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The two levels are linked by a setoid model of emTT in mTT.
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Q (Maietti, M. 2015/16) for mTT+CT+Ext in ID;
@ (Ishihara, Maietti, M. , Streicher 2018) for mTT+AC+CT in IE
@ (Maietti, M. , Rathjen 2021) for mTT+AC+CT+Ind in CZF+REA

@ (Maietti, M. , Rathjen 2022) for mTT+AC+CT+Ind+Cind in
CZF+uREA+RDC
We are interested here in the last three of these models.

Recall that Feferman’s Dy is classical but strictly predicative, while Aczel's CZF is
constructive and predicative.
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- its internal logic coincides with Kleene realizability on natural numbers
It can be defined in four ways:
(1) directly by describing its objects (A, R) and its arrows [F];

(2) as the result of the tripos-to-topos construction applied to the realizability
tripos, which is a uniform variant of Kleene realizability on Set;

(3) as the result of the ex-reg completion applied to the category of assemblies
Asm.

(4) as the result of the ex-lex completion applied to the category of partitioned
assemblies pAsm.



In order to define constructive and/or predicative variants of Eff we consider the
fourth option.



In order to define constructive and/or predicative variants of Eff we consider the
fourth option. In particular, we consider a rendering of the full subcategory of
pAsm consisting of subsets of N and (restrictions of) recursive functions between

them.



In order to define constructive and/or predicative variants of Eff we consider the
fourth option. In particular, we consider a rendering of the full subcategory of
pAsm consisting of subsets of N and (restrictions of) recursive functions between
them. We also exploit the fact that the ex-lex completion is exactly the
elementary quotient completion in (Maietti, Rosolini 2013) applied to the weak
subobject doctrine.
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In (Maietti, M. 2021) the elementary quotient completion is applied to the posetal
reflection of Prop” to produce a category pEff and a first-order hyperdoctrine
PEff ., of propositions over it. One can also define a subdoctrine pEff,,, of
PEff,,, of small propositions over pEff using Prop_.

So we started from a square of embeddings over C,

Set'——— Col"

J

Prop,~—— Prop”

and we obtained a partial square over pEff

[

]

pEff o pEFF

props prop

The top right corner can be filled by shifting to fibrations and considering the
codomain fibration of pEff, however how can we fill the top left corner?
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Keeping more computational information

In order to answer this question, we first have to shift to a more computationally
informative version pEff° of pEff. The difference between pEff¢ and pEff is that
in the first we keep track of realizers which are kept in the meta-level in the
second case. The idea is to see an equivalence relation as a proof-relevant internal
grupoid and propositions as actions on a grupoid. If we allow the axiom of
countable choice in the meta-level, then the two categories become equivalent.
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These conditions, expressed here informally, can be expressed in precise
categorical terms.
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(1) f:B - B’ in Col'(A) satisfies:

(a) Sa(b,b") = S,(f:(b),f, (b)) preserving dependent equivalence relations
(b) Sur(fy(0au(r,b)),0, (r,f2(b))) compatibility with pseudo-actions

(2) f =g means S;(b,b") = S,(f:(b), ga(b))

These objects and arrows, together with the compositions and identities inherited
from Col"(A), define a category pEff (A, R).
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Theorem
There exists a functor K : pEff__; (A, R) — pEff/(A,R) which is full, faithfull and

col
essentially surjective on objects.

v

If one assumes the axiom of countable choice, we get that pEff_ (A, R) is

equivalent to pEff¢/(A,R).
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Using the presentation of dependent collections over (A, R) one can define
pEff_, (A, R) as the full subcategory of pEff; (A, R) whose

OBJECTS are dependent collections (B, S, o) with
(a) B is an object of Set"(A)
(b) S ePropl(X(A,BxB))

Theorem

pEff..(A,R) is a locally cartesian closed list-arithmetic pretopos and its
embedding in pEffS (A, R) preserves all the structure.
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The right notion of dependent proposition in this framework should keep track of
some computational information:

A dependent proposition on (A,R) is a pair (P, p) where

(a) PeProp’(A)

(b) p:Col%, (P) xR — Col,(P) is a realizer for the descent condition
Moreover (P, p) < (P’,p’) means P <P’ in Prop”(A).
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Theorem

Dependent propositions with the order just defined form a Heyting prealgebra
PEff,,.,(A,R). Moreover, pEff,,,(A,R) can be embedded in pEff;, (A,R) by
the assignment

(P,p) = (P,T,p)

Similarly, one defines the Heyting prealgebra pEfff,mps(A, R) of dependent small

propositions (using Prop_ instead of Prop”) and shows that it embeds in
pEfF(s:et(A> R)
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Remarks

If we consider the formalization of pEff® in CZF + REA we gain:
@ a fully constructive predicative effective topos
@ pEff° models MF + inductive formal topologies thanks to (Maietti, M.,
Rathjen 2021) and all inductive definitions thanks to (Maietti, Sabelli 2023)

If we consider the formalization in CZF + uREA + RDC, pEff models MF 4
inductive formal topologies + coinductive topological definitions thanks to
(Maietti, M., Rathjen 2022) and all coinductive definitions thanks to (PhD thesis
Sabelli 2023)



Thanks for your attention!



