr(A), define a category pE↵c

col(A,R).



ARROWS: [f ]≅ ∶ (B,S,�)→ (B′,S′,�′) where:
(1) f ∶ B→ B′ in Colr(A) satisfies:

(a) Sa(b,b′)⇒ S′a(fa(b), f ′a (b)) preserving dependent equivalence relations
(b) Sa′(fa′(�a,a′(r ,b)),�′a,a′(r , fa(b))) compatibility with pseudo-actions

(2) f ≅ g means Sa(b,b′)⇒ S′a(fa(b),ga(b))

These objects and arrows, together with the compositions and identities inherited
from Colr(A), define a category pE↵c

col(A,R).



ARROWS: [f ]≅ ∶ (B,S,�)→ (B′,S′,�′) where:
(1) f ∶ B→ B′ in Colr(A) satisfies:

(a) Sa(b,b′)⇒ S′a(fa(b), f ′a (b)) preserving dependent equivalence relations
(b) Sa′(fa′(�a,a′(r ,b)),�′a,a′(r , fa(b))) compatibility with pseudo-actions

(2) f ≅ g means Sa(b,b′)⇒ S′a(fa(b),ga(b))
These objects and arrows, together with the compositions and identities inherited
from Colr(A), define a category pE↵c

col(A,R).



Theorem

pE↵c
col(A,R) is a locally cartesian closed list-arithmetic pretopos.

Theorem

There exists a functor K ∶ pE↵c
col(A,R)→ pE↵c�(A,R) which is full, faithfull and

essentially surjective on objects.

If one assumes the axiom of countable choice, we get that pE↵c
col(A,R) is

equivalent to pE↵c�(A,R).



Theorem

pE↵c
col(A,R) is a locally cartesian closed list-arithmetic pretopos.

Theorem

There exists a functor K ∶ pE↵c
col(A,R)→ pE↵c�(A,R) which is full, faithfull and

essentially surjective on objects.

If one assumes the axiom of countable choice, we get that pE↵c
col(A,R) is

equivalent to pE↵c�(A,R).



Theorem

pE↵c
col(A,R) is a locally cartesian closed list-arithmetic pretopos.

Theorem

There exists a functor K ∶ pE↵c
col(A,R)→ pE↵c�(A,R) which is full, faithfull and

essentially surjective on objects.

If one assumes the axiom of countable choice, we get that pE↵c
col(A,R) is

equivalent to pE↵c�(A,R).



The category of dependent sets over (A,R) in pE↵c
:

pE↵c

set(A,R)
Using the presentation of dependent collections over (A,R) one can define
pE↵c

set(A,R) as the full subcategory of pE↵c
col(A,R) whose

OBJECTS are dependent collections (B,S,�) with
(a) B is an object of Setr(A)
(b) S ∈ Propr

s(⌃(A,B ×B))
Theorem

pE↵c
set(A,R) is a locally cartesian closed list-arithmetic pretopos and its

embedding in pE↵c
col(A,R) preserves all the structure.



The category of dependent sets over (A,R) in pE↵c
:

pE↵c

set(A,R)
Using the presentation of dependent collections over (A,R) one can define
pE↵c

set(A,R) as the full subcategory of pE↵c
col(A,R) whose

OBJECTS are dependent collections (B,S,�) with

(a) B is an object of Setr(A)
(b) S ∈ Propr

s(⌃(A,B ×B))
Theorem

pE↵c
set(A,R) is a locally cartesian closed list-arithmetic pretopos and its

embedding in pE↵c
col(A,R) preserves all the structure.



The category of dependent sets over (A,R) in pE↵c
:

pE↵c

set(A,R)
Using the presentation of dependent collections over (A,R) one can define
pE↵c

set(A,R) as the full subcategory of pE↵c
col(A,R) whose

OBJECTS are dependent collections (B,S,�) with
(a) B is an object of Setr(A)

(b) S ∈ Propr
s(⌃(A,B ×B))

Theorem

pE↵c
set(A,R) is a locally cartesian closed list-arithmetic pretopos and its

embedding in pE↵c
col(A,R) preserves all the structure.



