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Theoretical and practical aspects

of computer arithmetic

Siegfried M. Rump, Hamburg/Tokyo
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The origin of floating-point

Computer base arithmetic method Turing complete

Zuse Z3 binary floating-point relais yes
Atanasoff-Berry binary fixed point tubes no [linsys n < 30]
Colossus binary fixed point tubes no [deciphering]
Mark I decimal fixed point relais yes
Eniac decimal fixed point tubes yes

Babbage decimal fixed point mechanical yes [not built]
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The origin of error analysis I

Carl-Friedrich Gauß was fully aware of
computational errors and developed a
complete and rigorous error analysis

Based on his computations Ceres was rediscovered
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The origin of error analysis II

In their seminal paper

Numerical inverting of matrices of high order (1947)

John v. Neumann and Hermann Goldstine stated:

“Cholesky decomposition in 24-bit fixed point arithmetic
may produce reliable results up to dimension n ≤ 9.”

The analysis is correct but far too pessimistic
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Limits of computer arithmetic

Let A ⊆ R with ∣A∣ < ∞.

There is no isomorphism from R to A.

There is no meaningful homomorphism respecting order relations.
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Limits of computer arithmetic

Let A ⊆ R with ∣A∣ < ∞.

There is no isomorphism from R to A.

There is no meaningful homomorphism respecting order relations.

Under very general assumptions it can be shown that operations
on A cannot meet the law of associativity or distributivity.

That is due to the finiteness of A.
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The IEEE 754 arithmetic standard 1984 - a closer look

±1.m1m2 . . .mk ⋅ 2e binary floating-point

~
fl

F set of floating-point numbers

Define a mapping (rounding) fl ∶ R→ F

Operations ○̃ ∶ F × F → F are defined by
a ○̃ b ∶= fl(a ○ b)
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The IEEE 754 arithmetic standard 1984 - a closer look

±1.m1m2 . . .mk ⋅ 2e binary floating-point

~
fl

F set of floating-point numbers

Define a mapping (rounding) fl ∶ R→ F

Operations ○̃ ∶ F × F → F are defined by
a ○̃ b ∶= fl(a ○ b)

In rounding to nearest, the mapping fl◻ has minimal error:

x ∈ R ⇒ ∣fl◻(x) − x∣ = min{∣f − x∣ ∶ f ∈ F}

The results of arithmetic operations ○̃ is best possible.
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The IEEE 754 arithmetic standard 1984 - a closer look

±1.m1m2 . . .mk ⋅ 2e binary floating-point

~
fl

F set of floating-point numbers

Define a mapping (rounding) fl ∶ R→ F

Operations ○̃ ∶ F × F → F are defined by
a ○̃ b ∶= fl(a ○ b)

In rounding to nearest, the mapping fl◻ has minimal error:

x ∈ R ⇒ ∣fl◻(x) − x∣ = min{∣f − x∣ ∶ f ∈ F}

The results of arithmetic operations ○̃ is best possible.

What means “best”?
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The relative rounding error - switching points

First standard model E1(x) ∶= ∣
fl(x) − x

x
∣ rel. err. w.r.t. x

Switching point: arithmetic mean of adjacent fl-pt numbers
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The relative rounding error - switching points

First standard model E1(x) ∶= ∣
fl(x) − x

x
∣ rel. err. w.r.t. x

Switching point: arithmetic mean of adjacent fl-pt numbers

Second standard model E2(x) ∶= ∣
fl(x) − x

fl(x)
∣ rel. err. w.r.t. fl(x)

Switching point: harmonic mean of adjacent fl-pt numbers
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The relative rounding error - switching points

First standard model E1(x) ∶= ∣
fl(x) − x

x
∣ rel. err. w.r.t. x

Switching point: arithmetic mean of adjacent fl-pt numbers

Second standard model E2(x) ∶= ∣
fl(x) − x

fl(x)
∣ rel. err. w.r.t. fl(x)

Switching point: harmonic mean of adjacent fl-pt numbers

Minimize max{E1(x),E2(x)}

Switching point: geometric mean of adjacent fl-pt numbers

S.M. Rump and M. Lange. On the Definition of Unit Roundoff.

BIT Numerical Mathematics, 56(1):309–317, 2015.
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The standard models for the relative rounding error

Rounding to nearest with relative rounding error unit u

1 2u x RI
RI

FIfl(x)

2

x ∈ [1,2] ∶ ∣fl(x) − x∣ ≤ u
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The standard models for the relative rounding error

Rounding to nearest with relative rounding error unit u

1 2u x RI
RI

FIfl(x)

2

x ∈ [1,2] ∶ ∣fl(x) − x∣ ≤ u

relative rounding error E2(x) ∶= ∣
fl(x) − x

fl(x)
∣ ≤

u

1
= u w.r.t. fl(x)

⇒ (1 + ε)fl(x) = x ∣ε∣ ≤ u
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The standard models for the relative rounding error

Rounding to nearest with relative rounding error unit u

1 2u x RI
RI

FIfl(x)

2

x ∈ [1,2] ∶ ∣fl(x) − x∣ ≤ u

relative rounding error E2(x) ∶= ∣
fl(x) − x

fl(x)
∣ ≤

u

1
= u w.r.t. fl(x)

