Solovay reducibility and signed-digit representation

Kenshi Miyabe

Meiji University

27 Sep, 2023 CCC 2023 @ RIMS Joint work with Masahiro Kumabe (Open Univ.) and Toshio Suzuki (Tokyo Metropolitan Univ.).

I talked about the same topic at NUS last June. I will focus on a different proof this time.

We give some new characterizations of Solovay reducibility for weakly computable reals.

- 1. By upper and lower semi-computable Lipschitz functions.
- 2. By Turing reduction with bounded use with respect to the signed-digit representation.

"Solovay reducibility" is well-behaved even outside of left-c.e. reals!!

Table of Contents

Solovay reducibility

Lipschitz function

Signed-digit representation

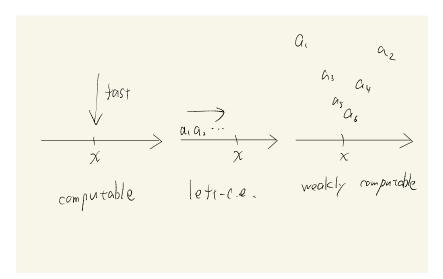
Computability of reals

- $\alpha \in \mathbb{R}$ is computable if $\exists (a_n)_n$, comp, $|a_n \alpha| < 2^{-n}$ for all $n \in \omega$.
- $\alpha \in \mathbb{R}$ is left-c.e. if $\exists (a_n)_n,$ comp., increasing, converging to α
- $\alpha \in \mathbb{R}$ is weakly computable (d.c.e., d.l.c.e.) if $\exists (a_n)_n$, comp. $\sum_n |a_{n+1} - a_n| < \infty$, converging to α , or equivalently if $\alpha = \beta - \gamma$ for left-c.e. reals β, γ .

 $\mathbf{EC} \subsetneq \mathbf{LC} \subsetneq \mathbf{WC}.$

Solovay reducibility

Picture of computability



Solovay reducibility for left-c.e. reals

Definition 1 (Solovay 1970s)

Let $\alpha, \beta \in \mathbf{LC}$. α is Solovay reducible to β , denoted by $\alpha \leq_S \beta$, if $\exists (a_n)_n, (b_n)_n$, comp., increasing, converging to α, β and $\exists c \in \omega$ such that

$$\alpha - a_n < c(\beta - b_n).$$

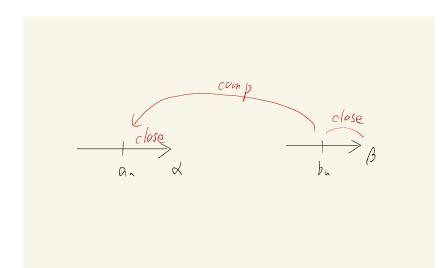
If one has a good approximation of β from below, then one can compute a good approximation of $\alpha.$

Theorem 2 (Kučera and Slaman 2001 with some other results)

A left-c.e. real β is Martin-Löf random if and only if it is Solovay complete in left-c.e. reals, that is, $\alpha \leq_S \beta$ for all left-c.e. reals α .

Solovay reducibility

Picture of Solovay reducibility



Solovay reducibility for weakly computable reals

Definition 3 (Zheng and Rettinger 2004)

Let $\alpha, \beta \in \mathbf{WC}$. α is Solovay reducible to β , denoted by $\alpha \leq_S \beta$, if $\exists (a_n)_n, (b_n)_n$, comp., converging to α, β and $\exists c \in \omega$ such that

$$|\alpha - a_n| < c(|\beta - b_n| + 2^{-n}).$$

 $(a_n)_n, (b_n)_n$ need not be increasing The definition also works for limit computable reals (=computably approximable reals), but we focus on weakly computable reals for simplicity.

Proposition 4 (Rettinger and Zheng 2005)

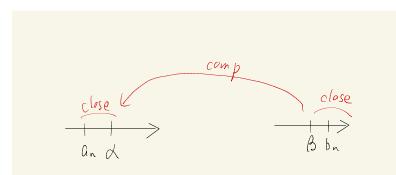
If a weakly computable real is ML-random, then it is left-c.e. or right-c.e. A weakly computable real β is Martin-Löf random if and only if it is Solovay complete in weakly computable reals.

