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What is reverse mathematics?

Something often in usual mathematics

@ From the assumption A, the conclusion B is derived.
(Weaken A as much as possible)

@ Sometimes, the conclusion B also derive the assumption A
(A and B are equivalent)

o If we take a set comprehension axiom as A, then we can classify usual
theorems in mathematics by set comprehension axioms.

Friedman-Simpson's reverse math

@ Reverse mathematics with classical logic, using systems of second
order arithmetic

@ "The reverse mathematics” (?)

3/21



Language of 2nd order arithmetic and base systems

Language Ly(exp)

@ Constants 0,1 @ 1st order variables z, vy, z,...
@ Binary functions +, -, exp @ 2nd order variables X, Y, Z,...
@ Binary relations <, € @ 1st order equality =

The systems RCA;, and RCA,
Basic arithmetic
Successor n+1#0, n+l=m+1—n=m,
Addition n4+0=n, n+(m+1)=(n+m)+1,
Multiplication n-0=0, n-(m+1)=n-m+n,
Order - m <0, m<n+1+<m<n,
Exponentiation exp(n,0) =1, exp(n,m+ 1) =exp(n,m) - n.
S9-IND A(0)AVn(A(n)— A(n + 1)) = VnA(n), for A€ %),
AY-CA Vn(A(n) < B(n)) — 3IXVn(A(n) < n € X),
for A€ XY and B € I1Y.

The famous base system RCA can be defined by RCA} + X9-IND. 421



Weak Konig's lemma

@ A binary tree T' is a subset of {0, 1}* closed under initial segments.

@ A binary tree T is infinite if Ynds € T'(|s| = n), where [s]| is the
length of a finite tree s.

@ A path of a binary tree T' is a function a s.t. Vn(an € T),
where @n is a finite sequence («(0),...,a(n —1)).
o Weak Kénig's Lemma (WKL): “Every infinite binary tree has a path”
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Some results from Friedman-Simpson reverse math
TFAE over RCA, ([8])

@ Weak Konig's lemma: Every infinite binary tree has a path.
Heine-Borel’s covering theorem

Every continuous function on [0, 1] is uniformly continuous.
Every continuous function on [0, 1] has infimum.
0,1
0,1

]
[0,1]

Every continuous function on [0, 1]
[0,1]

Every continuous function on is Riemann integrable.

)
Godel’s completeness theorem
Every countable ring contains a prime ideal.
Brouwer's fixed point theorem

Peano’s existence theorem for solution of ODE.

Separable Hahn-Banach theorem

119 axiom of choice

has a point attaining the infimum.

WKLy = RCAg+Weak Koénig's lemma
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Intuitionistic logic and constructive reverse math

Usual mathematics
Based on classical logic

Constructive mathematics
Based on intuitionistic logic

Constructive reverse mathematics
A mathematical theorem are characterized with a combination of

@ choice principle (asserting the existence of a function)
@ logical principles

which are necessary and sufficient to prove it.
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Base theory EL;
Language Lg,

@ Constant 0 @ bdd. p operator p
@ Function symbols for all o 1st order =

elementary functions S, f,..... o 1st order variables z, y, z,...
 Application symbol AP @ 2nd order variables «, S, 7...

@ Abstraction operator A

System EL;
Successor =50 =0
Defining equations for elementary functions 40 = x, x+Sy=S(z+vy)...
39 induction A(0) A Vn(A(n) — A(n + 1)) = YnA(n), for A € X9
A conversion (Az.t)s = t[z/s]
Bdd. p operator u(t,p,t') = “the least k<t' s.t. p(k) = 0 if exists, or t""
QF-ACY VzIyA(z,y) — JaVrA(z, a(z)), for A(z,y) € 1Y

ELg can be defined by EL + X9-IND
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RCA, and EL,
RCA,

o Classical logic

@ Set based language

@ Allowing primitive recursion

ELo
@ Intuitionistic logic
@ Function based language
It yields AV —A for £ formulae

o Allowing primitive recursion

Conservation results ([7])

For any TIJ sentence A in La(exp),
o RCAY F A yields ELY F A
o RCAp - A yields ELyg - A
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Characterizing WKL

Theorem (Essentially by [1])

The following are equivalent over ELj

Q@ WKL
@ IY-ACY + X{-DML
my-ACY:
Va(A(z) V B(z)) — JavVz((a(z) = 0 = A(x)) A (a(z) # 0 — B(x)))
for A, B € 11}

$0-DML: —(AA B) — (A V —B) for A, B € 3

v
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De Morgan's law

e (AVB) <+ (mAAN-B)
v 7(AVB)—»-AA-B

v "AAN-B = —=(AV B)

e "(AAB) <+ (mAV-B)
~(AAB) - -AV-B

v/ "AV =B — =(AAB)

