Recent results in constructive reverse mathematics

Takako Nemoto
Tohoku University
CCC 2023, Kyoto

Table of contents

(1) What is reverse mathematics?
(2) Constructive reverse mathematics
(3) De Morgan's law and its variants
(9) Induction principle and generalized de Morgan's law
(3) Choice principles and generalized de Morgan's law
(Observation

What is reverse mathematics?

Something often in usual mathematics

- From the assumption A, the conclusion B is derived. (Weaken A as much as possible)
- Sometimes, the conclusion B also derive the assumption A
(A and B are equivalent)
- If we take a set comprehension axiom as A, then we can classify usual theorems in mathematics by set comprehension axioms.

Friedman-Simpson's reverse math

- Reverse mathematics with classical logic, using systems of second order arithmetic
- "The reverse mathematics" (?)

Language of 2 nd order arithmetic and base systems

Language $L_{2}(\exp)$

- Constants 0,1
- Binary functions,$+ \cdot$, exp
- Binary relations $<, \in$
- 1st order variables x, y, z, \ldots
- 2 nd order variables X, Y, Z, \ldots
- 1st order equality $=$

The systems RCA_{0}^{*} and RCA_{0}
Basic arithmetic

$$
\begin{aligned}
& \text { Successor } n+1 \neq 0, \quad n+1=m+1 \rightarrow n=m \\
& \text { Addition } n+0=n, \quad n+(m+1)=(n+m)+1, \\
& \text { Multiplication } n \cdot 0=0, \quad n \cdot(m+1)=n \cdot m+n
\end{aligned}
$$

$$
\text { Order } \neg m<0, \quad m<n+1 \leftrightarrow m \leq n,
$$

Exponentiation $\exp (n, 0)=1, \quad \exp (n, m+1)=\exp (n, m) \cdot n$.

$$
\begin{aligned}
& \Sigma_{0}^{0} \text {-IND } A(0) \wedge \forall n(A(n) \rightarrow A(n+1)) \rightarrow \forall n A(n) \text {, for } A \in \Sigma_{0}^{0} . \\
& \Delta_{1}^{0} \text {-CA } \forall n(A(n) \leftrightarrow B(n)) \rightarrow \exists X \forall n(A(n) \leftrightarrow n \in X), \\
& \\
& \text { for } A \in \Sigma_{1}^{0} \text { and } B \in \Pi_{1}^{0} .
\end{aligned}
$$

The famous base system $R C A_{0}$ can be defined by $\mathrm{RCA}_{0}^{*}+\Sigma_{1}^{0}$-IND.

Weak König's lemma

- A binary tree T is a subset of $\{0,1\}^{*}$ closed under initial segments.
- A binary tree T is infinite if $\forall n \exists s \in T(|s|=n)$, where $|s|$ is the length of a finite tree s.
- A path of a binary tree T is a function α s.t. $\forall n(\bar{\alpha} n \in T)$, where $\bar{\alpha} n$ is a finite sequence $\langle\alpha(0), \ldots, \alpha(n-1)\rangle$.
- Weak König's Lemma (WKL): "Every infinite binary tree has a path"

Some results from Friedman-Simpson reverse math

TFAE over RCA ${ }_{0}$ ([8])

- Weak König's lemma: Every infinite binary tree has a path.
- Heine-Borel's covering theorem
- Every continuous function on $[0,1]$ is uniformly continuous.
- Every continuous function on $[0,1]$ has infimum.
- Every continuous function on $[0,1]$ has a point attaining the infimum.
- Every continuous function on $[0,1]$ is Riemann integrable.
- Gödel's completeness theorem
- Every countable ring contains a prime ideal.
- Brouwer's fixed point theorem
- Peano's existence theorem for solution of ODE.
- Separable Hahn-Banach theorem
- Π_{1}^{0} axiom of choice
$\mathrm{WKL}_{0}=\mathrm{RCA}_{0}+$ Weak König's lemma

Intuitionistic logic and constructive reverse math

Usual mathematics
 Based on classical logic

Constructive mathematics
Based on intuitionistic logic

Constructive reverse mathematics

A mathematical theorem are characterized with a combination of

- choice principle (asserting the existence of a function)
- logical principles
which are necessary and sufficient to prove it.

