Inductive and Coinductive predicates in the Minimalist Foundation

Pietro Sabelli

University of Padua

CCC 2023 Continuity, Computability, Constructivity – From Logic to Algorithms Kyoto University, September 26, 2023

The Minimalist Foundation – *Why?*

- A minimal setting to formalise constructive mathematics
- A common ground compatible with other foundations
- A suitable framework for developing Formal Topology

In particular, it does not validate the

Axiom of Unique Choice, which allows to extract functions from functional relations; formally $\forall x \in A \exists ! y \in B . R(x, y) \Rightarrow \exists f : A \to B \forall x \in A . R(x, f(x))$

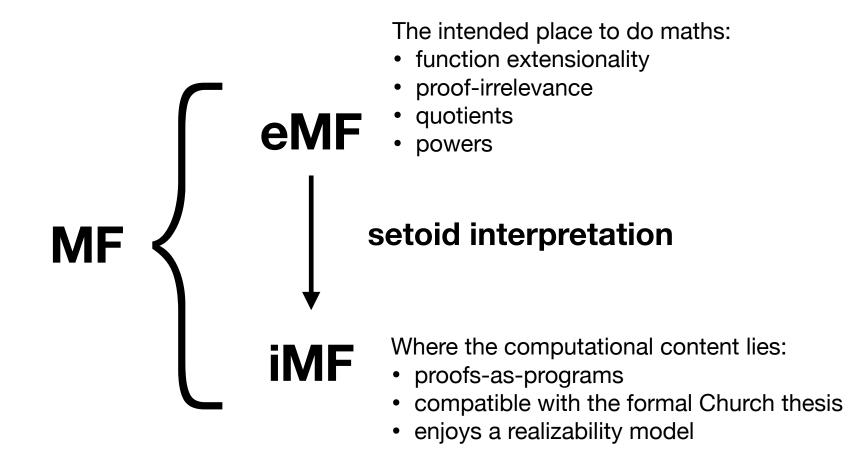
Toward a minimalist foundation for constructive mathematics M.E. Maietti and G. Sambin, Oxford Univ. Press, Oxford, 2005

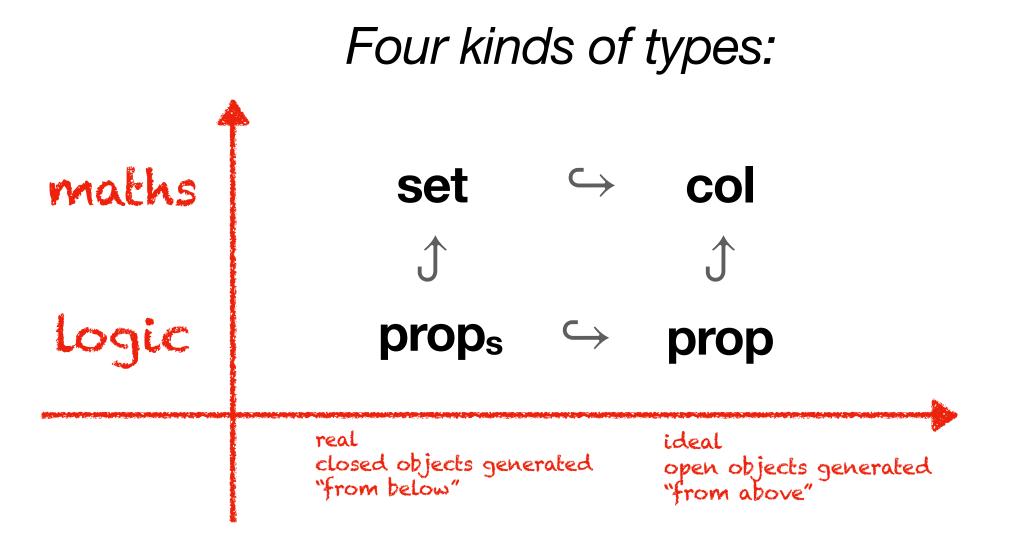
A minimalist two-level foundation for constructive mathematics M.E. Maietti, Ann. Pure Appl. Logic 160, 2009