⇒ (1 + ε)fl(x) = x ∣ε∣ ≤ u

E1(x) ∶= ∣
fl(x) − x

x
∣ = ∣

ε fl(x)

(1 + ε)fl(x)
∣ = ∣

ε

1 + ε
∣ ≤

u

1 +u
w.r.t. x

P.H. Sterbenz: Floating-Point Computations, Prentice-Hall, 1974



9/63

◂◂
▸▸
◂
▸

Back

Close

Optimal bounds of floating-point operations

t bound on E1(t) bound on E2(t)

real number u
1+u u

a ± b u
1+u u

ab u
1+u u

a/b
⎧⎪⎪
⎨
⎪⎪⎩

u − 2u2 if β = 2,
u

1+u if β > 2

⎧⎪⎪
⎨
⎪⎪⎩

u−2u2

1+u−2u2 if β = 2,

u if β > 2
√
a 1 − 1

√

1+2u

√
1 + 2u − 1

The bounds are optimal for p-digit base-β IEEE-754 arithmetic under
some mild conditions.

For example, multiplication in base β = 2 requires that

2p + 1 is not a Fermat prime.

C.-P. Jeannerod and S.M. Rump. On relative errors of floating-point operations:

Optimal bounds and applications. Mathematics of Computation, 87:803–819, 2018.
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Composed operations: Classical Wilkinson-type error estimates

Summation p1 + p2 + . . . + pn

recursive summation ŝ ∶= p1

ŝi ∶= ŝi−1 +̃ pi for i ∈ {2, . . . , n}
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Composed operations: Classical Wilkinson-type error estimates

Summation p1 + p2 + . . . + pn

recursive summation ŝ ∶= p1

ŝi ∶= ŝi−1 +̃ pi for i ∈ {2, . . . , n}

... now “Epsilontik” starts

classical ŝn = (. . . ((p1 + p2)(1 + ε1) + p3)(1 + ε2) + . . . pn)(1 + εn−1)

⇒ ∣ŝn −
n

∑
i=1

pi∣ ≤ ((1 +u)n−1 − 1)
n

∑
i=1

∣pi∣ ≤
(n − 1)u

1 − (n − 1)u
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

∑
i=1

∣pi∣

γn−1[provided that (n − 1)u < 1]

Classical since the 1960’s but not “nice”
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Linearized bounds for composed operations !

[R. 2012] ∣ŝ −
n

∑
i=1
pi∣ ≤ (n − 1)u

n

∑
i=1

∣pi∣

no limit on n
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Linearized bounds for composed operations !

[R. 2012] ∣ŝ −
n

∑
i=1
pi∣ ≤ (n − 1)u

n

∑
i=1

∣pi∣

no limit on n

... the race began
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Linearized bounds for composed operations !

[R. 2012] ∣ŝ −
n

∑
i=1
pi∣ ≤ (n − 1)u

n

∑
i=1

∣pi∣

no limit on n

... the race began

[Jeannerod, R. 2013] ∣ŝ −
n

∑
i=1
xi∣ ≤ nu

n

∑
i=1

∣xi∣

• xi ∈ R

• summation of fl(xi) in floating-point

• any base β ≥ 2

• any order of evaluation

• no limit on n

Corollary ∣r̂ − aTb∣ ≤ nu∣aT ∣ ∣b∣ for a, b ∈ Fn
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More linearized bounds for compound operations

[Graillat, Lefèvre, Muller 2015] power

∣r̂ − ak+1∣ ≤ ku∣ak+1∣ if k ≤
√

21/3 − 1u−1/2 − 1

• base β = 2

• successive multiplication

[R., Bünger, Jeannerod 2015] products

∣r̂ −
k

∏
i=0

xi∣ ≤ ku ∣
k

∏
i=0

xi∣ for xi ∈ F, β = 2, k < u−1/2

• any order of evaluation

• limit on k is mandatory

• k < u−1/2 cannot be replaced by k < 12u−1/2
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More linearized bounds for compound operations (cont’d)

[R., Bünger, Jeannerod 2015] Horner’s scheme

∣r̂ −
n

∑
i=0

aixi∣ ≤ 2nu
n

∑
i=0

∣aixi∣ if n <
1

2
(

√
ω

β
u−1/2 − 1) .

Classical

∣ r̂ − ∥p∥2 ∣ ≤ ((1 +u)n/2+1 − 1)∥p∥2 for p ∈ Fn

[Jeannerod, R. 2016]

∣r̂ − ∥p∥2∣ ≤ (
n

2
+ 1)u∥p∥2

• any order of evaluation

• no restriction on n
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Linearized bounds for algorithms

Classical γk ∶=
ku

1−ku, ku < 1

• A ∈ Fm×n, computed LU -factors L̂, Û :

L̂Û = A +∆A, ∣∆A∣ ≤ γn ∣L̂∣ ∣Û ∣

• A ∈ Fn×n, computed Cholesky factor R̂:

R̂T R̂ = A +∆A, ∣∆A∣ ≤ γn+1 ∣R̂T ∣ ∣R̂∣

• T ∈ Fn×n triangular, b ∈ Fn, x̂ = T /b:

(T +∆T )x̂ = b, ∣∆T ∣ ≤ γn ∣T ∣
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Linearized bounds for algorithms

Improved [R., Jeannerod (2015)] no limit on n

• A ∈ Fm×n, computed LU -factors L̂, Û :

L̂Û = A +∆A, ∣∆A∣ ≤ nu ∣L̂∣ ∣Û ∣

• A ∈ Fn×n, computed Cholesky factor R̂:

R̂T R̂ = A +∆A, ∣∆A∣ ≤ (n + 1)u ∣R̂T ∣ ∣R̂∣

• T ∈ Fn×n triangular, b ∈ Fn, x̂ = T /b:

(T +∆T )x̂ = b, ∣∆T ∣ ≤ nu ∣T ∣
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Towards a more general perspective

Up to now:

• We actively assumed base-β IEEE-754 conform arithmetic.