Base theory EL_{0}^{*}

Language $L_{\text {EL }}$

- Constant 0
- Function symbols for all elementary functions $S, f, \ldots .$.
- Application symbol AP
- Abstraction operator λ
- bdd. $\boldsymbol{\mu}$ operator $\boldsymbol{\mu}$
- 1st order $=$
- 1st order variables x, y, z, \ldots
- 2 nd order variables $\alpha, \beta, \gamma \ldots$

System EL ${ }_{0}^{*}$

$$
\text { Successor } \neg S 0=0
$$

Defining equations for elementary functions $x+0=x, x+S y=S(x+y) \ldots$ Σ_{0}^{0} induction $A(0) \wedge \forall n(A(n) \rightarrow A(n+1))=\forall n A(n)$, for $A \in \Sigma_{0}^{0}$
λ conversion $(\lambda x . t) s=t[x / s]$
Bdd. $\boldsymbol{\mu}$ operator $\boldsymbol{\mu}\left(t, \varphi, t^{\prime}\right)=$ "the least $k \leq t^{\prime}$ s.t. $\varphi(k)=0$ if exists, or $t^{\prime \prime}$

$$
\text { QF-AC }{ }^{00} \forall x \exists y A(x, y) \rightarrow \exists \alpha \forall x A(x, \alpha(x)) \text {, for } A(x, y) \in \Pi_{0}^{0}
$$

EL_{0} can be defined by $\mathrm{EL}_{0}^{*}+\Sigma_{1}^{0}$-IND

RCA_{0} and EL_{0}

RCA

- Classical logic
- Set based language
- Allowing primitive recursion

$E L_{0}$

- Intuitionistic logic
- Function based language It yields $A \vee \neg A$ for Σ_{0}^{0} formulae
- Allowing primitive recursion

Conservation results ([7])

For any Π_{2}^{0} sentence A in $L_{2}(\exp)$,

- $\mathrm{RCA}_{0}^{*} \vdash A$ yields $\mathrm{EL}_{0}^{*} \vdash A$
- $\mathrm{RCA}_{0} \vdash A$ yields $\mathrm{EL}_{0} \vdash A$

Characterizing WKL

Theorem (Essentially by [1])
The following are equivalent over $E L_{0}^{*}$
(1) WKL
(2) $\Pi_{1}^{0}-\mathrm{AC}^{\vee}+\Sigma_{1}^{0}$-DML

$$
\begin{aligned}
& \Pi_{1}^{0}-\mathrm{AC}^{\vee}: \\
& \forall x(A(x) \vee B(x)) \rightarrow \exists \alpha \forall x((\alpha(x)=0 \rightarrow A(x)) \wedge(\alpha(x) \neq 0 \rightarrow B(x))) \\
& \Sigma_{1}^{0}-\mathrm{DML}: \neg(A \wedge B) \rightarrow(\neg A \vee \neg B) \text { for } A, B \in \Sigma_{1}^{0} \quad \text { for } A, B \in \Pi_{1}^{0}
\end{aligned}
$$

De Morgan's law

$$
\begin{aligned}
& \text { - } \neg(A \vee B) \leftrightarrow(\neg A \wedge \neg B) \\
& \sqrt{ } \neg(A \vee B) \rightarrow \neg A \wedge \neg B \\
& \checkmark \neg A \wedge \neg B \rightarrow \neg(A \vee B) \\
& \text { - } \neg(A \wedge B) \leftrightarrow(\neg A \vee \neg B) \\
& \neg(A \wedge B) \rightarrow \neg A \vee \neg B \\
& \sqrt{ } \neg A \vee \neg B \rightarrow \neg(A \wedge B)
\end{aligned}
$$

De Morgan's law

$$
\begin{aligned}
& \text { - } \neg(A \vee B) \leftrightarrow(\neg A \wedge \neg B) \\
& \sqrt{ } \neg(A \vee B) \rightarrow \neg A \wedge \neg B \\
& \checkmark \neg A \wedge \neg B \rightarrow \neg(A \vee B) \\
& \text { - } \neg(A \wedge B) \leftrightarrow(\neg A \vee \neg B) \\
& \neg(A \wedge B) \rightarrow \neg A \vee \neg B \leftarrow \text { does not hold in } \mathrm{EL}_{0}^{*} \\
& \sqrt{ } \neg A \vee \neg B \rightarrow \neg(A \wedge B)
\end{aligned}
$$

De Morgan's law

- $\neg(A \vee B) \leftrightarrow(\neg A \wedge \neg B)$

$$
\begin{aligned}
& \sqrt{ } \neg(A \vee B) \rightarrow \neg A \wedge \neg B \\
& \sqrt{ } \neg A \wedge \neg B \rightarrow \neg(A \vee B)
\end{aligned}
$$

- $\neg(A \wedge B) \leftrightarrow(\neg A \vee \neg B)$

$$
\begin{aligned}
& \neg(A \wedge B)
\end{aligned} \rightarrow \neg A \vee \neg B \leftarrow \text { does not hold in } \mathrm{EL}_{0}^{*}
$$

