The non-normal abyss in Kleene's Computability Theory

Sam Sanders (jww Dag Normann)

Department of Philosophy II, RUB Bochum, Germany

CCC23, Kyoto, Sept. 25, 2023

In a nutshell, this talk reports on my joint project with Dag Normann (U. of Oslo) on the computability theory of the uncountable.

In a nutshell, this talk reports on my joint project with Dag Normann (U. of Oslo) on the computability theory of the uncountable.

Kleene's higher-order computability theory based on S1-S9 and its recent lambda calculus formulation due to the authors.

In a nutshell, this talk reports on my joint project with Dag Normann (U. of Oslo) on the computability theory of the uncountable.

Kleene's higher-order computability theory based on S1-S9 and its recent lambda calculus formulation due to the authors.

The main message: there are computational operations that are mathematically extremely close but logically extremely different.

In a nutshell, this talk reports on my joint project with Dag Normann (U. of Oslo) on the computability theory of the uncountable.

Kleene's higher-order computability theory based on S1-S9 and its recent lambda calculus formulation due to the authors.

The main message: there are computational operations that are mathematically extremely close but logically extremely different.

How different? Computable in Kleene's quantifier \exists^2 (\approx Turing jump) versus computable in Kleene's \exists^3 (\approx SOA) but not in weaker oracles.

In a nutshell, this talk reports on my joint project with Dag Normann (U. of Oslo) on the computability theory of the uncountable.

Kleene's higher-order computability theory based on S1-S9 and its recent lambda calculus formulation due to the authors.

The main message: there are computational operations that are mathematically extremely close but logically extremely different.

How different? Computable in Kleene's quantifier \exists^2 (\approx Turing jump) versus computable in Kleene's \exists^3 (\approx SOA) but not in weaker oracles.

Why? The ' \exists^2 -side' deals (exactly) with function classes that have a built-in approximation-device for function values

Kleene computability theory ●○○○○○○ Exploring the abyss

Turing

Exploring the abyss

Turing

Turing's 'machine' framework (1936): first intuitively convincing notion of computing with real numbers (Entscheidungsproblem).

Exploring the abyss

Turing

Turing's 'machine' framework (1936): first intuitively convincing notion of computing with real numbers (Entscheidungsproblem). Complexity theory studies computation with restricted resources.

Exploring the abyss

Turing

Turing's 'machine' framework (1936): first intuitively convincing notion of computing with real numbers (Entscheidungsproblem). Complexity theory studies computation with restricted resources. Turing machines may or may not produce an output after finitely

many steps: partiality and the Halting problem.

Kleene computability theory $0 \bullet 00000$

Exploring the abyss

Turing and Kleene

Exploring the abyss

Turing and Kleene

Kleene's S1-S9 are computation schemes that formalise X is computable in Y

for objects X, Y of finite type (essentially most of ordinary math).

Exploring the abyss

Turing and Kleene

Kleene's S1-S9 are computation schemes that formalise X is computable in Y

for objects X, Y of finite type (essentially most of ordinary math). S1-S9-computability extends Turing computability; the latter is restricted to X, Y being real numbers.

Exploring the abyss

Turing and Kleene

Kleene's S1-S9 are computation schemes that formalise

X is computable in Y

for objects X, Y of finite type (essentially most of ordinary math).

S1-S9-computability extends Turing computability; the latter is restricted to X, Y being real numbers.

S1-S8 merely provide a kind of primitive recursion while S9 hard-codes the recursion theorem in an ad hoc way.

Exploring the abyss

For details, consult:

Exploring the abyss

A lambda calculus capturing S1-S9

Computation can be based on fixed point operators (Moschovakis).

Computation can be based on fixed point operators (Moschovakis).

For Kleene's S1-S9, the 'is less partial than'-order is essential:

Computation can be based on fixed point operators (Moschovakis).

For Kleene's S1-S9, the 'is less partial than'-order is essential:

 $x^{\sigma} \preceq_{\sigma} y^{\sigma}$ means: the graph of x is included in the graph of y.

Computation can be based on fixed point operators (Moschovakis). For Kleene's S1-S9, the 'is less partial than'-order is essential: $x^{\sigma} \leq_{\sigma} y^{\sigma}$ means: the graph of x is included in the graph of y. $s^{\sigma \to \tau}$ is monotone if: $x \leq_{\sigma} y$ implies $s(x) \leq_{\tau} s(y)$ for all x^{σ}, y^{σ} .

Computation can be based on fixed point operators (Moschovakis). For Kleene's S1-S9, the 'is less partial than'-order is essential: $x^{\sigma} \leq_{\sigma} y^{\sigma}$ means: the graph of x is included in the graph of y. $s^{\sigma \to \tau}$ is monotone if: $x \leq_{\sigma} y$ implies $s(x) \leq_{\tau} s(y)$ for all x^{σ}, y^{σ} . For monotone $s^{\sigma \to \sigma}$, $\mu x^{\sigma}.s(x)$ is the least fixed point of s, i.e.