11/21



De Morgan's law

° —|(A\/B) s (ﬂA/\—!B)

v ~(AVB)— -AA-B

\/ —|A/\—|B—>—|(AVB)

e "(AAB) <+ (mAV-B)
—(AA B) = = AV =B < does not hold in EL;
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De Morgan's law

e «(AVB) <+ (‘114./\ -B)

v ~(AVB)— -AA-B

\/ —|A/\—|B—>—|(AVB)

e "(AAB) <+ (mAV-B)
—(AA B) = = AV =B < does not hold in EL;

v/ "AV-B — =(AAB)

Some generalization
o Va(—(Fi < 2)(A®)) « (Vi < x)(—A(1)))
V Ve (=(Fi < 2)A®G) — (Vi < 2)-A®%))
V Va((Vi < 2)-A) = —(Fi < 2)A(3))

o Va(~(Vi < 2)A(1) > (T < z)-A(7))
Va(=(Vi < 2)AG) = (Fi < x)- EZB

A
Vv Ve ((3i < 2)-A®G) - (Vi< x)A
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Schemata we consider

For a class I' (X9 or II9) of formulae, we consider the following schemata:
o I"'DML: =(AAB) — -AV B, for AABeT
o I"GDML: Vz(~(Vi < 2)A(i) — (Fi < 2)—A(7)) for A(i) e T
e “WGDML: Vz(—~(Vi < z)A(i) — =~ (3i < x)-A(i)) for A(i) e T
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Schemata we consider
For a class I' (X9 or II9) of formulae, we consider the following schemata:
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Easy observation
Over ELy, the following holds:
@ ['-GDML yields I'-DML
@ I'-GDML yields I'-WGDML

Variation of WKL
o WKL: Every infinite binary tree has a path.

o WKL!!: Every infinite binary tree T' which has at most one paths,
i.e., if there are two paths then they are identical, has a path.

o dn-WKL: If T is an infinite binary tree, then =—(T" has a path)

Observation
WKL = WKL!! = dn-WKL ([6])
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Something | know so far
Let A(T") be the smallest class containing I' and closed under

AV, = Ve <t,de <t

In the presence of an appropriate induction
o ELj + A(Z))-IND + £9-DML < -GDML
o ELj + A(IIY)-IND F II?-DML <« II9-GDML
o ELj + I%-IND  X9-WGDML.
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Something | know so far
Let A(I") be the smallest class containing I' and closed under
AV, = Ve <t,de <t
In the presence of an appropriate induction
o EL} + A(Z0)-IND F £0-DML < X9-GDML
o EL} + A(TI9)-IND + TI9-DML < T19-GDML
o ELj + I%-IND  X9-WGDML.

In the presence of WKL variants or some choice principles
e EL§ + WKL F 2¢-GDML
e EL{ + WKL! F II9-GDML
o EL{ + dn-WKL F 29-WGDML
Y9 and IIY
e ELj + X9-DML - I19-DML ([4])
o EL{ + X{-GDML F II9-GDML (Kawai)
e EL{ + X0, ,-GDML + X-DNE + X0-IND  I19, ,-GDML 1321




Facts
e ELg i/ I9-IND ([2]), EL§ + II9-IND i/ X9-IND ([9]).
e ELj + I9-IND proves =—=%9-IND ([9]), i.e., for each A(z) € X2,
—-—A(0) AVz(—=—A(x) = —A(z + 1)) = Ve—-—A(z),
e EL; proves, for each A(i, j) € XY,
Vo ((¥i)3j A, 5) > Fy(Vi < 2)(¥5 < y)A(, )

e EL{ + I9-IND proves, for A(i, j) € X9,

Va((Vi < x)-—3jA(1,7) <> -—In(Vi < z)(Vj < n)A(, 7))
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Facts
e ELg i TI9-IND ([2]), EL} + II9-IND t# 329-IND ([9]).
e ELj + I9-IND proves =—=%9-IND ([9]), i.e., for each A(z) € X2,
—-—A(0) AVz(—=—A(x) = —A(z + 1)) = Ve—-—A(z),
e EL; proves, for each A(i, j) € XY,
Ve((Vi)3FA(, 5) + y(vi < 2)(¥] < y)AG, )

e EL{ + I9-IND proves, for A(i, j) € X9,

Va((Vi < x)-—3jA(1,7) <> -—In(Vi < z)(Vj < n)A(, 7))

Theorem
EL{ + H9-IND proves ¥9-WGDML.