Some generalization

- $\forall x(\neg(\exists i<x)(A(i)) \leftrightarrow(\forall i<x)(\neg A(i)))$

$$
\sqrt{ } \forall x(\neg(\exists i<x) A(i) \rightarrow(\forall i<x) \neg A(i))
$$

$$
\sqrt{ } \forall x((\forall i<x) \neg A(i) \rightarrow \neg(\exists i<x) A(i))
$$

- $\forall x(\neg(\forall i<x) A(i) \leftrightarrow(\exists i<x) \neg A(i))$

$$
\begin{aligned}
\forall x(\neg(\forall i<x) A(i) & \rightarrow(\exists i<x) \neg A(i)) \\
\sqrt{ } \forall x((\exists i<x) \neg A(i) & \rightarrow \neg(\forall i<x) A(i))
\end{aligned}
$$

De Morgan's law

- $\neg(A \vee B) \leftrightarrow(\neg A \wedge \neg B)$

$$
\begin{aligned}
& \sqrt{ } \neg(A \vee B) \rightarrow \neg A \wedge \neg B \\
& \sqrt{ } \neg A \wedge \neg B \rightarrow \neg(A \vee B)
\end{aligned}
$$

- $\neg(A \wedge B) \leftrightarrow(\neg A \vee \neg B)$

$$
\begin{aligned}
\neg(A \wedge B) & \rightarrow \neg A \vee \neg B \leftarrow \text { does not hold in } \mathrm{EL}_{0}^{*} \\
\sqrt{ } \neg A \vee \neg B & \rightarrow \neg(A \wedge B)
\end{aligned}
$$

Some generalization

- $\forall x(\neg(\exists i<x)(A(i)) \leftrightarrow(\forall i<x)(\neg A(i)))$

$$
\sqrt{ } \forall x(\neg(\exists i<x) A(i) \rightarrow(\forall i<x) \neg A(i))
$$

$$
\sqrt{ } \forall x((\forall i<x) \neg A(i) \rightarrow \neg(\exists i<x) A(i))
$$

- $\forall x(\neg(\forall i<x) A(i) \leftrightarrow(\exists i<x) \neg A(i))$

$$
\begin{aligned}
& \forall x(\neg(\forall i<x) A(i) \rightarrow(\exists i<x) \neg A(i)) \leftarrow \text { does not hold in } \mathrm{EL}_{0}^{*} \\
& \forall x((\exists i<x) \neg A(i) \rightarrow \neg(\forall i<x) A(i))
\end{aligned}
$$

Schemata we consider

For a class $\Gamma\left(\Sigma_{k}^{0}\right.$ or $\left.\Pi_{k}^{0}\right)$ of formulae, we consider the following schemata:

- Г-DML: $\neg(A \wedge B) \rightarrow \neg A \vee \neg B$, for $A, B \in \Gamma$
- Γ-GDML: $\forall x(\neg(\forall i<x) A(i) \rightarrow(\exists i<x) \neg A(i))$ for $A(i) \in \Gamma$
- Γ-WGDML: $\forall x(\neg(\forall i<x) A(i) \rightarrow \neg \neg(\exists i<x) \neg A(i))$ for $A(i) \in \Gamma$

Schemata we consider

For a class $\Gamma\left(\Sigma_{k}^{0}\right.$ or $\left.\Pi_{k}^{0}\right)$ of formulae, we consider the following schemata:

- Г-DML: $\neg(A \wedge B) \rightarrow \neg A \vee \neg B$, for $A, B \in \Gamma$
- Γ-GDML: $\forall x(\neg(\forall i<x) A(i) \rightarrow(\exists i<x) \neg A(i))$ for $A(i) \in \Gamma$
- Γ-WGDML: $\forall x(\neg(\forall i<x) A(i) \rightarrow \neg \neg(\exists i<x) \neg A(i))$ for $A(i) \in \Gamma$

Easy observation

Over EL_{0}^{*}, the following holds:
(1) Γ-GDML yields Γ-DML
(2) Γ-GDML yields Γ-WGDML

Schemata we consider

For a class $\Gamma\left(\Sigma_{k}^{0}\right.$ or $\left.\Pi_{k}^{0}\right)$ of formulae, we consider the following schemata:

- Γ-DML: $\neg(A \wedge B) \rightarrow \neg A \vee \neg B$, for $A, B \in \Gamma$
- Γ-GDML: $\forall x(\neg(\forall i<x) A(i) \rightarrow(\exists i<x) \neg A(i))$ for $A(i) \in \Gamma$
- Γ-WGDML: $\forall x(\neg(\forall i<x) A(i) \rightarrow \neg \neg(\exists i<x) \neg A(i))$ for $A(i) \in \Gamma$