Computation can be based on fixed point operators (Moschovakis). For Kleene's S1-S9, the 'is less partial than'-order is essential: $x^{\sigma} \preceq_{\sigma} y^{\sigma}$ means: the graph of x is included in the graph of y. $s^{\sigma \to \tau}$ is monotone if: $x \preceq_{\sigma} y$ implies $s(x) \preceq_{\tau} s(y)$ for all x^{σ}, y^{σ} . For monotone $s^{\sigma \to \sigma}$, $\mu x^{\sigma}.s(x)$ is the least fixed point of s, i.e.

 $s(\mu x^{\sigma}.s(x)) = \mu x^{\sigma}.s(x) \text{ and } s(y) = y \rightarrow \mu x^{\sigma}.s(x) \preceq_{\sigma} y,$

Computation can be based on fixed point operators (Moschovakis). For Kleene's S1-S9, the 'is less partial than'-order is essential: $x^{\sigma} \preceq_{\sigma} y^{\sigma}$ means: the graph of x is included in the graph of y. $s^{\sigma \to \tau}$ is monotone if: $x \preceq_{\sigma} y$ implies $s(x) \preceq_{\tau} s(y)$ for all x^{σ}, y^{σ} . For monotone $s^{\sigma \to \sigma}$, $\mu x^{\sigma} . s(x)$ is the least fixed point of s, i.e.

$$s(\mu x^{\sigma}.s(x)) = \mu x^{\sigma}.s(x) \text{ and } s(y) = y \rightarrow \mu x^{\sigma}.s(x) \preceq_{\sigma} y,$$

Kleene's S1-S9 is captured by: S1-S8 (primitive recursion) plus λ -abstraction plus the μ^{σ} -operator for all finite types.

Computation can be based on fixed point operators (Moschovakis). For Kleene's S1-S9, the 'is less partial than'-order is essential: $x^{\sigma} \preceq_{\sigma} y^{\sigma}$ means: the graph of x is included in the graph of y. $s^{\sigma \to \tau}$ is monotone if: $x \preceq_{\sigma} y$ implies $s(x) \preceq_{\tau} s(y)$ for all x^{σ}, y^{σ} . For monotone $s^{\sigma \to \sigma}$, $\mu x^{\sigma} . s(x)$ is the least fixed point of s, i.e.

$$s(\mu x^{\sigma}.s(x)) = \mu x^{\sigma}.s(x) \text{ and } s(y) = y \rightarrow \mu x^{\sigma}.s(x) \preceq_{\sigma} y,$$

Kleene's S1-S9 is captured by: S1-S8 (primitive recursion) plus λ -abstraction plus the μ^{σ} -operator for all finite types.

Many functionals that 'occur in nature' are partial but take total arguments; our lambda calculus is designed for the study of those.

Computation can be based on fixed point operators (Moschovakis). For Kleene's S1-S9, the 'is less partial than'-order is essential: $x^{\sigma} \preceq_{\sigma} y^{\sigma}$ means: the graph of x is included in the graph of y. $s^{\sigma \to \tau}$ is monotone if: $x \preceq_{\sigma} y$ implies $s(x) \preceq_{\tau} s(y)$ for all x^{σ}, y^{σ} . For monotone $s^{\sigma \to \sigma}$, $\mu x^{\sigma} . s(x)$ is the least fixed point of s, i.e.

$$s(\mu x^{\sigma}.s(x)) = \mu x^{\sigma}.s(x) \text{ and } s(y) = y \rightarrow \mu x^{\sigma}.s(x) \preceq_{\sigma} y,$$

Kleene's S1-S9 is captured by: S1-S8 (primitive recursion) plus λ -abstraction plus the μ^{σ} -operator for all finite types.

Many functionals that 'occur in nature' are partial but take total arguments; our lambda calculus is designed for the study of those.

Normann-Sanders, JLC22, https://arxiv.org/abs/2203.05250.

Exploring the abyss

Why study Kleene's computability theory?

Kleene's S1-S9 provides a/the most general model of computation for objects of finite type.

Kleene's S1-S9 provides a/the most general model of computation for objects of finite type.

It also has a unique closure property called Gandy selection, essentially a computational version of the Axiom of Choice.

Kleene's S1-S9 provides a/the most general model of computation for objects of finite type.

It also has a unique closure property called Gandy selection, essentially a computational version of the Axiom of Choice.

$$(\forall x^{\sigma})(\exists y^{\tau})A(x,y) \rightarrow (\exists F^{\sigma \to \tau}) (\forall x^{\sigma})A(x,F(x)).$$

choice function

Kleene's S1-S9 provides a/the most general model of computation for objects of finite type.

