
Recent results in constructive reverse mathematics

Takako Nemoto

Tohoku University

CCC 2023, Kyoto

1 / 21

Table of contents

1 What is reverse mathematics?

2 Constructive reverse mathematics

3 De Morgan’s law and its variants

4 Induction principle and generalized de Morgan’s law

5 Choice principles and generalized de Morgan’s law

6 Observation

2 / 21

What is reverse mathematics?

Something often in usual mathematics

From the assumption A, the conclusion B is derived.
(Weaken A as much as possible)

Sometimes, the conclusion B also derive the assumption A
（A and B are equivalent）

If we take a set comprehension axiom as A, then we can classify usual
theorems in mathematics by set comprehension axioms.

Friedman-Simpson’s reverse math

Reverse mathematics with classical logic, using systems of second
order arithmetic

“The reverse mathematics” (?)

3 / 21

Language of 2nd order arithmetic and base systems

Language L2(exp)

Constants 0, 1

Binary functions +, ·, exp
Binary relations <, ∈

1st order variables x, y, z,...

2nd order variables X, Y , Z,...

1st order equality =

The systems RCA∗
0 and RCA0

Basic arithmetic

Successor n+ 1 ̸= 0, n+ 1 = m+ 1→ n = m,
Addition n+ 0 = n, n+ (m+ 1) = (n+m) + 1,

Multiplication n · 0 = 0, n · (m+ 1) = n ·m+ n,
Order ¬m < 0, m < n+ 1↔ m ≤ n,

Exponentiation exp(n, 0) = 1, exp(n,m+ 1) = exp(n,m) · n.
Σ0
0-IND A(0)∧∀n(A(n)→A(n+ 1))→∀nA(n), for A∈Σ0

0.

∆0
1-CA ∀n(A(n)↔ B(n))→ ∃X∀n(A(n)↔ n ∈ X),

for A ∈ Σ0
1 and B ∈ Π0

1.

The famous base system RCA0 can be defined by RCA∗
0 +Σ0

1-IND. 4 / 21

Weak König’s lemma

A binary tree T is a subset of {0, 1}∗ closed under initial segments.

A binary tree T is infinite if ∀n∃s ∈ T (|s| = n), where |s| is the
length of a finite tree s.

A path of a binary tree T is a function α s.t. ∀n(αn ∈ T),
where αn is a finite sequence ⟨α(0), . . . , α(n− 1)⟩.
Weak König’s Lemma (WKL): “Every infinite binary tree has a path”

...
...

5 / 21

Some results from Friedman-Simpson reverse math

TFAE over RCA0 ([8])

Weak König’s lemma: Every infinite binary tree has a path.

Heine-Borel’s covering theorem

Every continuous function on [0, 1] is uniformly continuous.

Every continuous function on [0, 1] has infimum.

Every continuous function on [0, 1] has a point attaining the infimum.

Every continuous function on [0, 1] is Riemann integrable.

Gödel’s completeness theorem

Every countable ring contains a prime ideal.

Brouwer’s fixed point theorem

Peano’s existence theorem for solution of ODE.

Separable Hahn-Banach theorem

Π0
1 axiom of choice

WKL0 = RCA0+Weak König’s lemma
6 / 21

Intuitionistic logic and constructive reverse math

Usual mathematics

Based on classical logic

Constructive mathematics

Based on intuitionistic logic

Constructive reverse mathematics

A mathematical theorem are characterized with a combination of

choice principle (asserting the existence of a function)

logical principles

which are necessary and sufficient to prove it.

7 / 21

Base theory EL∗0
Language LEL

Constant 0

Function symbols for all
elementary functions S, f ,.....

Application symbol AP

Abstraction operator λ

bdd. µ operator µ 　
1st order =

1st order variables x, y, z,...

2nd order variables α, β, γ...

System EL∗0
Successor ¬S0 = 0

Defining equations for elementary functions x+0 = x, x+Sy=S(x+y)...