Easy observation

Over EL_{0}^{*}, the following holds:
(1) Γ-GDML yields Γ-DML
(2) Γ-GDML yields Γ-WGDML

Variation of WKL

- WKL: Every infinite binary tree has a path.
- WKL!!: Every infinite binary tree T which has at most one paths, i.e., if there are two paths then they are identical, has a path.
- dn-WKL: If T is an infinite binary tree, then $\neg \neg(T$ has a path $)$

Schemata we consider

For a class $\Gamma\left(\Sigma_{k}^{0}\right.$ or $\left.\Pi_{k}^{0}\right)$ of formulae, we consider the following schemata:

- Γ-DML: $\neg(A \wedge B) \rightarrow \neg A \vee \neg B$, for $A, B \in \Gamma$
- Γ-GDML: $\forall x(\neg(\forall i<x) A(i) \rightarrow(\exists i<x) \neg A(i))$ for $A(i) \in \Gamma$
- Γ-WGDML: $\forall x(\neg(\forall i<x) A(i) \rightarrow \neg \neg(\exists i<x) \neg A(i))$ for $A(i) \in \Gamma$

Easy observation

Over EL_{0}^{*}, the following holds:
(1) Γ-GDML yields Γ-DML
(2) Γ-GDML yields Γ-WGDML

Variation of WKL

- WKL: Every infinite binary tree has a path.
- WKL!!: Every infinite binary tree T which has at most one paths, i.e., if there are two paths then they are identical, has a path.
- dn-WKL: If T is an infinite binary tree, then $\neg \neg(T$ has a path $)$

> Observation
> WKL \Rightarrow WKL!! \Rightarrow dn-WKL $([6])$

Something I know so far

Let $\Delta(\Gamma)$ be the smallest class containing Γ and closed under $\wedge, \vee, \rightarrow, \neg, \forall x<t, \exists x<t$

In the presence of an appropriate induction

- $\mathrm{EL}_{0}^{*}+\Delta\left(\Sigma_{k}^{0}\right)$-IND $\vdash \Sigma_{k}^{0}$-DML $\Leftrightarrow \Sigma_{k}^{0}$-GDML
- $\mathrm{EL}_{0}^{*}+\Delta\left(\Pi_{k}^{0}\right)$-IND $\vdash \Pi_{k}^{0}$-DML $\Leftrightarrow \Pi_{k}^{0}$-GDML
- $\mathrm{EL}_{0}^{*}+\Pi_{k}^{0}-\mathrm{IND} \vdash \Sigma_{k}^{0}$-WGDML.

Something I know so far

Let $\Delta(\Gamma)$ be the smallest class containing Γ and closed under $\wedge, \vee, \rightarrow, \neg, \forall x<t, \exists x<t$
In the presence of an appropriate induction

- $\mathrm{EL}_{0}^{*}+\Delta\left(\Sigma_{k}^{0}\right)$-IND $\vdash \Sigma_{k}^{0}$-DML $\Leftrightarrow \Sigma_{k}^{0}$-GDML
- $\mathrm{EL}_{0}^{*}+\Delta\left(\Pi_{k}^{0}\right)$-IND $\vdash \Pi_{k}^{0}$-DML $\Leftrightarrow \Pi_{k}^{0}$-GDML
- $\mathrm{EL}_{0}^{*}+\Pi_{k}^{0}-\mathrm{IND} \vdash \Sigma_{k}^{0}$-WGDML.

In the presence of WKL variants or some choice principles

- $E L_{0}^{*}+\mathrm{WKL} \vdash \Sigma_{1}^{0}$-GDML
- $E L_{0}^{*}+\mathrm{WKL}!!\vdash \Pi_{1}^{0}-\mathrm{GDML}$
- $E L_{0}^{*}+\mathrm{dn}-\mathrm{WKL} \vdash \Sigma_{1}^{0}$-WGDML

Something I know so far

Let $\Delta(\Gamma)$ be the smallest class containing Γ and closed under $\wedge, \vee, \rightarrow, \neg, \forall x<t, \exists x<t$
In the presence of an appropriate induction

- $\mathrm{EL}_{0}^{*}+\Delta\left(\Sigma_{k}^{0}\right)$-IND $\vdash \Sigma_{k}^{0}$-DML $\Leftrightarrow \Sigma_{k}^{0}$-GDML
- $\mathrm{EL}_{0}^{*}+\Delta\left(\Pi_{k}^{0}\right)$-IND $\vdash \Pi_{k}^{0}$-DML $\Leftrightarrow \Pi_{k}^{0}$-GDML
- $\mathrm{EL}_{0}^{*}+\Pi_{k}^{0}-\mathrm{IND} \vdash \Sigma_{k}^{0}$-WGDML.