• Every result relied on that specific arithmetic.

Next:

• Passively identify sufficient assumptions to prove linearized bounds.

↣ Understand “Machine numbers” M as a subset of R
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An arithmetic on a general subset of R

M ⊆ R, ○ ∶M ×M→M for ○ ∈ {+,−,×, /}, also
√
⋅

x, y ∈M ∶ x ○ y = (x ○ y)(1 + δ) ∣δ∣ ≤ eps

for some constant eps. We do not assume a rounding function fl !
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An arithmetic on a general subset of R

M ⊆ R, ○ ∶M ×M→M for ○ ∈ {+,−,×, /}, also
√
⋅

x, y ∈M ∶ x ○ y = (x ○ y)(1 + δ) ∣δ∣ ≤ eps

for some constant eps. We do not assume a rounding function fl !

Much freedom:

• x ○ y ∈M ⇏ x ○ y = x ○ y

• a ○ b = c ○ d ⇏ a ○ b = c ○ d

Example 3-digit decimal format, p = 3, eps = 1
2β

1−p = 0.005

x + y = 9.96

⇒ x + y ∈ {9.92, 9.93, 9.94, 9.95, 9.96, 9.97, 9.98, 9.99, 10.0}
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An arithmetic on a general subset of R

M ⊆ R, ○ ∶M ×M→M for ○ ∈ {+,−,×, /}, also
√
⋅

x, y ∈M ∶ x ○ y = (x ○ y)(1 + δ) ∣δ∣ ≤ eps

for some constant eps. We do not assume a rounding function fl !

Much freedom:

• x ○ y ∈M ⇏ x ○ y = x ○ y

• a ○ b = c ○ d ⇏ a ○ b = c ○ d

Example 3-digit decimal format, p = 3, eps = 1
2β

1−p = 0.005

x + y = 9.96

⇒ x + y ∈ {9.92, 9.93, 9.94, 9.95, 9.96, 9.97, 9.98, 9.99, 10.0}

e.g. 9.90 + 0.06 = 10 9.91 + 0.05 = 9.92
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An arithmetic on a general subset of R

M ⊆ R, ○ ∶M ×M→M for ○ ∈ {+,−,×, /}, also
√
⋅

x, y ∈M ∶ x ○ y = (x ○ y)(1 + δ) ∣δ∣ ≤ eps

for some constant eps. We do not assume a rounding function fl !

Much freedom:

• x ○ y ∈M ⇏ x ○ y = x ○ y also x ○ y may change

• a ○ b = c ○ d ⇏ a ○ b = c ○ d

Example 3-digit decimal format, p = 3, u = 1
2β

1−p = 0.005

x + y = 9.96

⇒ x + y ∈ {9.92, 9.93, 9.94, 9.95, 9.96, 9.97, 9.98, 9.99, 10.0}

e.g. 9.90 + 0.06 = 10 9.91 + 0.05 = 9.92 9.91 + 0.05 = 9.96
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Linearized bounds: An even simplified exposition

∀a, b ∈M∶ ∣ (a + b) − (a + b) ∣ ≤ min(∣a∣, ∣b∣) Assumption A
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Linearized bounds: An even simplified exposition

∀a, b ∈M∶ ∣ (a + b) − (a + b) ∣ ≤ min(∣a∣, ∣b∣) Assumption A

Very weak: ∣3 + 4 − (3 + 4)∣ ≤ min(3,4) = 3
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Linearized bounds: An even simplified exposition

∀a, b ∈M∶ ∣ (a + b) − (a + b) ∣ ≤ min(∣a∣, ∣b∣) Assumption A

Very weak: ∣3 + 4 − (3 + 4)∣ ≤ min(3,4) = 3

IEEE-754 x ∈ R∶ ∣fl(x) − x∣ = min{∣f − x∣ ∶ f ∈ F} nearest

⇒ ∣a + b − (a + b)∣ = ∣fl(a + b) − (a + b)∣

= min(∣f − (a + b)∣ ∶ f ∈ F)

≤ min(∣a − (a + b)∣, ∣b − (a + b)∣)

= min(∣a∣, ∣b∣)
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Linearized bounds: An even simplified exposition

∀a, b ∈M∶ ∣ (a + b) − (a + b) ∣ ≤ min(∣a∣, ∣b∣) Assumption A

Very weak: ∣3 + 4 − (3 + 4)∣ ≤ min(3,4) = 3

IEEE-754 x ∈ R∶ ∣fl(x) − x∣ = min{∣f − x∣ ∶ f ∈ F} nearest

⇒ ∣a + b − (a + b)∣ = ∣fl(a + b) − (a + b)∣

= min(∣f − (a + b)∣ ∶ f ∈ F)