The category of dependent sets over (A,R) in pE↵c
:

pE↵c

set(A,R)
Using the presentation of dependent collections over (A,R) one can define
pE↵c

set(A,R) as the full subcategory of pE↵c
col(A,R) whose

OBJECTS are dependent collections (B,S,�) with
(a) B is an object of Setr(A)
(b) S ∈ Propr

s(⌃(A,B ×B))

Theorem

pE↵c
set(A,R) is a locally cartesian closed list-arithmetic pretopos and its

embedding in pE↵c
col(A,R) preserves all the structure.



The category of dependent sets over (A,R) in pE↵c
:

pE↵c

set(A,R)
Using the presentation of dependent collections over (A,R) one can define
pE↵c

set(A,R) as the full subcategory of pE↵c
col(A,R) whose

OBJECTS are dependent collections (B,S,�) with
(a) B is an object of Setr(A)
(b) S ∈ Propr

s(⌃(A,B ×B))
Theorem

pE↵c
set(A,R) is a locally cartesian closed list-arithmetic pretopos and its

embedding in pE↵c
col(A,R) preserves all the structure.



Dependent propositions and small propositions

The right notion of dependent proposition in this framework should keep track of
some computational information:

A dependent proposition on (A,R) is a pair (P,⇢) where
(a) P ∈ Propr(A)
(b) ⇢ ∶ Colr⇡1

(P) × R→ Colr⇡2
(P) is a realizer for the descent condition

Moreover (P,⇢) ≤ (P′,⇢′) means P ≤ P′ in Propr(A).



Dependent propositions and small propositions

The right notion of dependent proposition in this framework should keep track of
some computational information:

A dependent proposition on (A,R) is a pair (P,⇢) where

(a) P ∈ Propr(A)
(b) ⇢ ∶ Colr⇡1

(P) × R→ Colr⇡2
(P) is a realizer for the descent condition

Moreover (P,⇢) ≤ (P′,⇢′) means P ≤ P′ in Propr(A).



Dependent propositions and small propositions

The right notion of dependent proposition in this framework should keep track of
some computational information:

A dependent proposition on (A,R) is a pair (P,⇢) where
(a) P ∈ Propr(A)

(b) ⇢ ∶ Colr⇡1
(P) × R→ Colr⇡2

(P) is a realizer for the descent condition

Moreover (P,⇢) ≤ (P′,⇢′) means P ≤ P′ in Propr(A).



Dependent propositions and small propositions

The right notion of dependent proposition in this framework should keep track of
some computational information:

A dependent proposition on (A,R) is a pair (P,⇢) where
(a) P ∈ Propr(A)
(b) ⇢ ∶ Colr⇡1

(P) × R→ Colr⇡2
(P) is a realizer for the descent condition

Moreover (P,⇢) ≤ (P′,⇢′) means P ≤ P′ in Propr(A).



Dependent propositions and small propositions

The right notion of dependent proposition in this framework should keep track of
some computational information:

A dependent proposition on (A,R) is a pair (P,⇢) where
(a) P ∈ Propr(A)
(b) ⇢ ∶ Colr⇡1

(P) × R→ Colr⇡2
(P) is a realizer for the descent condition

Moreover (P,⇢) ≤ (P′,⇢′) means P ≤ P′ in Propr(A).



Theorem

Dependent propositions with the order just defined form a Heyting prealgebra

pE↵c
prop(A,R). Moreover, pE↵c

prop(A,R) can be embedded in pE↵c
col(A,R) by

the assignment (P,⇢)� (P,�,⇢)

Similarly, one defines the Heyting prealgebra pE↵c
props (A,R) of dependent small

propositions (using Proprs instead of Propr ) and shows that it embeds in
pE↵c

set(A,R).



Theorem

Dependent propositions with the order just defined form a Heyting prealgebra

pE↵c
prop(A,R). Moreover, pE↵c

prop(A,R) can be embedded in pE↵c
col(A,R) by

the assignment (P,⇢)� (P,�,⇢)
Similarly, one defines the Heyting prealgebra pE↵c

props (A,R) of dependent small
propositions (using Proprs instead of Propr ) and shows that it embeds in
pE↵c

set(A,R).