Σ0
0 induction A(0) ∧ ∀n(A(n)→ A(n+ 1)) = ∀nA(n), for A ∈ Σ0

0

λ conversion (λx.t)s = t[x/s]

Bdd. µ operator µ(t, φ, t′) = “the least k≤t′ s.t. φ(k) = 0 if exists, or t′”

QF-AC00 ∀x∃yA(x, y)→ ∃α∀xA(x, α(x)), for A(x, y) ∈ Π0
0

EL0 can be defined by EL∗
0 +Σ0

1-IND 8 / 21

RCA0 and EL0
RCA0

Classical logic

Set based language

Allowing primitive recursion

EL0
Intuitionistic logic

Function based language
▶ It yields A ∨ ¬A for Σ0

0 formulae

Allowing primitive recursion

Conservation results ([7])

For any Π0
2 sentence A in L2(exp),

RCA∗
0 ⊢ A yields EL∗0 ⊢ A

RCA0 ⊢ A yields EL0 ⊢ A

9 / 21

Characterizing WKL

Theorem (Essentially by [1])

The following are equivalent over EL∗0
1 WKL
2 Π0

1-AC
∨ +Σ0

1-DML
▶ Π0

1-AC
∨:

∀x(A(x) ∨B(x))→ ∃α∀x((α(x) = 0→ A(x)) ∧ (α(x) ̸= 0→ B(x)))
for A,B ∈ Π0

1
▶ Σ0

1-DML: ¬(A ∧B)→ (¬A ∨ ¬B) for A,B ∈ Σ0
1

10 / 21

De Morgan’s law

¬(A ∨B)↔ (¬A ∧ ¬B)
√
¬(A ∨B)→ ¬A ∧ ¬B√
¬A ∧ ¬B → ¬(A ∨B)

¬(A ∧B)↔ (¬A ∨ ¬B)
▶ ¬(A ∧B)→ ¬A ∨ ¬B

← does not hold in EL∗0

√
¬A ∨ ¬B → ¬(A ∧B)

Some generalization

∀x(¬(∃i < x)(A(i))↔ (∀i < x)(¬A(i)))
√
∀x(¬(∃i < x)A(i)→ (∀i < x)¬A(i))√
∀x((∀i < x)¬A(i)→ ¬(∃i < x)A(i))

∀x(¬(∀i < x)A(i)↔ (∃i < x)¬A(i))
▶ ∀x(¬(∀i < x)A(i)→ (∃i < x)¬A(i))

← does not hold in EL∗0

√
∀x((∃i < x)¬A(i)→ ¬(∀i < x)A(i))

11 / 21

De Morgan’s law

¬(A ∨B)↔ (¬A ∧ ¬B)
√
¬(A ∨B)→ ¬A ∧ ¬B√
¬A ∧ ¬B → ¬(A ∨B)

¬(A ∧B)↔ (¬A ∨ ¬B)
▶ ¬(A ∧B)→ ¬A ∨ ¬B ← does not hold in EL∗0√
¬A ∨ ¬B → ¬(A ∧B)

Some generalization

∀x(¬(∃i < x)(A(i))↔ (∀i < x)(¬A(i)))
√
∀x(¬(∃i < x)A(i)→ (∀i < x)¬A(i))√
∀x((∀i < x)¬A(i)→ ¬(∃i < x)A(i))

∀x(¬(∀i < x)A(i)↔ (∃i < x)¬A(i))
▶ ∀x(¬(∀i < x)A(i)→ (∃i < x)¬A(i))

← does not hold in EL∗0

√
∀x((∃i < x)¬A(i)→ ¬(∀i < x)A(i))

11 / 21

De Morgan’s law

¬(A ∨B)↔ (¬A ∧ ¬B)
√
¬(A ∨B)→ ¬A ∧ ¬B√
¬A ∧ ¬B → ¬(A ∨B)

¬(A ∧B)↔ (¬A ∨ ¬B)
▶ ¬(A ∧B)→ ¬A ∨ ¬B ← does not hold in EL∗0√
¬A ∨ ¬B → ¬(A ∧B)

Some generalization

∀x(¬(∃i < x)(A(i))↔ (∀i < x)(¬A(i)))
√
∀x(¬(∃i < x)A(i)→ (∀i < x)¬A(i))√
∀x((∀i < x)¬A(i)→ ¬(∃i < x)A(i))

∀x(¬(∀i < x)A(i)↔ (∃i < x)¬A(i))
▶ ∀x(¬(∀i < x)A(i)→ (∃i < x)¬A(i))

← does not hold in EL∗0

√
∀x((∃i < x)¬A(i)→ ¬(∀i < x)A(i))