≤ min(∣a − (a + b)∣, ∣b − (a + b)∣)

= min(∣a∣, ∣b∣)

Not satisfied for rounding upwards:

1 + u2 = succ(1) = 1 + 2u ⇒ 2u −u2 ≰ min(1,u2) = u2
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The linearized error estimate

Theorem. Let an arithmetic on M with Assumption A be given.
For p ∈Mn define

ŝ1 ∶= p1; ŝk = ŝk−1 + pk = (ŝk−1 + pk)(1 + δk) for 2 ≤ k ≤ n

with ∣δk∣ ≤ eps.

Then

∣ŝn −
n

∑
i=1

pi∣ ≤
n

∑
i=1

∣δi∣
n

∑
i=1

∣pi∣ ≤ (n − 1)eps
n

∑
i=1

∣pi∣ (∗)

The result is true under much more general assumptions

E.g. (*) is true for directed rounding (not satisfying Assumption A)

M. Lange and S.M. Rump. Error estimates for the summation of real numbers with application

to floating-point summation. BIT, 57:927–941, 2017.
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Optimal bounds for summation

Worst case 1 +u +u + . . . ?

Mascarenhas 2016:

β = 2, p ∈ Fn, n ≤
1

5
2p−2 ∶ ∣ŝ −

n

∑
i=1

pi∣ ≤
(n − 1)u

1+(n − 1)u

n

∑
i=1

∣pi∣

Proof uses some optimization and continuous mathematics
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Optimal bounds for summation

Worst case 1 +u +u + . . . ?

Mascarenhas 2016:

β = 2, p ∈ Fn, n ≤
1

5
2p−2 ∶ ∣ŝ −

n

∑
i=1

pi∣ ≤
(n − 1)u

1+(n − 1)u

n

∑
i=1

∣pi∣

Proof uses some optimization and continuous mathematics

Theorem For an arithmetic on M with Assumption A and x ∈Mn

∣ŝ −
n

∑
i=1

xi∣ ≤

n−1

∑
i=1
ξi

1 +
n−1

∑
i=1
ξi

n

∑
i=1

∣xi∣ [IEEE-754: ∣ξi∣ ≤ u]

The estimate is sharp.
M. Lange and S.M. Rump. Sharp estimates for perturbation errors in summations.

Math. of Comp., 88:349–368, 2019.
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Error-free transformations

function [x,y] = TwoSum(a,b)
x = a + b;
z = x - a;
y = ( a - (x-z) ) + (b-z);

Knuth 1969: a, b ∈ F ⇒ x + y = a + b



22/63

◂◂
▸▸
◂
▸

Back

Close

Error-free transformations

function [x,y] = TwoSum(a,b)
x = a + b;
z = x - a;
y = ( a - (x-z) ) + (b-z);

Knuth 1969: a, b ∈ F ⇒ x + y = a + b

function [x,y] = FastTwoSum(a,b)
x = a + b;
y = a - (x - b);

Dekker 1971: a, b ∈ F, ∣a∣ ≥ ∣b∣ ⇒ x + y = a + b

FastTwoSum with comparison often 2 times slower than TwoSum
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Error-free vector transformations

function p = VecSum(p)
for i=2:n

[p(i),p(i-1)] = TwoSum(p(i),p(i-1))

q = VecSum(p) ⇒ ∑ qi = ∑pi, qn = float(∑pi)
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Error-free vector transformations

function p = VecSum(p)
for i=2:n

[p(i),p(i-1)] = TwoSum(p(i),p(i-1))

q = VecSum(p) ⇒ ∑ qi = ∑pi, qn = float(∑pi)

Error of sum(p) of the order [(n − 1)u]2
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Iterated error-free vector transformations
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Iterated error-free vector transformations

Error of sum(p) of the order [(n − 1)u]K+1 after K transformations

Similar routines for dot products, most important in numerical analysis

T. Ogita, S.M. Rump, and S. Oishi. Accurate sum and dot product. SIAM Journal on Scientific

Computing (SISC), 26(6):1955–1988, 2005.



25/63

◂◂
▸▸
◂
▸

Back

Close

The power of modern error analysis

John v. Neumann and Hermann Goldstine stated:

“Cholesky decomposition in 24-bit fixed point arithmetic
may produce reliable results up to dimension n ≤ 9.”

Theorem. Let A ∈ Fn×n with AT = A be given, and let B = A−D ∈ Fn×n

for diagonal D with D ≥ 2αI and α ≥ γn+1trace(A) > 0.
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The power of modern error analysis

John v. Neumann and Hermann Goldstine stated:

“Cholesky decomposition in 24-bit fixed point arithmetic
may produce reliable results up to dimension n ≤ 9.”

Theorem. Let A ∈ Fn×n with AT = A be given, and let B = A−D ∈ Fn×n

for diagonal D with D ≥ 2αI and α ≥ γn+1trace(A) > 0.