The Minimalist Foundation – *How?*

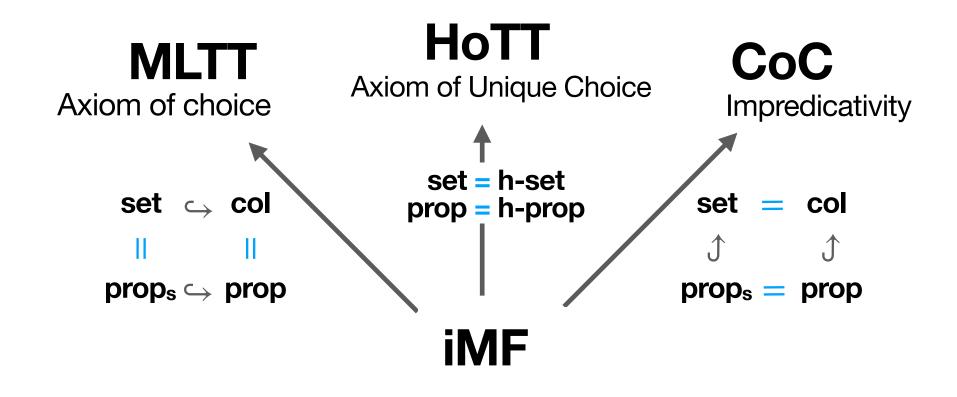
Key slogan: Minimalist in Assumptions, Maximal in Distinctions

A two-levels type theory:





Compatibility – Intensional level



The Compatibility of the Minimalist Foundation with Homotopy Type Theory M. Contente, M.E. Maietti

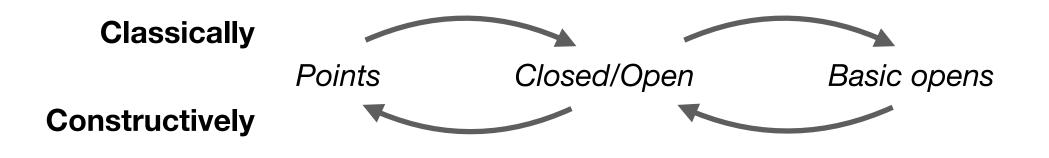


Note: all these extensions validates the Axiom of Unique Choice

Formal Topology

= topology, done *constructively*

Reversing the conceptual order:



Intuitionistic formal spaces G. Sambin, 1987 The basic data consists of a set of basic opens A,

together with two relations \triangleleft and \ltimes between *elements* and *subsets* of A

Basic Cover

$$a \triangleleft U$$
 such that
 $rf\frac{a \varepsilon U}{a \triangleleft U}$ $tr\frac{a \triangleleft U \quad \forall x \in U. (x \varepsilon U \Rightarrow x \triangleleft V)}{a \triangleleft V}$

Spatial intuition: the basic open a is covered by the union of basic opens in the subset U

Positivity Relation

$$a \ltimes U$$
 such that
 $\operatorname{corf} \frac{a \ltimes U}{a \,\varepsilon \, U} \operatorname{cotr} \frac{a \ltimes U}{a \ltimes V} \quad \forall b \in A \, . \, (b \ltimes U \Rightarrow b \,\varepsilon \, V)}{a \ltimes V}$

Spatial intuition: there exists a point in the basic open a whose basic neighbourhoods are all in U

+ a compatibility condition
$$\operatorname{cmp} \frac{a \ltimes V \quad a \triangleleft U}{\exists b \in A \, . \, b \triangleleft U \land b \varepsilon U}$$

(Co)Inductive methods in Formal Topology

A powerful method to generate the aforementioned relations is to consider a so-called *Axiom Set*

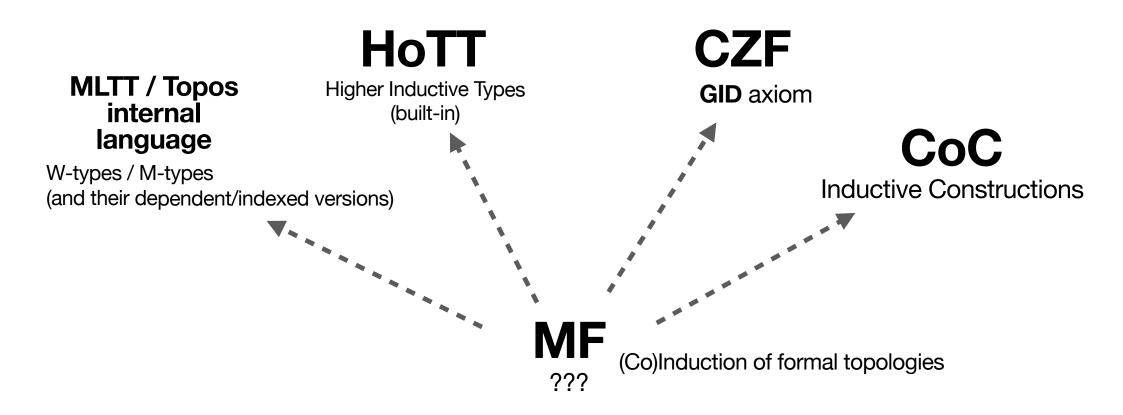
 $I(x) \text{ set } [x \in A]$ $S(x, y) \in \mathscr{P}(A) [x \in A, y \in I(x)]$

and then (co)inductively generate:

- the smallest basic cover satisfying $a \triangleleft S(a, i)$ for each $a \in A, i \in I(a)$
- the greatest positivity relation satisfying $a \ltimes S(a, i)$ for each $a \in A, i \in I(a)$ (compatibility follows for free)

Inductively generated formal topologies. Coquand, Sambin, Smith, and Valentini, 2003

(Co)Induction in the various foundations



Common pattern: least and greatest fixed point of an endofunctor

(Co)Induction and its logical interpretation

A set I(x) set $[x \in A]$ $S(x, y) \in \mathcal{P}(A)$ $[x \in A, y \in I(x)]$ $\Gamma, \Delta : \operatorname{Pred}(A) \to \operatorname{Pred}(A)$ $\Gamma(P)(a) := \exists i \in I(a) \forall b \in S(a, i) \cdot P(b)$ $\Delta(P)(a) := \forall i \in I(a) \exists b \in S(a, i) \cdot P(b)$

We postulate the existence of two A-subsets:

- Ind: the least fixed point of Γ the provables
- Colnd: the greatest fixed point of Δ the confutables



Relation between (Co)Inductions

A set I(x) set $[x \in A]$ $S(x, y) \in \mathscr{P}(A)$ $[x \in A, y \in I(x)]$

According to... ...it is an

Type Theory Indexed Container

Set Theory (CZF) (Co)Inductive Definition (local and conclusion bounded)

Formal Topology Axiom Set

Minimalist Foundation *All the above!*

Relation to (Co)Inductive Topologies

Theorems.

MF + Ind is equivalent to **MF** + inductive \triangleleft

MF + CoInd *is equivalent to* **MF** + coinductive ⋉

Equivalent here means that the two constructors' rules are mutually derivable.

In this way, the +Ind+CoInd extension inherits:

- extension of the setoid interpretation linking the two levels;
- an interpretation in $CZF + REA_{||} + RDC;$
- a realizability interpretation of the extended intensional level.

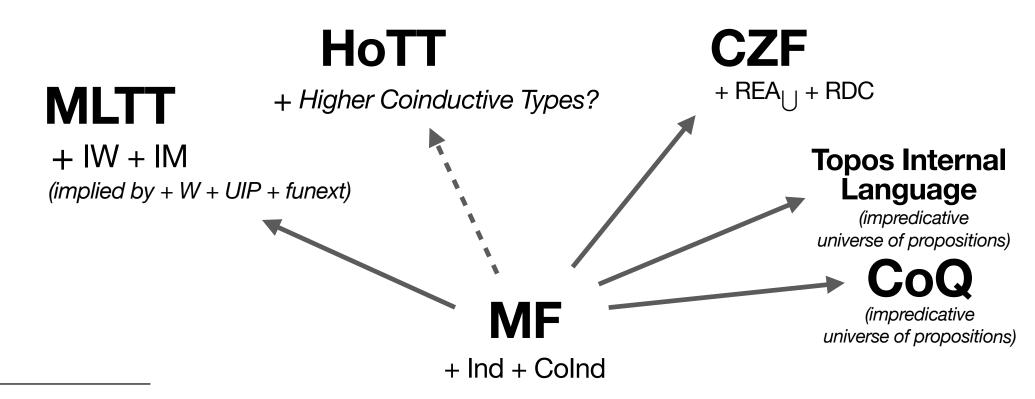
Inductive and Coinductive Topological Generation with Church's thesis and the Axiom of Choice M. E. Maietti, S. Maschio, M. Rathjen, 2021

Relation to W-types/M-types

Theorems.

Compatible means that there exists an interpretation preserving the meaning of the logical and mathematical entities.

Compatibility of (Co)Induction



Indexed Containers

T. Altenkirch, N. Ghani, P. Hancock, C. McBride, P. Morris, 2014