11 / 21

De Morgan’s law

¬(A ∨B)↔ (¬A ∧ ¬B)
√
¬(A ∨B)→ ¬A ∧ ¬B√
¬A ∧ ¬B → ¬(A ∨B)

¬(A ∧B)↔ (¬A ∨ ¬B)
▶ ¬(A ∧B)→ ¬A ∨ ¬B ← does not hold in EL∗0√
¬A ∨ ¬B → ¬(A ∧B)

Some generalization

∀x(¬(∃i < x)(A(i))↔ (∀i < x)(¬A(i)))
√
∀x(¬(∃i < x)A(i)→ (∀i < x)¬A(i))√
∀x((∀i < x)¬A(i)→ ¬(∃i < x)A(i))

∀x(¬(∀i < x)A(i)↔ (∃i < x)¬A(i))
▶ ∀x(¬(∀i < x)A(i)→ (∃i < x)¬A(i)) ← does not hold in EL∗0√
∀x((∃i < x)¬A(i)→ ¬(∀i < x)A(i))

11 / 21

Schemata we consider
For a class Γ (Σ0

k or Π0
k) of formulae, we consider the following schemata:

Γ-DML: ¬(A ∧B)→ ¬A ∨ ¬B, for A,B ∈ Γ
Γ-GDML: ∀x(¬(∀i < x)A(i)→ (∃i < x)¬A(i)) for A(i) ∈ Γ
Γ-WGDML: ∀x(¬(∀i < x)A(i)→ ¬¬(∃i < x)¬A(i)) for A(i) ∈ Γ

Easy observation

Over EL∗0, the following holds:

1 Γ-GDML yields Γ-DML

2 Γ-GDML yields Γ-WGDML

Variation of WKL

WKL: Every infinite binary tree has a path.

WKL!!: Every infinite binary tree T which has at most one paths,
i.e., if there are two paths then they are identical, has a path.

dn-WKL: If T is an infinite binary tree, then ¬¬(T has a path)

Observation

WKL⇒WKL!!⇒ dn-WKL ([6])

12 / 21

Schemata we consider
For a class Γ (Σ0

k or Π0
k) of formulae, we consider the following schemata:

Γ-DML: ¬(A ∧B)→ ¬A ∨ ¬B, for A,B ∈ Γ
Γ-GDML: ∀x(¬(∀i < x)A(i)→ (∃i < x)¬A(i)) for A(i) ∈ Γ
Γ-WGDML: ∀x(¬(∀i < x)A(i)→ ¬¬(∃i < x)¬A(i)) for A(i) ∈ Γ

Easy observation

Over EL∗0, the following holds:

1 Γ-GDML yields Γ-DML

2 Γ-GDML yields Γ-WGDML

Variation of WKL

WKL: Every infinite binary tree has a path.

WKL!!: Every infinite binary tree T which has at most one paths,
i.e., if there are two paths then they are identical, has a path.

dn-WKL: If T is an infinite binary tree, then ¬¬(T has a path)

Observation

WKL⇒WKL!!⇒ dn-WKL ([6])

12 / 21

Schemata we consider
For a class Γ (Σ0

k or Π0
k) of formulae, we consider the following schemata:

Γ-DML: ¬(A ∧B)→ ¬A ∨ ¬B, for A,B ∈ Γ
Γ-GDML: ∀x(¬(∀i < x)A(i)→ (∃i < x)¬A(i)) for A(i) ∈ Γ
Γ-WGDML: ∀x(¬(∀i < x)A(i)→ ¬¬(∃i < x)¬A(i)) for A(i) ∈ Γ

Easy observation

Over EL∗0, the following holds:

1 Γ-GDML yields Γ-DML

2 Γ-GDML yields Γ-WGDML

Variation of WKL

WKL: Every infinite binary tree has a path.

WKL!!: Every infinite binary tree T which has at most one paths,
i.e., if there are two paths then they are identical, has a path.

dn-WKL: If T is an infinite binary tree, then ¬¬(T has a path)

Observation

WKL⇒WKL!!⇒ dn-WKL ([6])

12 / 21

Schemata we consider
For a class Γ (Σ0

k or Π0
k) of formulae, we consider the following schemata:

Γ-DML: ¬(A ∧B)→ ¬A ∨ ¬B, for A,B ∈ Γ
Γ-GDML: ∀x(¬(∀i < x)A(i)→ (∃i < x)¬A(i)) for A(i) ∈ Γ
Γ-WGDML: ∀x(¬(∀i < x)A(i)→ ¬¬(∃i < x)¬A(i)) for A(i) ∈ Γ

Easy observation

Over EL∗0, the following holds:

1 Γ-GDML yields Γ-DML

2 Γ-GDML yields Γ-WGDML

Variation of WKL

WKL: Every infinite binary tree has a path.