The picture over (A,R)

pE↵c
set(A,R) � � // pE↵c

col(A,R)

pE↵c
props (A,R) � � //

?�

OO

pE↵c
prop(A,R)?�

OO



The picture over (A,R)

pE↵c
set(A,R) � � // pE↵c

col(A,R)

pE↵c
props (A,R) � � //

?�

OO

pE↵c
prop(A,R)?�

OO



The global picture

Now, the best currently available way to produce a square over pE↵c is by means
of fibrations, as follows:

pE↵c →
props
� �

//

� _

✏✏

pE↵c →
prop� _

✏✏

pE↵c →
set

cod
$$

� �
// pE↵c →

cod
zz

pE↵c

where b ∶ (C,T)→ (A,R) is in
1 pE↵c →

set : if b ≅ K(B,S,�) for some (B,S,�) in pE↵c
set(A,R)

2 pE↵c →
prop: if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c

prop(A,R)
3 pE↵c →

props : if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c
props (A,R)



The global picture

Now, the best currently available way to produce a square over pE↵c is by means
of fibrations, as follows:

pE↵c →
props
� �

//

� _

✏✏

pE↵c →
prop� _

✏✏

pE↵c →
set

cod
$$

� �
// pE↵c →

cod
zz

pE↵c

where b ∶ (C,T)→ (A,R) is in
1 pE↵c →

set : if b ≅ K(B,S,�) for some (B,S,�) in pE↵c
set(A,R)

2 pE↵c →
prop: if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c

prop(A,R)
3 pE↵c →

props : if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c
props (A,R)



The global picture

Now, the best currently available way to produce a square over pE↵c is by means
of fibrations, as follows:

pE↵c →
props
� �

//

� _

✏✏

pE↵c →
prop� _

✏✏

pE↵c →
set

cod
$$

� �
// pE↵c →

cod
zz

pE↵c

where b ∶ (C,T)→ (A,R) is in
1 pE↵c →

set : if b ≅ K(B,S,�) for some (B,S,�) in pE↵c
set(A,R)

2 pE↵c →
prop: if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c

prop(A,R)
3 pE↵c →

props : if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c
props (A,R)



The global picture

Now, the best currently available way to produce a square over pE↵c is by means
of fibrations, as follows:

pE↵c →
props
� �

//

� _

✏✏

pE↵c →
prop� _

✏✏

pE↵c →
set

cod
$$

� �
// pE↵c →

cod
zz

pE↵c

where b ∶ (C,T)→ (A,R) is in

1 pE↵c →
set : if b ≅ K(B,S,�) for some (B,S,�) in pE↵c

set(A,R)
2 pE↵c →

prop: if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c
prop(A,R)

3 pE↵c →
props : if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c

props (A,R)



The global picture

Now, the best currently available way to produce a square over pE↵c is by means
of fibrations, as follows:

pE↵c →
props
� �

//

� _

✏✏

pE↵c →
prop� _

✏✏

pE↵c →
set

cod
$$

� �
// pE↵c →

cod
zz

pE↵c

where b ∶ (C,T)→ (A,R) is in
1 pE↵c →

set : if b ≅ K(B,S,�) for some (B,S,�) in pE↵c
set(A,R)

2 pE↵c →
prop: if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c

prop(A,R)
3 pE↵c →

props : if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c
props (A,R)



The global picture

Now, the best currently available way to produce a square over pE↵c is by means
of fibrations, as follows:

pE↵c →
props
� �

//

� _

✏✏

pE↵c →
prop� _

✏✏

pE↵c →
set

cod
$$

� �
// pE↵c →

cod
zz

pE↵c

where b ∶ (C,T)→ (A,R) is in
1 pE↵c →

set : if b ≅ K(B,S,�) for some (B,S,�) in pE↵c
set(A,R)

2 pE↵c →
prop: if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c

prop(A,R)

3 pE↵c →
props : if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c

props (A,R)