In the presence of WKL variants or some choice principles

- $E L_{0}^{*}+\mathrm{WKL} \vdash \Sigma_{1}^{0}$-GDML
- $\mathrm{EL}_{0}^{*}+\mathrm{WKL}!!\vdash \Pi_{1}^{0}-\mathrm{GDML}$
- $E L_{0}^{*}+\mathrm{dn}-\mathrm{WKL} \vdash \Sigma_{1}^{0}$-WGDML
Σ_{k}^{0} and Π_{k}^{0}
- $\mathrm{EL}_{0}^{*}+\Sigma_{1}^{0}$-DML $\vdash \Pi_{1}^{0}$-DML ([4])
- $\mathrm{EL}_{0}^{*}+\Sigma_{1}^{0}$-GDML $\vdash \Pi_{1}^{0}$-GDML (Kawai)
- $\mathrm{EL}_{0}^{*}+\Sigma_{n+1}^{0}$-GDML $+\Sigma_{n}^{0}$ - $\mathrm{DNE}+\Sigma_{n}^{0}$-IND $\vdash \Pi_{n+1}^{0}$-GDML

Facts

- $E L_{0} \nvdash \Pi_{1}^{0}-\mathrm{IND}([2]), E L_{0}^{*}+\Pi_{1}^{0}-\mathrm{IND} \nvdash \Sigma_{1}^{0}-\mathrm{IND}([9])$.
- $\mathrm{EL}_{0}^{*}+\Pi_{1}^{0}$-IND proves $\neg \neg \Sigma_{1}^{0}$-IND ([9]), i.e., for each $A(x) \in \Sigma_{1}^{0}$,

$$
\neg \neg A(0) \wedge \forall x(\neg \neg A(x) \rightarrow \neg \neg A(x+1)) \rightarrow \forall x \neg \neg A(x),
$$

- EL_{0}^{*} proves, for each $A(i, j) \in \Sigma_{1}^{0}$,

$$
\forall x((\forall i) \exists j A(i, j) \leftrightarrow \exists y(\forall i<x)(\forall j<y) A(i, j))
$$

- $\mathrm{EL}_{0}^{*}+\Pi_{1}^{0}$-IND proves, for $A(i, j) \in \Sigma_{1}^{0}$,

$$
\forall x((\forall i<x) \neg \neg \exists j A(i, j) \leftrightarrow \neg \neg \exists n(\forall i<x)(\forall j<n) A(i, j))
$$

Facts

- $E L_{0} \nvdash \Pi_{1}^{0}$-IND ([2]), $E L_{0}^{*}+\Pi_{1}^{0}$-IND $\nvdash \Sigma_{1}^{0}$-IND ([9]).
- $\mathrm{EL}_{0}^{*}+\Pi_{1}^{0}$-IND proves $\neg \neg \Sigma_{1}^{0}$-IND ([9]), i.e., for each $A(x) \in \Sigma_{1}^{0}$,
$\neg \neg A(0) \wedge \forall x(\neg \neg A(x) \rightarrow \neg \neg A(x+1)) \rightarrow \forall x \neg \neg A(x)$,
- EL_{0}^{*} proves, for each $A(i, j) \in \Sigma_{1}^{0}$,

$$
\forall x((\forall i) \exists j A(i, j) \leftrightarrow \exists y(\forall i<x)(\forall j<y) A(i, j))
$$

- $\mathrm{EL}_{0}^{*}+\Pi_{1}^{0}$-IND proves, for $A(i, j) \in \Sigma_{1}^{0}$,

$$
\forall x((\forall i<x) \neg \neg \exists j A(i, j) \leftrightarrow \neg \neg \exists n(\forall i<x)(\forall j<n) A(i, j))
$$

Theorem

$E L_{0}^{*}+\Pi_{1}^{0}$-IND proves Σ_{1}^{0}-WGDML.
(Proof)

$$
\text { f) } \begin{aligned}
& \neg(\forall i<x) \exists j B(i, j) \rightarrow \neg \neg(\exists i<x) \neg \exists j B(i, j) \\
\Longleftrightarrow & \neg(\exists i<x) \neg \exists j B(i, j) \rightarrow \neg \neg(\forall i<x) \exists j B(i, j) \\
\Longleftrightarrow & (\forall i<x) \neg \neg \exists j B(i, j) \rightarrow \neg \neg(\forall i<x) \exists j B(i, j) \\
\Longleftrightarrow \Pi_{1}^{0-\text { IND }} & \frac{(\forall i<x) \neg \neg \exists j B(i, j) \rightarrow \neg \neg \exists y(\forall i<x)(\exists j<y) B(i, j)}{\Pi_{1}^{0} \text { IND yields this }}
\end{aligned}
$$