WKL!!: Every infinite binary tree T which has at most one paths,
i.e., if there are two paths then they are identical, has a path.

dn-WKL: If T is an infinite binary tree, then ¬¬(T has a path)

Observation

WKL⇒WKL!!⇒ dn-WKL ([6])
12 / 21

Something I know so far
Let ∆(Γ) be the smallest class containing Γ and closed under
∧,∨,→,¬,∀x < t, ∃x < t

In the presence of an appropriate induction

EL∗0 +∆(Σ0
k)-IND ⊢ Σ0

k-DML⇔ Σ0
k-GDML

EL∗0 +∆(Π0
k)-IND ⊢ Π0

k-DML⇔ Π0
k-GDML

EL∗0 +Π0
k-IND ⊢ Σ0

k-WGDML.

In the presence of WKL variants or some choice principles

EL∗0 +WKL ⊢ Σ0
1-GDML

EL∗0 +WKL!! ⊢ Π0
1-GDML

EL∗0 + dn-WKL ⊢ Σ0
1-WGDML

Σ0
k and Π0

k

EL∗0 +Σ0
1-DML ⊢ Π0

1-DML ([4])

EL∗0 +Σ0
1-GDML ⊢ Π0

1-GDML (Kawai)

EL∗0 +Σ0
n+1-GDML+ Σ0

n-DNE+ Σ0
n-IND ⊢ Π0

n+1-GDML

13 / 21

Something I know so far
Let ∆(Γ) be the smallest class containing Γ and closed under
∧,∨,→,¬,∀x < t, ∃x < t

In the presence of an appropriate induction

EL∗0 +∆(Σ0
k)-IND ⊢ Σ0

k-DML⇔ Σ0
k-GDML

EL∗0 +∆(Π0
k)-IND ⊢ Π0

k-DML⇔ Π0
k-GDML

EL∗0 +Π0
k-IND ⊢ Σ0

k-WGDML.

In the presence of WKL variants or some choice principles

EL∗0 +WKL ⊢ Σ0
1-GDML

EL∗0 +WKL!! ⊢ Π0
1-GDML

EL∗0 + dn-WKL ⊢ Σ0
1-WGDML

Σ0
k and Π0

k

EL∗0 +Σ0
1-DML ⊢ Π0

1-DML ([4])

EL∗0 +Σ0
1-GDML ⊢ Π0

1-GDML (Kawai)

EL∗0 +Σ0
n+1-GDML+ Σ0

n-DNE+ Σ0
n-IND ⊢ Π0

n+1-GDML

13 / 21

Something I know so far
Let ∆(Γ) be the smallest class containing Γ and closed under
∧,∨,→,¬,∀x < t, ∃x < t

In the presence of an appropriate induction

EL∗0 +∆(Σ0
k)-IND ⊢ Σ0

k-DML⇔ Σ0
k-GDML

EL∗0 +∆(Π0
k)-IND ⊢ Π0

k-DML⇔ Π0
k-GDML

EL∗0 +Π0
k-IND ⊢ Σ0

k-WGDML.

In the presence of WKL variants or some choice principles

EL∗0 +WKL ⊢ Σ0
1-GDML

EL∗0 +WKL!! ⊢ Π0
1-GDML

EL∗0 + dn-WKL ⊢ Σ0
1-WGDML

Σ0
k and Π0

k

EL∗0 +Σ0
1-DML ⊢ Π0

1-DML ([4])

EL∗0 +Σ0
1-GDML ⊢ Π0

1-GDML (Kawai)

EL∗0 +Σ0
n+1-GDML+ Σ0

n-DNE+ Σ0
n-IND ⊢ Π0

n+1-GDML 13 / 21

Facts

EL0 ̸⊢ Π0
1-IND ([2]), EL∗0 +Π0

1-IND ̸⊢ Σ0
1-IND ([9]).