Thus, Solovay is complete if and only if left-c.e. ML-random (Ω) or right-c.e. ML-random($-\Omega$).

Kenshi Miyabe (Meiji University)

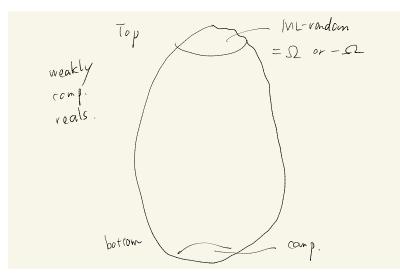
Solovay reducibility

Picture of Solovay reducibility



Solovay reducibility

Picture of Solovay reducibility



11/34

Question

Question 5

What does it mean for one real number to be more random than another number?

The original Solovay reducibility is well-behaved within left-c.e. reals.

The Solovay reducibility by Zheng and Rettinger is well-behaved within weakly computable reals.

Is there a reducibility such that

- 1. it has many good properties like Solovay reducibility,
- 2. it is well-behaved for all reals.

Table of Contents

Solovay reducibility

• Lipschitz function

Signed-digit representation

Solovay reducibility via Lipschitz functions

 $f:\mathbb{R}\to\mathbb{R}$ is Lipschitz if there exists a constant $L\in\mathbb{R}$ such that

$$|f(x) - f(y)| \le L|x - y|$$

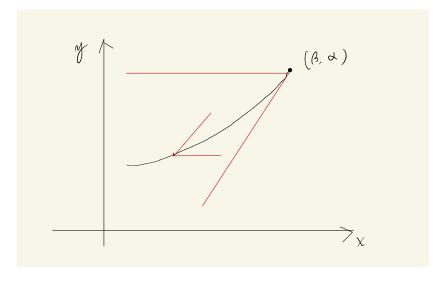
for all x, y. If f is C^1 in a closed interval, then it is Lipschitz.

Proposition 6 (Kumabe, Miyabe, Mizusawa, and Suzuki 2020; Theorem 4.2)

Let α , β be left-c.e. reals. Then $\alpha \leq_S \beta$ if and only if there exists a computable non-decreasing Lipschitz function f whose domain is $(-\infty, \beta)$ and $\lim_{x\to\beta-0} f(x) = \alpha$.

Lipschitz function

Solovay reducibility via Lipschitz functions



For weakly computable reals

Definition 7

A function interval is the pair of two functions f and h with $f(x) \le h(x)$ for all $x \in \mathbb{R}$. A function interval (f, h) is semi-computable if f is lower semi-computable and h is upper semi-computable.

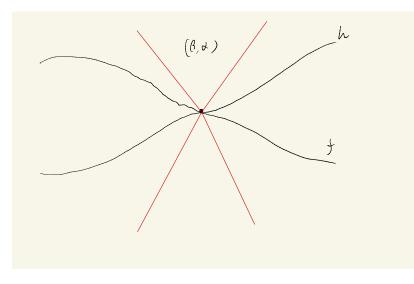
Theorem 8

Let $\alpha, \beta \in \mathbf{WC}$. Then, $\alpha \leq_S \beta$ if and only if there exist a semi-computable function interval (f, h) such that

- 1. f, h are both Lipschitz functions,
- 2. $f(\beta) = h(\beta) = \alpha$.

Lipschitz function

For weakly computable reals



Cauchy-type characterization

For left-c.e. reals $\alpha, \beta, \alpha \leq_S \beta$ if and only if there exist non-decreasing computable sequences $(a_n)_n$ and $(b_n)_n$ converging to α and β , respectively, and $q \in \omega$ such that

$$(\forall n)a_{n+1} - a_n < q(b_{n+1} - b_n).$$

Proposition 9

For weakly computable reals α, β , the relation $\alpha \leq_S \beta$ holds if and only if there exist computable sequences $(a_n)_n$ and $(b_n)_n$ converging to α and β respectively and $q \in \omega$ such that

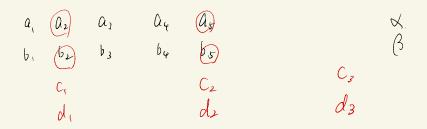
$$(\forall k, n \in \omega)[k < n \Rightarrow |a_n - a_k| < q \cdot (|b_n - b_k| + 2^{-k})]$$

We do not know any adjacent version of Solovay reducibility for weakly computable reals.