Induction, DML and GDML

Theorem
$\mathrm{EL}_{0}^{*}+\Delta\left(\Sigma_{k}^{0}\right)$-IND $+\Sigma_{k}^{0}$-DML $\vdash \Sigma_{k}^{0}$-GDML

Induction, DML and GDML

Theorem

$\mathrm{EL}_{0}^{*}+\Delta\left(\Sigma_{k}^{0}\right)$-IND $+\Sigma_{k}^{0}$-DML $\vdash \Sigma_{k}^{0}$-GDML

(Idea for the proof)
Assume $\neg(\forall i<x) \exists j A(i, j)$ for $A(i, j) \in \Pi_{k-1}^{0}$.

- $\neg(\forall i<x) \exists j A(i, j)$ implies $\neg(\exists j A(0, j) \wedge \underline{\forall i(0<i<x \rightarrow \exists j A(i, j))})$

Induction, DML and GDML

Theorem

$$
\mathrm{EL}_{0}^{*}+\Delta\left(\Sigma_{k}^{0}\right)-\mathrm{IND}+\Sigma_{k}^{0}-\mathrm{DML} \vdash \Sigma_{k}^{0}-\mathrm{GDML}
$$

(Idea for the proof)
Assume $\neg(\forall i<x) \exists j A(i, j)$ for $A(i, j) \in \Pi_{k-1}^{0}$.

- $\neg(\forall i<x) \exists j A(i, j)$ implies $\neg(\exists j A(0, j) \wedge \forall i(0<i<x \rightarrow \exists j A(i, j)))$
- Underlined part is equivalent to some Σ_{k}^{0} formula.

Induction, DML and GDML

Theorem

$\mathrm{EL}_{0}^{*}+\Delta\left(\Sigma_{k}^{0}\right)$-IND $+\Sigma_{k}^{0}$-DML $\vdash \Sigma_{k}^{0}$-GDML

(Idea for the proof)
Assume $\neg(\forall i<x) \exists j A(i, j)$ for $A(i, j) \in \Pi_{k-1}^{0}$.

- $\neg(\forall i<x) \exists j A(i, j)$ implies $\neg(\exists j A(0, j) \wedge \forall i(0<i<x \rightarrow \exists j A(i, j)))$
- Underlined part is equivalent to some Σ_{k}^{0} formula.
- Hence, Σ_{k}^{0}-DML, we have $\neg \exists j A(0, j)$ or $\neg \forall i(0<i<x \rightarrow \exists j A(i, j))$

Induction, DML and GDML

Theorem

$$
\mathrm{EL}_{0}^{*}+\Delta\left(\Sigma_{k}^{0}\right)-\mathrm{IND}+\Sigma_{k}^{0}-\mathrm{DML} \vdash \Sigma_{k}^{0}-\mathrm{GDML}
$$

(Idea for the proof)
Assume $\neg(\forall i<x) \exists j A(i, j)$ for $A(i, j) \in \Pi_{k-1}^{0}$.

- $\neg(\forall i<x) \exists j A(i, j)$ implies $\neg(\exists j A(0, j) \wedge \forall i(0<i<x \rightarrow \exists j A(i, j)))$
- Underlined part is equivalent to some Σ_{k}^{0} formula.
- Hence, Σ_{k}^{0}-DML, we have $\neg \exists j A(0, j)$ or $\neg \forall i(0<i<x \rightarrow \exists j A(i, j))$
- If the former is the case, repeat this process.

Induction, DML and GDML

Theorem

$$
\mathrm{EL}_{0}^{*}+\Delta\left(\Sigma_{k}^{0}\right)-\mathrm{IND}+\Sigma_{k}^{0}-\mathrm{DML} \vdash \Sigma_{k}^{0}-\mathrm{GDML}
$$

(Idea for the proof)
Assume $\neg(\forall i<x) \exists j A(i, j)$ for $A(i, j) \in \Pi_{k-1}^{0}$.

- $\neg(\forall i<x) \exists j A(i, j)$ implies $\neg(\exists j A(0, j) \wedge \forall i(0<i<x \rightarrow \exists j A(i, j)))$
- Underlined part is equivalent to some Σ_{k}^{0} formula.
- Hence, Σ_{k}^{0}-DML, we have $\neg \exists j A(0, j)$ or $\neg \forall i(0<i<x \rightarrow \exists j A(i, j))$
- If the former is the case, repeat this process.
- At some $i<x$, we must have $\neg \exists j A(i, j)$.