EL∗0 +Π0
1-IND proves ¬¬Σ0

1-IND ([9]), i.e., for each A(x) ∈ Σ0
1,

¬¬A(0) ∧ ∀x(¬¬A(x)→ ¬¬A(x+ 1))→ ∀x¬¬A(x),

EL∗0 proves, for each A(i, j) ∈ Σ0
1,

∀x((∀i)∃jA(i, j)↔ ∃y(∀i < x)(∀j < y)A(i, j))

EL∗0 +Π0
1-IND proves, for A(i, j) ∈ Σ0

1,

∀x((∀i < x)¬¬∃jA(i, j)↔ ¬¬∃n(∀i < x)(∀j < n)A(i, j))

Theorem

EL∗0 +Π0
1-IND proves Σ0

1-WGDML.

(Proof) ¬(∀i < x)∃jB(i, j)→ ¬¬(∃i < x)¬∃jB(i, j)

⇐⇒ ¬(∃i < x)¬∃jB(i, j)→ ¬¬(∀i < x)∃jB(i, j)

⇐⇒ (∀i < x)¬¬∃jB(i, j)→ ¬¬(∀i < x)∃jB(i, j)

⇐⇒
Π0

1-IND
(∀i < x)¬¬∃jB(i, j)→ ¬¬∃y(∀i < x)(∃j < y)B(i, j)

Π0
1-IND yields this

14 / 21

Facts

EL0 ̸⊢ Π0
1-IND ([2]), EL∗0 +Π0

1-IND ̸⊢ Σ0
1-IND ([9]).

EL∗0 +Π0
1-IND proves ¬¬Σ0

1-IND ([9]), i.e., for each A(x) ∈ Σ0
1,

¬¬A(0) ∧ ∀x(¬¬A(x)→ ¬¬A(x+ 1))→ ∀x¬¬A(x),

EL∗0 proves, for each A(i, j) ∈ Σ0
1,

∀x((∀i)∃jA(i, j)↔ ∃y(∀i < x)(∀j < y)A(i, j))

EL∗0 +Π0
1-IND proves, for A(i, j) ∈ Σ0

1,

∀x((∀i < x)¬¬∃jA(i, j)↔ ¬¬∃n(∀i < x)(∀j < n)A(i, j))

Theorem

EL∗0 +Π0
1-IND proves Σ0

1-WGDML.

(Proof) ¬(∀i < x)∃jB(i, j)→ ¬¬(∃i < x)¬∃jB(i, j)

⇐⇒ ¬(∃i < x)¬∃jB(i, j)→ ¬¬(∀i < x)∃jB(i, j)

⇐⇒ (∀i < x)¬¬∃jB(i, j)→ ¬¬(∀i < x)∃jB(i, j)

⇐⇒
Π0

1-IND
(∀i < x)¬¬∃jB(i, j)→ ¬¬∃y(∀i < x)(∃j < y)B(i, j)

Π0
1-IND yields this

14 / 21

Induction, DML and GDML

Theorem

EL∗0 +∆(Σ0
k)-IND + Σ0

k-DML ⊢ Σ0
k-GDML

(Idea for the proof)
Assume ¬(∀i < x)∃jA(i, j) for A(i, j) ∈ Π0

k−1.

¬(∀i < x)∃jA(i, j) implies ¬(∃jA(0, j) ∧ ∀i(0 < i < x→ ∃jA(i, j)))

Underlined part is equivalent to some Σ0
k formula.

Hence, Σ0
k-DML, we have ¬∃jA(0, j) or ¬∀i(0 < i < x→ ∃jA(i, j))

If the former is the case, repeat this process.
At some i < x, we must have ¬∃jA(i, j).

Hou to repeat the process? ∆(Σ0
k)-IND!

Bounded comprehension: Using induction, take
u = ⟨u0, ..., ux−1⟩ ∈ {0, 1, 2}∗ s.t.

uk = 0→ ¬∃yA(k, y),

uk = 1→ ¬∀i(k < i < x→ ∃yA(i, y)), and

uk = 2→ (∃i < k)ui = 0

15 / 21

Induction, DML and GDML

Theorem

EL∗0 +∆(Σ0
k)-IND + Σ0

k-DML ⊢ Σ0
k-GDML

(Idea for the proof)
Assume ¬(∀i < x)∃jA(i, j) for A(i, j) ∈ Π0

k−1.