The "if" direction follows by letting $n\to\infty.$ For the "only if" direction, we can always find such subsequences. Suppose that we have

$$|\alpha - a_k| < c(|\beta - b_k| + 2^{-k}).$$

For all sufficiently large n, the desired property holds for all previous terms.



$$|d-a_{\kappa}| < C(|\beta-b_{\kappa}|+2^{-\kappa})$$

Proof idea

The Cauchy-type characterization states that

$$(\forall k, n)[k < n \Rightarrow a_k - q|b_n - b_k| - 2^{-k} < a_n < a_k + q|b_n - b_k| + 2^{-k}].$$

Inspired from this, we define functions f and h as follows:

(a)
$$f(x) = \sup_{n \in \omega} (a_n - q|x - b_n| - 2^{-n}),$$

(b) $h(x) = \inf_{n \in \omega} (a_n + q|x - b_n| + 2^{-n}).$

Then, we can show that

- \blacktriangleright f is lower semi-computable and h is upper semi-computable,
- ▶ $f(x) \le h(x)$ for all $x \in \mathbb{R}$,
- f, h are both Lipschitz functions,

•
$$f(\beta) = h(\beta) = \alpha$$
.

Variants

An open interval I = (a, b) is c.e. if a is a right-c.e. real and b is a left-c.e. real.

Definition 10 (cL-open reducibility)

For $\alpha, \beta \in \mathbb{R}$, α is computably-Lipschitz-reducible to β on a c.e. open interval, denoted by $\alpha \leq_{cL}^{op} \beta$, if there exists a Lipschitz computable function f on a c.e. open interval I such that $\lim_{x \in I \to \beta} f(x) = \alpha$.

Definition 11 (cL-local reducibility)

For $\alpha, \beta \in \mathbb{R}$, α is computably-Lipschitz-reducible to β locally, denoted by $\alpha \leq_{cL}^{loc} \beta$, if there exists a locally Lipschitz computable function f such that $f(\beta) = \alpha$.

Variants

Proposition 12

For weakly computable reals $\alpha,\beta,$ we have

$$\alpha \leq_{cL}^{loc} \beta \Rightarrow \alpha \leq_{cL}^{op} \beta \Rightarrow \alpha \leq_{S} \beta.$$

For left-c.e. reals α, β , $\alpha \leq_{cL}^{op} \beta$ if and only if $\alpha \leq_{S} \beta$.

Theorem 13

There exist left-c.e. reals α, β such that $\alpha \leq_{cL}^{op} \beta$ but $\alpha \not\leq_{cL}^{loc} \beta$.

Theorem 14

There exist $\alpha, \beta \in \mathbf{WC}$ such that $\alpha \leq_S \beta$ but $\alpha \not\leq_{cL}^{op} \beta$.

Table of Contents

Solovay reducibility

Lipschitz function

• Signed-digit representation

cL-reducibility

It would be desirable that Solovay reducibility can be characterized via Turing use bounds like tt and wtt.

Definition 15 (Downey, Hirschfeldt, and LaForte 2004)

Let $\alpha, \beta \in 2^{\omega}$. Then, α is computably Lipschitz reducible to β , denoted by $\alpha \leq_{cL} \beta$, if $\exists \Phi$: Turing functional s.t.

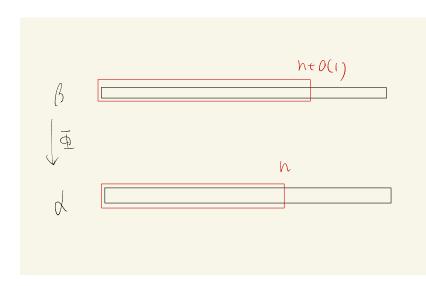
$$\blacktriangleright \ \alpha = \Phi(\beta),$$

▶ $use(\Phi, \beta, n) \le n + O(1).$

Solovay reducibility requires us to compute 2^{-n} -approximation of α from $2^{-n-O(1)}$ -approximation of β . In this sense, these reducibilities are similar but, unfortunately, incomparable (see Theorem 9.1.6 and 9.10.1 in Downey and Hirschfeldt 2010).