If the floating-point Cholesky decomposition of B runs to completion,
then A is symmetric positive definite, and for any x̃ ∈ Rn

∥A−1b − x̃∥2 ≤ α−1∥Ax̃ − b∥2 .
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The power of modern error analysis

John v. Neumann and Hermann Goldstine stated:

“Cholesky decomposition in 24-bit fixed point arithmetic
may produce reliable results up to dimension n ≤ 9.”

Theorem. Let A ∈ Fn×n with AT = A be given, and let B = A−D ∈ Fn×n

for diagonal D with D ≥ 2αI and α ≥ γn+1trace(A) > 0.

If the floating-point Cholesky decomposition of B runs to completion,
then A is symmetric positive definite, and for any x̃ ∈ Rn

∥A−1b − x̃∥2 ≤ α−1∥Ax̃ − b∥2 .

That approach works for dimensions n in the 10-thousands.
All operations are in ordinary floating-point arithmetic !

The analysis is based on properties of a symm. pos. def. matrix

S.M. Rump and T. Ogita. Super-fast validated solution of linear systems.

JCAM, 199(2):199–206, 2006.
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Towards solving general problems

What about general linear systems, nonlinear systems,
global optimization, differential equations etc. ?

We may use interval arithmetic:

[a, b] ○ [c, d] ∶= [minx,maxx] for x ∈ {a ○ c, a ○ d, b ○ c, b ○ d}

On the computer we use directed roundings.
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Towards solving general problems

What about general linear systems, nonlinear systems,
global optimization, differential equations etc. ?

We may use interval arithmetic:

[a, b] ○ [c, d] ∶= [minx,maxx] for x ∈ {a ○ c, a ○ d, b ○ c, b ○ d}

On the computer we use directed roundings.

Fundamental inclusion property:

∀a ∈ A,b ∈ B ∶ a ○ b ∈ A ○B for interval quantities A,B

Covers all elementary standard functions, erf, Γ(x) etc. as well
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Towards solving general problems

Fundamental observation:

Replace in an algorithm all operations
by the corresponding interval operations.

If finished successfully, i.e., no division by a zero interval, then

- It is mathematically certain that the problem is solvable, and

- the computed results do contain the true solution.
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Towards solving general problems

Fundamental observation:

Replace in an algorithm all operations
by the corresponding interval operations.

If finished successfully, i.e., no division by a zero interval, then

- It is mathematically certain that the problem is solvable, and

- the computed results do contain the true solution.

This is called naive interval arithmetic

Why does interval arithmetic has a bad reputation?
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Naive interval arithmetic: Interval Gaussian elimination (IGA)

The matrices are perfectly well conditioned: cond(A) = 1
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Minimum overestimation for Interval Gaussian elimination (IGA)

Theorem [R., 2010] For A ∈ Rn×n perform Gaussian elimination with

total pivoting using real interval operations everywhere.

If finished successfully, then elementwise

rad(U) ≥ upper triangle (< L >−1 ⋅rad(A))
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The reason for the poor reputation of interval arithmetic

Historically, interval arithmetic was (at least) known to Gauss.

It was tought in German junior high schools from the mid 19th century.
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The reason for the poor reputation of interval arithmetic

Historically, interval arithmetic was (at least) known to Gauss.

It was tought in German junior high schools from the mid 19th century.

It was re-discovered in the 1960’s and advocated as the holy grail .
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The reason for the poor reputation of interval arithmetic

Historically, interval arithmetic was (at least) known to Gauss.

It was tought in German junior high schools from the mid 19th century.

It was re-discovered in the 1960’s and advocated as the holy grail .

The problem is not the tool [interval arithmetic],

but the way it was used :
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Tools — should be used appropriately I



32/63

◂◂
▸▸
◂
▸

Back

Close

Tools — should be used appropriately II
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Is interval arithmetic of any use?

The (unique) advantage of interval arithmetic is to compute bounds

for the range of a function over some domain.

The bounds may overestimate the true range, but they are always

mathematically true.

A Matlab example ...
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How to fight overestimation of interval arithmetic

A verification method should:

- use floating-point arithmetic wherever possible

- try to avoid the dependency problem

- try to scale intervals by a small number
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How to fight overestimation of interval arithmetic

A verification method should:

- use floating-point arithmetic wherever possible

- try to avoid the dependency problem

- try to scale intervals by a small number

Theorem. Let A,R ∈ Rn×n, b ∈ Rn. If for given X ∈ IRn

Rb + (I −RA)X ⊆ int(X)

then A is nonsingular and A−1b ∈X .
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How to fight overestimation of interval arithmetic

A verification method should:

- use floating-point arithmetic wherever possible

- try to avoid the dependency problem

- try to scale intervals by a small number

Theorem. Let A,R ∈ Rn×n, b ∈ Rn. If for given X ∈ IRn

Rb + (I −RA)X ⊆ int(X)

then A is nonsingular and A−1b ∈X .

Proof. Define f(x) ∶= Rb + (I −RA)x. Then

∀x ∈X ∶ f(x) ∈X ⇒ ∃x̂ ∈X ∶ f(x̂) = x̂ = Rb + x̂ −RAx̂

by Brouwer’s fixed point Theorem.

Inclusion in int(X) implies R,A to be non-singular.