(Proof) —(Vi < x)3jB(i,5) — ——(Fi < x)=3FjB(1, j)
— —(Ji<x)-3FBG,j) — (Vi< x)IjB(i,7)
s (¥i < 2)~-3jBi,§) = (¥ < 2)3jB(i, )
— (Vi <x)-—35B(i,j) - —~JyVi < x)(Jj <

= v)B(i.j)
1 I19-IND yields this
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Induction, DML and GDML

Theorem
EL§ + A(X0)-IND + $9-DML F £9-GDML J
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Induction, DML and GDML

Theorem

EL; + A(Z)-IND + X0-DML + X9-GDML

(Idea for the proof)
Assume (Vi < 2)3jA(i, j) for A(i,j) € II9_,.
o (Vi < 2)3jA(i, j) implies ~(FjA(0, 7)) AVi(0 < i < & — JjA(i, §)))
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Induction, DML and GDML
Theorem
EL; + A(Z)-IND + X0-DML + X9-GDML J

(Idea for the proof)

Assume (Vi < 2)3jA(i, j) for A(i,j) € II9_,.

—(Vi < x)3jA(4, 5) implies ~(37A(0,7) AVi(0 < i < x — FjA(,])))
@ Underlined part is equivalent to some 22 formula.

o Hence, £9-DML, we have =35 A(0, j) or =Vi(0 < i < z — JjA(4, j))
@ If the former is the case, repeat this process.

e At some ¢ < x, we must have =35 A(i, 7).

Hou to repeat the process? A(XY)-IND!
Bounded comprehension: Using induction, take
u = (ug, ..., uz—1) € {0,1,2}* s.t.

o up =0— —~JyA(k,y),

o up=1— Vi(k <i<z— JyA(i,y)), and

oup,=2— (Ji<k)u; =0
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WKL and E?—DML (LLPO)
Fact ([1]) J

EL; + WKL + X9-DML

(Idea for the proof)
Assume —(JzA(x) A JxB(z)), where A(z), B(x) € Af.
Consider the following tree T

T={ue{0,1}*: (up=0— =A(|ul])) A (up =1 — =B(Jul))}

Since T" must have a branch of any length, T" has a path a.
a(0) = 0 implies =3z A(x) and a(0) = 1 implies =3z B(z). 1621



WKL and GDML

Theorem
ELy + WKL + X)-GDML J

(Idea for the proof)
Assume —(Vi < 2)3jA(i, j) for A(i,5) € AJ. Consider the following T

T = {1in i< x,mA®Lf)}

The case of x = 3

Since T" must have a branch of any length, T" has a path a.
Find the least i < z s.t. (i) = 1. Then =35 A(3, j). 17/21



WKL and GDML

Theorem
ELy + WKL + X)-GDML J

(Idea for the proof)
o —(Vi < x)3jA(4, ) implies =(37A(0,5) AVi(0 < i <z — FjA(,7)))
e Underlined part is equivalent to some 3 formula.
Hence, X9-DML, we have —3jA(0, j) or =Vi(0 < i < z — 3jA(3, 7))
If the former is the case, repeat this process.
At some i < x, we must have =3jA(i, 7).

How to repeat the process? Axiom choice!
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WKL and GDML

Theorem
ELy + WKL + X)-GDML J

(Idea for the proof)
o —(Vi < x)3jA(4, ) implies =(37A(0,5) AVi(0 < i <z — FjA(,7)))
e Underlined part is equivalent to some 3 formula.
Hence, X9-DML, we have —3jA(0, j) or =Vi(0 < i < z — 3jA(3, 7))
If the former is the case, repeat this process.
At some i < x, we must have =3jA(i, 7).

How to repeat the process? Axiom choice!
WKL implies the following choice principle:
° H?—ACV:
Va(A(x)V B(z)) = JaVz((a(z) =0 — A(z)) A (a(z) # 0 — B(x)))
for A, B € II{
By this choice principle, we can take the right direction at once.
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Something around

Kénig's lemma (KL)

Every finitely branching infinite tree T, i.e.,
Yu € T3iVj(ux (j) € T — j < i), has a path.

(Weak) Fan Theorem ((W)FT)

Every finitely branching (binary) tree T such that Yadn(an ¢ T)) is
bounded, i.e., ImYu € T(Ju| < m).

Some results around KL and FT

ELj + WKL - WFT (Essentially by Ishihara [5])

EL{ + FT + X9-IND

EL§ + KL + X-LEM - X9-IND ([7])

EL: + S9-IND + I19-AC I/ WKL, KL, IT}-IND (cf. [7] and [8])
EL: + S0-IND + I1%-AC + X9-LEM + WKL, KL, II}-IND ([7]?)
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Some observations

@ Constructive reverse mathematics aims to characterize mathematical
principles with choice principles (existence of functions), logical
principles and sometime induction principles.

@ Choice, logical, and induction principles are independent at a glance.
> Realizability model: Full of choice principle, but weak induction, no
logical principle
» Total recursive function model: Full induction, but weak choice, no
logical principle
» Classical non-standard model: Classical logic, but weak choice, weak
induction
@ De Morgan's law (DML) is considered as a logical principle.
@ But DML is generalized by induction or choice principle.

@ How choice, logical and induction principles affect each other?
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