Induction, DML and GDML

Theorem

$$
\mathrm{EL}_{0}^{*}+\Delta\left(\Sigma_{k}^{0}\right)-\mathrm{IND}+\Sigma_{k}^{0}-\mathrm{DML} \vdash \Sigma_{k}^{0} \text {-GDML }
$$

(Idea for the proof)
Assume $\neg(\forall i<x) \exists j A(i, j)$ for $A(i, j) \in \Pi_{k-1}^{0}$.

- $\neg(\forall i<x) \exists j A(i, j)$ implies $\neg(\exists j A(0, j) \wedge \forall i(0<i<x \rightarrow \exists j A(i, j)))$
- Underlined part is equivalent to some Σ_{k}^{0} formula.
- Hence, Σ_{k}^{0}-DML, we have $\neg \exists j A(0, j)$ or $\neg \forall i(0<i<x \rightarrow \exists j A(i, j))$
- If the former is the case, repeat this process.
- At some $i<x$, we must have $\neg \exists j A(i, j)$.

Hou to repeat the process? $\Delta\left(\Sigma_{k}^{0}\right)$-IND!

Bounded comprehension: Using induction, take

$$
\begin{aligned}
& u=\left\langle u_{0}, \ldots, u_{x-1}\right\rangle \in\{0,1,2\}^{*} \text { s.t. } \\
& \text { - } u_{k}=0 \rightarrow \neg \exists y A(k, y), \\
& \text { - } u_{k}=1 \rightarrow \neg \forall i(k<i<x \rightarrow \exists y A(i, y)) \text {, and } \\
& \text { - } u_{k}=2 \rightarrow(\exists i<k) u_{i}=0
\end{aligned}
$$

WKL and Σ_{1}^{0}-DML (LLPO)

Fact ([1])

$E L_{0}^{*}+\mathrm{WKL} \vdash \Sigma_{1}^{0}-\mathrm{DML}$

(Idea for the proof)
Assume $\neg(\exists x A(x) \wedge \exists x B(x))$, where $A(x), B(x) \in \Delta_{0}^{0}$.
Consider the following tree T :

$$
T=\left\{u \in\{0,1\}^{*}:\left(u_{0}=0 \rightarrow \neg A(|u|)\right) \wedge\left(u_{0}=1 \rightarrow \neg B(|u|)\right)\right\}
$$

Since T must have a branch of any length, T has a path α. $\alpha(0)=0$ implies $\neg \exists x A(x)$ and $\alpha(0)=1$ implies $\neg \exists x B(x)$.

WKL and GDML

Theorem

$E L{ }_{0}^{*}+$ WKL $\vdash \Sigma_{1}^{0}$-GDML

(Idea for the proof)
Assume $\neg(\forall i<x) \exists j A(i, j)$ for $A(i, j) \in \Delta_{0}^{0}$. Consider the following T :

$$
T=\left\{1^{i} 0^{j}: i<x, \neg A(i, j)\right\}
$$

The case of $x=3$

Since T must have a branch of any length, T has a path α.
Find the least $i<x$ s.t. $\alpha(i)=1$. Then $\neg \exists j A(i, j)$.

WKL and GDML

Theorem

$\mathrm{EL}_{0}^{*}+\mathrm{WKL} \vdash \Sigma_{1}^{0}$-GDML

(Idea for the proof)

- $\neg(\forall i<x) \exists j A(i, j)$ implies $\neg(\exists j A(0, j) \wedge \forall i(0<i<x \rightarrow \exists j A(i, j)))$
- Underlined part is equivalent to some Σ_{1}^{0} formula.
- Hence, Σ_{1}^{0}-DML, we have $\neg \exists j A(0, j)$ or $\neg \forall i(0<i<x \rightarrow \exists j A(i, j))$
- If the former is the case, repeat this process.
- At some $i<x$, we must have $\neg \exists j A(i, j)$.

How to repeat the process? Axiom choice!

WKL and GDML

Theorem

$\mathrm{EL}_{0}^{*}+\mathrm{WKL} \vdash \Sigma_{1}^{0}$-GDML

(Idea for the proof)

- $\neg(\forall i<x) \exists j A(i, j)$ implies $\neg(\exists j A(0, j) \wedge \forall i(0<i<x \rightarrow \exists j A(i, j)))$
- Underlined part is equivalent to some Σ_{1}^{0} formula.
- Hence, Σ_{1}^{0}-DML, we have $\neg \exists j A(0, j)$ or $\neg \forall i(0<i<x \rightarrow \exists j A(i, j))$
- If the former is the case, repeat this process.
- At some $i<x$, we must have $\neg \exists j A(i, j)$.