S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Univ. Karlsruhe, 1980.
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How to fight overestimation of interval arithmetic

A verification method should:

- use floating-point arithmetic wherever possible

- try to avoid the dependency problem

- try to scale intervals by a small number

Theorem. Let A,R ∈ Rn×n, b ∈ Rn. If for given X ∈ IRn

Rb + (I −RA)X ⊆ int(X) do NOT use X +R(b −AX)

then A is nonsingular and A−1b ∈X .

Proof. Define f(x) ∶= Rb + (I −RA)x. Then

∀x ∈X ∶ f(x) ∈X ⇒ ∃x̂ ∈X ∶ f(x̂) = x̂ = Rb + x̂ −RAx̂

by Brouwer’s fixed point Theorem.

Inclusion in int(X) implies R,A to be non-singular.

S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Univ. Karlsruhe, 1980.
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A verification method for systems of nonlinear equations

Let f ∶ Rn → Rn, f ∈ C1, R ∈ Rn×n, x̃ ∈ Rn,X ∈ IRn. If x̃ ∈X and

(*) −Rf(x̃) + (I −RJf(X))X ⊆ int(X),

then there exists a unique root x̂ of f(x) = 0 in x̃ +X .

Verify (*) using interval arithmetic and algorithmic differentiation.
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A verification method for systems of nonlinear equations

Let f ∶ Rn → Rn, f ∈ C1, R ∈ Rn×n, x̃ ∈ Rn,X ∈ IRn. If x̃ ∈X and

(*) −Rf(x̃) + (I −RJf(X))X ⊆ int(X),

then there exists a unique root x̂ of f(x) = 0 in x̃ +X .

Verify (*) using interval arithmetic and algorithmic differentiation.

Rationale, i.e., why is it working well:

f(x̃) ≈ 0, R ≈ ∂f
∂x(x̃)

−1 ensured by good fl-pt approximations

The error w.r.t. to the approximate solution x̃ is included

The product (I −RJf(X))X is small in magnitude.

There is a dichotomy:

Either mathematically rigorous inclusion of the solution

or no result (error message)

S.M. Rump. Solving Algebraic Problems with High Accuracy. Habilitation, Acad. Press 1983.
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Global optimization in n dimensions

Given f ∶ Rn → R, minimize f(x) over a box,

possibly subject to constraints

The main problem: To discard sub-boxes.
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Global optimization in n dimensions

Given f ∶ Rn → R, minimize f(x) over a box,

possibly subject to constraints

The main problem: To discard sub-boxes.

This is basically outside the scope of (purely) numerical algorithms.

Even if Lipschitz constants are known, rounding errors may have

disastrous effects.
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Global minimization — Exclusion regions I

(1) Necessarily
∂f

∂x
(x̂) = 0 →

If 0 ∉ [
∂f

∂x
(Y )]

i
for some

1 ≤ i ≤ n

and Y ⊆ int(X)

then Y can be discarded.
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Global minimization — Exclusion regions I

(1) Necessarily
∂f

∂x
(x̂) = 0 →

If 0 ∉ [
∂f

∂x
(Y )]

i
for some

1 ≤ i ≤ n

and Y ⊆ int(X)

then Y can be discarded.

(2) Dimension reduction

If 0 ∉ [
∂f

∂x
(Y )]

i
but Yi⋂∂Xi ≠ 0

then Yi can be replaced by corresponding ∂Xi.

S.M. Rump. Mathematically Rigorous Global Optimization in Floating-Point Arithmetic.

Optimization Methods & Software, 33(4–6):771–798, 2018.
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Exclusion regions II — The expansion principle (Jansson)

Let f ∶ Rn → R, f ∈ C1 be given.

For a given box X , our verification methods can prove that

there is exactly one stationary point of f in X .
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Exclusion regions II — The expansion principle (Jansson)

Let f ∶ Rn → R, f ∈ C1 be given.

For a given box X , our verification methods can prove that

there is exactly one stationary point of f in X .

Intentionally widen X into Y ⊇X and suppose that Y as well

contains exactly one stationary point.

Then f has no minimum in Y /X X

Y

C. Jansson. On Self-Validating Methods for Optimization Problems. In J. Herzberger (ed.)

Topics in Validated Computations - Studies in Computational Mathematics 5, 381–438,

North-Holland, Amsterdam, 1994.
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A famous test function in the global optimization community

Minimize Griewank’s function G ∶ Rn → R on X = [−600, 600]n

G(x) = 1 +
1

4000

n

∑
i=1

x2
i −

n

∏
i=1

cos(
xi
√
i
)
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A famous test function

Minimize Griewank’s function G ∶ Rn → R on X = [−600, 600]n

G(x) = 1 +
1

4000

n

∑
i=1

x2
i −

n

∏
i=1

cos(
xi
√
i
)
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A famous test function

Minimize Griewank’s function G ∶ Rn → R on X = [−600, 600]n

G(x) = 1 +
1

4000

n

∑
i=1

x2
i −

n

∏
i=1

cos(
xi
√
i
)

Timing [sec]

Montanher’s Csendes’

n #∇G(x) = 0 intsolver GOP INTLAB

5 ∼ 1013 307∗) 229 0.6

10 ∼ 1025 1.7

20 ∼ 1051 5.2

30 ∼ 1077 10.5

40 ∼ 10103 17.9

50 ∼ 10129 28.1

*) verification failed
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INTLAB - the Matlab/Octave toolbox for Reliable Computing