The global picture

Now, the best currently available way to produce a square over pE↵c is by means
of fibrations, as follows:

pE↵c →
props
� �

//

� _

✏✏

pE↵c →
prop� _

✏✏

pE↵c →
set

cod
$$

� �
// pE↵c →

cod
zz

pE↵c

where b ∶ (C,T)→ (A,R) is in
1 pE↵c →

set : if b ≅ K(B,S,�) for some (B,S,�) in pE↵c
set(A,R)

2 pE↵c →
prop: if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c

prop(A,R)
3 pE↵c →

props : if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c
props (A,R)



The global picture

Now, the best currently available way to produce a square over pE↵c is by means
of fibrations, as follows:

pE↵c →
props
� �

//

� _

✏✏

pE↵c →
prop� _

✏✏

pE↵c →
set

cod
$$

� �
// pE↵c →

cod
zz

pE↵c

where b ∶ (C,T)→ (A,R) is in
1 pE↵c →

set : if b ≅ K(B,S,�) for some (B,S,�) in pE↵c
set(A,R)

2 pE↵c →
prop: if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c

prop(A,R)
3 pE↵c →

props : if b ≅ K(P,�,⇢) for some (P,⇢) in pE↵c
props (A,R)



Remarks

If we consider the formalization of pE↵c in CZF + REA we gain:
1 a fully constructive predicative e↵ective topos
2 pE↵c models MF + inductive formal topologies thanks to (Maietti, M.,

Rathjen 2021) and all inductive definitions thanks to (Maietti, Sabelli 2023)

If we consider the formalization in CZF + uREA + RDC , pE↵c models MF +
inductive formal topologies + coinductive topological definitions thanks to
(Maietti, M., Rathjen 2022) and all coinductive definitions thanks to (PhD thesis
Sabelli 2023)



Remarks

If we consider the formalization of pE↵c in CZF + REA we gain:

1 a fully constructive predicative e↵ective topos
2 pE↵c models MF + inductive formal topologies thanks to (Maietti, M.,

Rathjen 2021) and all inductive definitions thanks to (Maietti, Sabelli 2023)

If we consider the formalization in CZF + uREA + RDC , pE↵c models MF +
inductive formal topologies + coinductive topological definitions thanks to
(Maietti, M., Rathjen 2022) and all coinductive definitions thanks to (PhD thesis
Sabelli 2023)



Remarks

If we consider the formalization of pE↵c in CZF + REA we gain:
1 a fully constructive predicative e↵ective topos

2 pE↵c models MF + inductive formal topologies thanks to (Maietti, M.,
Rathjen 2021) and all inductive definitions thanks to (Maietti, Sabelli 2023)

If we consider the formalization in CZF + uREA + RDC , pE↵c models MF +
inductive formal topologies + coinductive topological definitions thanks to
(Maietti, M., Rathjen 2022) and all coinductive definitions thanks to (PhD thesis
Sabelli 2023)



Remarks

If we consider the formalization of pE↵c in CZF + REA we gain:
1 a fully constructive predicative e↵ective topos
2 pE↵c models MF + inductive formal topologies thanks to (Maietti, M.,

Rathjen 2021) and all inductive definitions thanks to (Maietti, Sabelli 2023)

If we consider the formalization in CZF + uREA + RDC , pE↵c models MF +
inductive formal topologies + coinductive topological definitions thanks to
(Maietti, M., Rathjen 2022) and all coinductive definitions thanks to (PhD thesis
Sabelli 2023)



Remarks

If we consider the formalization of pE↵c in CZF + REA we gain:
1 a fully constructive predicative e↵ective topos
2 pE↵c models MF + inductive formal topologies thanks to (Maietti, M.,

Rathjen 2021) and all inductive definitions thanks to (Maietti, Sabelli 2023)

If we consider the formalization in CZF + uREA + RDC , pE↵c models MF +
inductive formal topologies + coinductive topological definitions thanks to
(Maietti, M., Rathjen 2022) and all coinductive definitions thanks to (PhD thesis
Sabelli 2023)



Thanks for your attention!