¬(∀i < x)∃jA(i, j) implies ¬(∃jA(0, j) ∧ ∀i(0 < i < x→ ∃jA(i, j)))

Underlined part is equivalent to some Σ0
k formula.

Hence, Σ0
k-DML, we have ¬∃jA(0, j) or ¬∀i(0 < i < x→ ∃jA(i, j))

If the former is the case, repeat this process.
At some i < x, we must have ¬∃jA(i, j).

Hou to repeat the process? ∆(Σ0
k)-IND!

Bounded comprehension: Using induction, take
u = ⟨u0, ..., ux−1⟩ ∈ {0, 1, 2}∗ s.t.

uk = 0→ ¬∃yA(k, y),

uk = 1→ ¬∀i(k < i < x→ ∃yA(i, y)), and

uk = 2→ (∃i < k)ui = 0

15 / 21

Induction, DML and GDML

Theorem

EL∗0 +∆(Σ0
k)-IND + Σ0

k-DML ⊢ Σ0
k-GDML

(Idea for the proof)
Assume ¬(∀i < x)∃jA(i, j) for A(i, j) ∈ Π0

k−1.

¬(∀i < x)∃jA(i, j) implies ¬(∃jA(0, j) ∧ ∀i(0 < i < x→ ∃jA(i, j)))

Underlined part is equivalent to some Σ0
k formula.

Hence, Σ0
k-DML, we have ¬∃jA(0, j) or ¬∀i(0 < i < x→ ∃jA(i, j))

If the former is the case, repeat this process.
At some i < x, we must have ¬∃jA(i, j).

Hou to repeat the process? ∆(Σ0
k)-IND!

Bounded comprehension: Using induction, take
u = ⟨u0, ..., ux−1⟩ ∈ {0, 1, 2}∗ s.t.

uk = 0→ ¬∃yA(k, y),

uk = 1→ ¬∀i(k < i < x→ ∃yA(i, y)), and

uk = 2→ (∃i < k)ui = 0

15 / 21

Induction, DML and GDML

Theorem

EL∗0 +∆(Σ0
k)-IND + Σ0

k-DML ⊢ Σ0
k-GDML

(Idea for the proof)
Assume ¬(∀i < x)∃jA(i, j) for A(i, j) ∈ Π0

k−1.

¬(∀i < x)∃jA(i, j) implies ¬(∃jA(0, j) ∧ ∀i(0 < i < x→ ∃jA(i, j)))

Underlined part is equivalent to some Σ0
k formula.

Hence, Σ0
k-DML, we have ¬∃jA(0, j) or ¬∀i(0 < i < x→ ∃jA(i, j))

If the former is the case, repeat this process.
At some i < x, we must have ¬∃jA(i, j).

Hou to repeat the process? ∆(Σ0
k)-IND!

Bounded comprehension: Using induction, take
u = ⟨u0, ..., ux−1⟩ ∈ {0, 1, 2}∗ s.t.

uk = 0→ ¬∃yA(k, y),

uk = 1→ ¬∀i(k < i < x→ ∃yA(i, y)), and

uk = 2→ (∃i < k)ui = 0

15 / 21

Induction, DML and GDML

Theorem

EL∗0 +∆(Σ0
k)-IND + Σ0

k-DML ⊢ Σ0
k-GDML

(Idea for the proof)
Assume ¬(∀i < x)∃jA(i, j) for A(i, j) ∈ Π0

k−1.

¬(∀i < x)∃jA(i, j) implies ¬(∃jA(0, j) ∧ ∀i(0 < i < x→ ∃jA(i, j)))

Underlined part is equivalent to some Σ0
k formula.

Hence, Σ0
k-DML, we have ¬∃jA(0, j) or ¬∀i(0 < i < x→ ∃jA(i, j))

If the former is the case, repeat this process.

At some i < x, we must have ¬∃jA(i, j).

Hou to repeat the process? ∆(Σ0
k)-IND!

Bounded comprehension: Using induction, take
u = ⟨u0, ..., ux−1⟩ ∈ {0, 1, 2}∗ s.t.

uk = 0→ ¬∃yA(k, y),

uk = 1→ ¬∀i(k < i < x→ ∃yA(i, y)), and

uk = 2→ (∃i < k)ui = 0

15 / 21

Induction, DML and GDML

Theorem

EL∗0 +∆(Σ0
k)-IND + Σ0

k-DML ⊢ Σ0
k-GDML

(Idea for the proof)
Assume ¬(∀i < x)∃jA(i, j) for A(i, j) ∈ Π0

k−1.