- developing since 1998, >2000 routines, >70kLOC pure Matlab

- rigorous input and output

- Real and complex interval arithmetic and standard functions

- affine and Taylor arithmetic

- dense and sparse linear systems

- systems of nonlinear equations

- global optimization

- algorithmic differentiation, gradients, Hessians, Taylor series, slopes

- finding all roots of a nonlinear system

- Galois field toolbox

- etc.

https://www.tuhh.de/ti3/rump/intlab/
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Parameter identification - ordinary interval arithmetic

f = −(5y − 20y2 + 16y5)6 +(−(5x− 20x3 + 16x5)3 + 5y2 − 20y3 + 16y5)2

X = infsup(-1,1)*ones(2,1);

verifynlssparam(f,0,X)

verifynlssparamset(’Display’,’~’));
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Interval arithmetic is no panacea — The wrapping effect

Ordinary interval arithmetic (executable INTLAB code):

A = infsup(1,3); intDiff = A-A

intval intDiff =

[ -2.0000, 2.0000]



45/63

◂◂
▸▸
◂
▸

Back

Close

Interval arithmetic is no panacea — The wrapping effect

Ordinary interval arithmetic (executable INTLAB code):

A = infsup(1,3); intDiff = A-A

intval intDiff =

[ -2.0000, 2.0000]

Affine arithmetic (executable INTLAB code):

B = affari(infsup(1,3)); affDiff = B-B

affari affDiff =

[ 0.0000, 0.0000]
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Affine arithmetic - References
Ref.: Andrack, Comba, Stolfi 1994

Figueiredo/Stolfi, monograph 1997

Kashiwagi, monograph 2005

Stolfi, reference implementation 2007

R./Kashiwagi, Improvements of affine arithmetic, IEICE, 2015
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Affine arithmetic - References
Ref.: Andrack, Comba, Stolfi 1994

Figueiredo/Stolfi, monograph 1997

Kashiwagi, monograph 2005

Stolfi, reference implementation 2007

R./Kashiwagi, Improvements of affine arithmetic, IEICE, 2015

Representation of affine quantities:

C ∶= ⟨c ;γ⟩ = {c +
k

∑
i=1
γiεi ∶ ε ∈ Ek} with E ∶= [−1, 1]

All εi vary independently in E.
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Affine arithmetic - References
Ref.: Andrack, Comba, Stolfi 1994

Figueiredo/Stolfi, monograph 1997

Kashiwagi, monograph 2005

Stolfi, reference implementation 2007

R./Kashiwagi, Improvements of affine arithmetic, IEICE, 2015

Representation of affine quantities:

C ∶= ⟨c ;γ⟩ = {c +
k

∑
i=1
γiεi ∶ ε ∈ Ek} with E ∶= [−1, 1]

All εi vary independently in E.

For example,

A = affari(infsup(1,3)); B = affari(infsup(-2,4));

implies A ∶= ⟨2; 1⟩ and B ∶= ⟨1; 0, 3⟩
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Affine arithmetic
Example: C ∶= ⟨2; 1,−2, 3,−1⟩

D ∶= ⟨1; 3, 0,−1, 2⟩

C ×D = {(
2 + ε1 − 2ε2 + 3ε3 − ε4

1 + 3ε1 − ε3 + 2ε4
) ∶ εi ∈ [−1, 1]}
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Affine arithmetic improvements

Given C ∶= ⟨c ;γ⟩
∧
= c +∑γiεi ⇒ f(C)?

Def. f is represented by Jp, q,∆K on [a, b]

s.t. ∀x ∈X ∶ ∣px + q − f(x)∣ ≤ ∆

⇒ Determine p, q,∆ for given f and given [a, b]

⇒ Use x ∈ [a, b] ⇔ x = c +∑γiεi for ∣εi∣ ≤ 1

⇒ ∣pc + q +∑pγiεi − f(x)∣ ≤ ∆

i.e. ⟨pc + q;pγ,∆⟩ represents f(C) on [a, b]
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Functions in the affine toolbox

sqrt, sqr,

exp, log, log2, log10, power,

sin, cos, tan, cot, sec, csc,

asin, acos, atan, acot, asec, acsc,

sinh, cosh, tanh, coth,

asinh, acosh, atanh, acoth,

erf, erfc.
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Chebyshev representation

traditionally new

Min-Range representation of sinh(x) on [-1,2]
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Chebyshev representation

traditionally new

Chebyshev representation of erf(x) on [-1.3,1.5]
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Parameter identification - ordinary interval arithmetic

f = −(5y − 20y2 + 16y5)6 +(−(5x− 20x3 + 16x5)3 + 5y2 − 20y3 + 16y5)2

X = infsup(-1,1)*ones(2,1);

verifynlssparam(f,0,X)

verifynlssparamset(’Display’,’~’));
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Parameter identification - using affine arithmetic

f = −(5y − 20y2 + 16y5)6 +(−(5x− 20x3 + 16x5)3 + 5y2 − 20y3 + 16y5)2

X = infsup(-1,1)*ones(2,1);

verifynlssparam(f,0,X)

verifynlssparamset(’Display’,’~’,’Method’,’affari’));
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Parameter identification - affine arithmetic, nontrivial interior

f = −(5y − 20y2 + 16y5)6 +(−(5x− 20x3 + 16x5)3 + 5y2 − 20y3 + 16y5)2

verifynlssparam(f,infsup(-0.2,0.2),X, ...