Signed-digit representation

Picture of Solovay reducibility



Kenshi Miyabe (Meiji University)

signed-digit representation

The main reason for the difference between Solovay reducibility and cL-reducibility is that the reals change continuously, while the binary sequences change discretely. A similar problem occurs in computable analysis, where we use the signed-digit representation for reals.

Theorem 16 (Kumabe, M., Suzuki)

Let $\alpha, \beta \in \mathbf{WC}$. $\alpha \leq_S \beta$ if and only if it $\exists g$: partial comp. func. s.t.

•
$$\alpha = g(\beta)$$
,

• g is (ρ, ρ) -computable with use bound H(n) = n + O(1),

where ρ is the signed-digit representation.

We will define the sd-representation later.

Replacing the binary representation in cL-reducibility with the sd-representation characterizes Solovay reducibility!

Solovay reducibility for all reals

This feature is pleasing in several ways.

- We have Solovay reducibility for all reals by redefining it via the use bound w.r.t. sd-representation.
- The condition uses use bound like many other reducibilities in computability theory.
- ► This clarifies the relation between Solovay reducibility and Lipschitz functions.

Definition of sd-representation

The usual binary representation:

$$p \in 2^{\omega}, \ \rho_{bin}(p) = \sum_{n=0}^{\infty} p(n) 2^{-n-1} \in [0,1].$$

Even if $\alpha \in [a, b]$ with $b - a < 2^{-n}$, we can not determine $p \upharpoonright n$.

Definition 17

Let $\Sigma = \{0, \pm 1\}$. The signed-digit representation ρ_{sd} is defined by

$$p \in \Sigma^{\omega}, \ \rho_{sd}(p) = \sum_{n=0}^{\infty} p(n) 2^{-n-1} \in [-1,1].$$

The sd-representation can be extended to all reals.

Realization

Definition 18

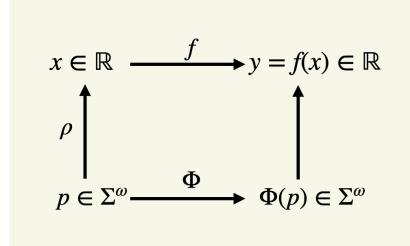
A partial computable $f :\subseteq \mathbb{R} \to \mathbb{R}$ is (ρ, ρ) -computable if $\exists \Phi :\subseteq \Sigma^{\omega} \to \Sigma^{\omega}$: Turing functional such that

$$(\forall p \in \Sigma^{\omega})[\rho(p) = x \in \operatorname{dom}(f) \Rightarrow \rho(\Phi(p)) = f(x)].$$

We also say Φ realizes f.

Signed-digit representation

Picture of realization



Realization

Reproduce

- Let $\alpha, \beta \in \mathbf{WC}$. $\alpha \leq_S \beta$ if and only if $\exists g$: partial comp. func. s.t.
 - $\blacktriangleright \ \alpha = g(\beta),$
 - g is (ρ, ρ) -computable with use bound H(n) = n + O(1),

where ρ is the signed-digit representation.

Here, g is defined at β but may not be defined at other reals. For all ρ -representations B of β , Φ computes some ρ -representation A of α . Furthermore, $A \upharpoonright n$ can be computed from $B \upharpoonright H(n)$.

Further results

- ▶ When replacing Lipschitz by Hölder, then we have quasi Solovay reducibility, where the use bound is H(n) = pn + O(1) for some $p \in \omega$.
- ▶ When defining strong Slovay reducibility by $\lim_{n} \frac{\alpha a_n}{\beta b_n} = 0$, then we have
 - The derivative of f at β is 0.
 - The use bound H(n) < n d for any d.

Thank you!