¬(∀i < x)∃jA(i, j) implies ¬(∃jA(0, j) ∧ ∀i(0 < i < x→ ∃jA(i, j)))

Underlined part is equivalent to some Σ0
k formula.

Hence, Σ0
k-DML, we have ¬∃jA(0, j) or ¬∀i(0 < i < x→ ∃jA(i, j))

If the former is the case, repeat this process.
At some i < x, we must have ¬∃jA(i, j).

Hou to repeat the process? ∆(Σ0
k)-IND!

Bounded comprehension: Using induction, take
u = ⟨u0, ..., ux−1⟩ ∈ {0, 1, 2}∗ s.t.

uk = 0→ ¬∃yA(k, y),

uk = 1→ ¬∀i(k < i < x→ ∃yA(i, y)), and

uk = 2→ (∃i < k)ui = 0

15 / 21

Induction, DML and GDML

Theorem

EL∗0 +∆(Σ0
k)-IND + Σ0

k-DML ⊢ Σ0
k-GDML

(Idea for the proof)
Assume ¬(∀i < x)∃jA(i, j) for A(i, j) ∈ Π0

k−1.

¬(∀i < x)∃jA(i, j) implies ¬(∃jA(0, j) ∧ ∀i(0 < i < x→ ∃jA(i, j)))

Underlined part is equivalent to some Σ0
k formula.

Hence, Σ0
k-DML, we have ¬∃jA(0, j) or ¬∀i(0 < i < x→ ∃jA(i, j))

If the former is the case, repeat this process.
At some i < x, we must have ¬∃jA(i, j).

Hou to repeat the process? ∆(Σ0
k)-IND!

Bounded comprehension: Using induction, take
u = ⟨u0, ..., ux−1⟩ ∈ {0, 1, 2}∗ s.t.

uk = 0→ ¬∃yA(k, y),

uk = 1→ ¬∀i(k < i < x→ ∃yA(i, y)), and

uk = 2→ (∃i < k)ui = 0 15 / 21

WKL and Σ0
1-DML (LLPO)

Fact ([1])

EL∗0 +WKL ⊢ Σ0
1-DML

(Idea for the proof)
Assume ¬(∃xA(x) ∧ ∃xB(x)), where A(x), B(x) ∈ ∆0

0.
Consider the following tree T :

T = {u ∈ {0, 1}∗ : (u0 = 0→ ¬A(|u|)) ∧ (u0 = 1→ ¬B(|u|))}

Since T must have a branch of any length, T has a path α.
α(0) = 0 implies ¬∃xA(x) and α(0) = 1 implies ¬∃xB(x). 16 / 21

WKL and GDML

Theorem

EL∗0 +WKL ⊢ Σ0
1-GDML

(Idea for the proof)
Assume ¬(∀i < x)∃jA(i, j) for A(i, j) ∈ ∆0

0. Consider the following T :

T = {1i0j : i < x,¬A(i, j)}

The case of x = 3

Since T must have a branch of any length, T has a path α.
Find the least i < x s.t. α(i) = 1. Then ¬∃jA(i, j). 17 / 21

WKL and GDML

Theorem

EL∗0 +WKL ⊢ Σ0
1-GDML

(Idea for the proof)

¬(∀i < x)∃jA(i, j) implies ¬(∃jA(0, j) ∧ ∀i(0 < i < x→ ∃jA(i, j)))

Underlined part is equivalent to some Σ0
1 formula.

Hence, Σ0
1-DML, we have ¬∃jA(0, j) or ¬∀i(0 < i < x→ ∃jA(i, j))

If the former is the case, repeat this process.
At some i < x, we must have ¬∃jA(i, j).

How to repeat the process? Axiom choice!

WKL implies the following choice principle:

Π0
1-AC

∨:
∀x(A(x)∨B(x))→ ∃α∀x((α(x) = 0→ A(x))∧ (α(x) ̸= 0→ B(x)))

for A,B ∈ Π0
1

By this choice principle, we can take the right direction at once.