verifynlssparamset(’Display’,’~’,’Method’,’affari’));
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Limits of verification methods and of arithmetic

Verification methods can only solve well-posed problems

- No real interval can be verified to contain a root of x2 + 2x + 1

- A complex interval can be verified to contain 2 roots
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Limits of verification methods and of arithmetic

Verification methods can only solve well-posed problems

- No real interval can be verified to contain a root of x2 + 2x + 1

- A complex interval can be verified to contain 2 roots

- We cannot verify that a matrix is singular

- We can verify that a matrix is nonsingular [even for cond(A) > 10100]



55/63

◂◂
▸▸
◂
▸

Back

Close

Limits of verification methods and of arithmetic

Verification methods can only solve well-posed problems

- No real interval can be verified to contain a root of x2 + 2x + 1

- A complex interval can be verified to contain 2 roots

- We cannot verify that a matrix is singular

- We can verify that a matrix is nonsingular [even for cond(A) > 10100]

- An eigenvector to a double eigenvalue cannot be included
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Limits of verification methods and of arithmetic

Verification methods can only solve well-posed problems

- No real interval can be verified to contain a root of x2 + 2x + 1

- A complex interval can be verified to contain 2 roots

- We cannot verify that a matrix is singular

- We can verify that a matrix is nonsingular [even for cond(A) > 10100]

- An eigenvector to a double eigenvalue cannot be included

- sin (4 atan(1)) ≥ 0 cannot be decided in any precision
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Fighting overestimation for verified ODE-solvers

The van der Pol equation

y′′ − c(1 − y2)y′ + y = 0 for some scalar c > 0

rewritten into a system of first order ODEs

y′1 = y2 ,

y′2 = c(1 − y2
1)y2 − y1

Initial conditions y0 ∈ (
3

−3
) ± 0.001
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Solution of the van der Pol equation for t ∈ [0, 10]

function J = vdp_jac(t,y)

J = typeadjust([0,1;0,0],y);

J(2,1) = -2.*y(1).*y(2) - 1;

J(2,2) = 1 - sqr(y(1));

[T,Y] = awa(@vdp_fun,@vdp_jac,[0,10],midrad([3;-3],1e-3));

plot(T,Y)
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Taylor models, implemented by Florian Bünger

K. Makino, Rigorous analysis of nonlinear motion in particle accelera-

tors, Dissertation at Michigan State University, 1998

K. Makino and M. Berz, Suppression of the wrapping effect by Taylor

model - based validated integrators, MSU HEP Report 40910, 2003

A. Neumaier, Taylor Forms – Use and Limits, Reliable Computing 9,

pp. 43-79, 2003

F. Bünger, Shrink wrapping for Taylor models revisited, Numerical

Algorithms 78(4), pp. 1001-1017, 2018

F. Bünger, Reducing the truncation error in Taylor model multiplica-

tion, accepted for publication, 2023
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Definition of Taylor models

p(x) = ∑
a,∣a∣≤d

pax
a, ∣a∣ ∶= a1 + ... + an, xa ∶= xa11 ⋯x

an
n ,

on D = [u1, v1] × ⋅ ⋅ ⋅ × [un, vn]

An inclusion of p(D−c)+E = {p(x−c)+e ∣ x ∈D,e ∈ E} is computed

Mostly the standard domain Ds ∶= [−1, 1]n, cs ∶= (0, ..., 0) is used

In contrast to affine arithmetic, Taylor models need not to be convex

Options QR preconditiong, shrink wrapping,
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Taylor models - An example

For f(x, y) = (x− y(0.125+ 2y), y + 6x3) compute the iterated image

of B ∶= [−0.1, 0.1]2, i.e. f(f(...f(B)...))
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Taylor models - The Lorenz system

y′1 = σ(y2 − y1)

y′2 = (ρ − y(3))y(1) − y(2) for σ = 10, ρ = 28, β = 8/3

y′3 = y1y2 − βy3

y0 ∈ [−8.001,−7.998] × [7.998, 8.001] × [26.998, 27.001]
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Summary

• Error standard models in numerical analysis

• Optimal bounds for IEEE-754 +,−,×, /,
√
⋅

• Weak sufficient assumptions for linearized bounds

• Optimal bounds for the error of summation

• error-free transformations

• Provably mathematical correct results

• Global optimization

• Affine arithmetic

• Taylor models

On verification methods:

S.M. Rump. Verification methods: Rigorous results using floating-point arithmetic.

Acta Numerica, 19:287–449, 2010.



63/63

◂◂
▸▸
◂
▸

Back

Close

An application of affine arithmetic — Julia sets

z0, c ∈ C ∶ zk+1 ∶= z2
k + c for k ≥ 1

Given c ∈ C, for which z0 ∈ C is ∞ point of attraction?

Divergent for min{∣Re c∣, ∣Im c∣} ≥ 2.
Color code red ∞ point of attraction

black iteration bounded for all k ≥ 1

yellow don’t know