How to repeat the process? Axiom choice!

WKL implies the following choice principle:

- $\Pi_{1}^{0}-\mathrm{AC}^{\vee}$:

$$
\begin{array}{r}
\forall x(A(x) \vee B(x)) \rightarrow \exists \alpha \forall x((\alpha(x)=0 \rightarrow A(x)) \wedge(\alpha(x) \neq 0 \rightarrow B(x))) \\
\text { for } A, B \in \Pi_{1}^{0}
\end{array}
$$

By this choice principle, we can take the right direction at once.

Something around

Kőnig's lemma (KL)

Every finitely branching infinite tree T, i.e.,
$\forall u \in T \exists i \forall j(u *\langle j\rangle \in T \rightarrow j \leq i)$, has a path.

(Weak) Fan Theorem ((W)FT)

Every finitely branching (binary) tree T such that $\forall \alpha \exists n(\bar{\alpha} n \notin T)$ is bounded, i.e., $\exists m \forall u \in T(|u|<m)$.

Some results around KL and FT

- $\mathrm{EL}_{0}^{*}+\mathrm{WKL} \vdash \mathrm{WFT}$ (Essentially by Ishihara [5])
- $\mathrm{EL}_{0}^{*}+\mathrm{FT} \vdash \Sigma_{1}^{0}$-IND
- $\mathrm{EL}_{0}^{*}+\mathrm{KL}+\Sigma_{1}^{0}$-LEM $\vdash \Sigma_{1}^{0}$-IND ([7])
- $\mathrm{EL}_{0}^{*}+\Sigma_{1}^{0}-\mathrm{IND}+\Pi_{1}^{0}-\mathrm{AC} \nvdash \mathrm{WKL}, \mathrm{KL}, \Pi_{0}^{1}-\mathrm{IND}$ (cf. [7] and [8])
- $\mathrm{EL}_{0}^{*}+\Sigma_{1}^{0}-\mathrm{IND}+\Pi_{1}^{0}-\mathrm{AC}+\Sigma_{1}^{0}-\mathrm{LEM} \vdash \mathrm{WKL}, \mathrm{KL}, \Pi_{0}^{1}$-IND ([7]?)

Some observations

- Constructive reverse mathematics aims to characterize mathematical principles with choice principles (existence of functions), logical principles and sometime induction principles.
- Choice, logical, and induction principles are independent at a glance.
- Realizability model: Full of choice principle, but weak induction, no logical principle
- Total recursive function model: Full induction, but weak choice, no logical principle
- Classical non-standard model: Classical logic, but weak choice, weak induction
- De Morgan's law (DML) is considered as a logical principle.
- But DML is generalized by induction or choice principle.
- How choice, logical and induction principles affect each other?

References

(1) J. Berger, H. Ishihara and P.Schuster, The weak König's lemma, Brouwer's fan theorem and de Morgan's law, and dependence choice, Reports on mathematical logic 47 (2012), 63-86 DOI:10.4467/20842589RM.12.003.0684
(2) S. Buss, Intuitionistic validity in T-normal Kripke structures, Ann. Pure Appl. Logic 59, pp. 159-173 (1993)
(3) M. Fujiwara and T. Nemoto On the decomposition of WKL!!, Phil. Trans. R. Soc. A 381: 20220010. (2023) https://doi.org/10.1098/rsta. 2022.0010
4) H. Ishihara, Markov's principle, Church's thesis and Lindelöf's Theorem, Indagationes Mathematicae 4 (3), pp.321-325 (1993)
(5) H. Ishihara, Weak König' s Lemma Implies Brouwer' s Fan Theorem: A Direct Proof, Notre Dame Journal of Formal Logic 47 (2), pp. 249-252 (2006)
(6) J. R. Moschovakis, Another Unique Weak König’ s Lemma WKL!!, In: Logic, Construction, Computation, edited by U. Berger, H. Diener, P. Schuster and M. Seisenberger, pp. 343-352, De Gruyter (2012)https://doi.org/10.1515/9783110324921.343
(7) T. Nemoto and K. Sato, A marriage of Brouwer's Intuitionism and Hilbert's Finitism I: Arithmetic, The Journal of Symbolic Logic, 87 (2), pp.437-497 (2022) doi:10.1017/jsl. 2018.6
(8) S. G. Simpson, Subsystems of second order arithmetic, CUP (2009)
(9) K. Wehmeier, Fragments of HA based on Σ_{1}-induction, Arch. Math. Logic 37: pp.37-49 (1997)