18 / 21

WKL and GDML

Theorem

EL∗0 +WKL ⊢ Σ0
1-GDML

(Idea for the proof)

¬(∀i < x)∃jA(i, j) implies ¬(∃jA(0, j) ∧ ∀i(0 < i < x→ ∃jA(i, j)))

Underlined part is equivalent to some Σ0
1 formula.

Hence, Σ0
1-DML, we have ¬∃jA(0, j) or ¬∀i(0 < i < x→ ∃jA(i, j))

If the former is the case, repeat this process.
At some i < x, we must have ¬∃jA(i, j).

How to repeat the process? Axiom choice!

WKL implies the following choice principle:

Π0
1-AC

∨:
∀x(A(x)∨B(x))→ ∃α∀x((α(x) = 0→ A(x))∧ (α(x) ̸= 0→ B(x)))

for A,B ∈ Π0
1

By this choice principle, we can take the right direction at once.

18 / 21

Something around

Kőnig’s lemma (KL)

Every finitely branching infinite tree T , i.e.,
∀u ∈ T∃i∀j(u ∗ ⟨j⟩ ∈ T → j ≤ i), has a path.

(Weak) Fan Theorem ((W)FT)

Every finitely branching (binary) tree T such that ∀α∃n(αn /∈ T) is
bounded, i.e., ∃m∀u ∈ T (|u| < m).

Some results around KL and FT

EL∗
0 +WKL ⊢WFT (Essentially by Ishihara [5])

EL∗
0 + FT ⊢ Σ0

1-IND

EL∗
0 +KL + Σ0

1-LEM ⊢ Σ0
1-IND ([7])

EL∗
0 +Σ0

1-IND + Π0
1-AC ̸⊢WKL,KL,Π1

0-IND (cf. [7] and [8])

EL∗
0 +Σ0

1-IND + Π0
1-AC+ Σ0

1-LEM ⊢WKL,KL,Π1
0-IND ([7]?)

19 / 21

Some observations

Constructive reverse mathematics aims to characterize mathematical
principles with choice principles (existence of functions), logical
principles and sometime induction principles.

Choice, logical, and induction principles are independent at a glance.
▶ Realizability model: Full of choice principle, but weak induction, no

logical principle
▶ Total recursive function model: Full induction, but weak choice, no

logical principle
▶ Classical non-standard model: Classical logic, but weak choice, weak

induction

De Morgan’s law (DML) is considered as a logical principle.

But DML is generalized by induction or choice principle.

How choice, logical and induction principles affect each other?

20 / 21

References
1 J. Berger, H. Ishihara and P.Schuster, The weak König’s lemma, Brouwer’s fan

theorem and de Morgan’s law, and dependence choice, Reports on mathematical
logic 47 (2012), 63–86 DOI:10.4467/20842589RM.12.003.0684

2 S. Buss, Intuitionistic validity in T -normal Kripke structures, Ann. Pure Appl.
Logic 59, pp. 159-173 (1993)

3 M. Fujiwara and T. Nemoto On the decomposition of WKL!!, Phil. Trans. R. Soc.
A 381: 20220010. (2023) https://doi.org/10.1098/rsta.2022.0010

4 H. Ishihara, Markov’s principle, Church’s thesis and Lindelöf’s Theorem,
Indagationes Mathematicae 4 (3), pp.321-325 (1993)

5 H. Ishihara, Weak König ’s Lemma Implies Brouwer ’s Fan Theorem: A Direct
Proof, Notre Dame Journal of Formal Logic 47 (2), pp. 249-252 (2006)

6 J. R. Moschovakis, Another Unique Weak König ’s Lemma WKL!!, In: Logic,
Construction, Computation, edited by U. Berger, H. Diener, P. Schuster and M.
Seisenberger, pp. 343-352, De Gruyter
(2012)https://doi.org/10.1515/9783110324921.343

7 T. Nemoto and K. Sato, A marriage of Brouwer’s Intuitionism and Hilbert’s
Finitism I: Arithmetic, The Journal of Symbolic Logic, 87 (2), pp.437-497 (2022)
doi:10.1017/jsl.2018.6

8 S. G. Simpson, Subsystems of second order arithmetic, CUP (2009)

9 K. Wehmeier, Fragments of HA based on Σ1-induction, Arch. Math. Logic 37:
pp.37–49 (1997) 21 / 21

https://doi.org/10.1098/rsta.2022.0010
https://doi.org/10.1515/9783110324921.343