It also has a unique closure property called Gandy selection, essentially a computational version of the Axiom of Choice.

$$(\forall x^{\sigma})(\exists y^{\tau})A(x,y) \rightarrow (\exists F^{\sigma \to \tau}) (\forall x^{\sigma})A(x,F(x)).$$

choice function

Under certain restrictions, Gandy selection (and variations) guarantees:

Kleene's S1-S9 provides a/the most general model of computation for objects of finite type.

It also has a unique closure property called Gandy selection, essentially a computational version of the Axiom of Choice.

$$(\forall x^{\sigma})(\exists y^{\tau})A(x,y) \rightarrow \underbrace{(\exists F^{\sigma \to \tau})}_{\text{choice function}} (\forall x^{\sigma})A(x,F(x)).$$

Under certain restrictions, Gandy selection (and variations) guarantees:

$$(\forall \text{ computable } x^{\sigma})(\exists \text{ computable } y^{\tau}) \underbrace{A(x, y)}_{\text{decidable}}$$

Kleene's S1-S9 provides a/the most general model of computation for objects of finite type.

It also has a unique closure property called Gandy selection, essentially a computational version of the Axiom of Choice.

$$(\forall x^{\sigma})(\exists y^{\tau})A(x,y) \rightarrow \underbrace{(\exists F^{\sigma \to \tau})}_{\text{choice function}} (\forall x^{\sigma})A(x,F(x)).$$

Under certain restrictions, Gandy selection (and variations) guarantees:

$$(\forall \text{ computable } x^{\sigma})(\exists \text{ computable } y^{\tau}) \underbrace{A(x, y)}_{\text{decidable}}$$

 $(\exists \text{ computable } F^{\sigma \to \tau})(\forall \text{ computable } x^{\sigma})A(x, F(x)).$

The Halting problem/Turing jump has the following counterpart:

The Halting problem/Turing jump has the following counterpart:

 $(\forall f:\mathbb{N}\to\mathbb{N})(\exists^2(f)=0\leftrightarrow(\exists n\in\mathbb{N})(f(n)=0)).$

The Halting problem/Turing jump has the following counterpart:

 $(\forall f:\mathbb{N}\to\mathbb{N})(\exists^2(f)=0\leftrightarrow(\exists n\in\mathbb{N})(f(n)=0)).$

Kleene's quantifier \exists^2 is discontinuous at $f = 11 \dots$

The Halting problem/Turing jump has the following counterpart:

$$(orall f:\mathbb{N} o\mathbb{N})(\exists^2(f)=0\leftrightarrow(\exists n\in\mathbb{N})(f(n)=0)).$$

Kleene's quantifier \exists^2 is discontinuous at f = 11...

Similarly: S_k^2 decides the truth of $\varphi \in \prod_k^1$ (Sieg-Feferman).

The Halting problem/Turing jump has the following counterpart:

$$(orall f:\mathbb{N} o\mathbb{N})(\exists^2(f)=0\leftrightarrow(\exists n\in\mathbb{N})(f(n)=0)).$$

Kleene's quantifier \exists^2 is discontinuous at $f = 11 \dots$

Similarly: S_k^2 decides the truth of $\varphi \in \prod_k^1$ (Sieg-Feferman).

The 'hyperjump' functional S_1^2 is called the Suslin functional.

The Halting problem/Turing jump has the following counterpart:

$$(orall f:\mathbb{N} o\mathbb{N})(\exists^2(f)=0\leftrightarrow(\exists n\in\mathbb{N})(f(n)=0)).$$

Kleene's quantifier \exists^2 is discontinuous at f = 11...Similarly: S_k^2 decides the truth of $\varphi \in \prod_k^1$ (Sieg-Feferman). The 'hyperjump' functional S_1^2 is called the Suslin functional. Everything we do is computable in Kleene's quantifier \exists^3 :

 $(\forall Y: \mathbb{N}^{\mathbb{N}} \to \mathbb{N})(\exists^{3}(Y) = 0 \leftrightarrow (\exists f \in \mathbb{N}^{\mathbb{N}})(Y(f) = 0)).$

which yields full second-order arithmetic.

The Halting problem/Turing jump has the following counterpart:

$$(orall f:\mathbb{N} o\mathbb{N})(\exists^2(f)=0\leftrightarrow(\exists n\in\mathbb{N})(f(n)=0)).$$

Kleene's quantifier \exists^2 is discontinuous at f = 11...Similarly: S_k^2 decides the truth of $\varphi \in \prod_k^1$ (Sieg-Feferman). The 'hyperjump' functional S_1^2 is called the Suslin functional. Everything we do is computable in Kleene's quantifier \exists^3 :

$$(\forall Y: \mathbb{N}^{\mathbb{N}} \to \mathbb{N})(\exists^3(Y) = 0 \leftrightarrow (\exists f \in \mathbb{N}^{\mathbb{N}})(Y(f) = 0)).$$

which yields full second-order arithmetic.

Historically, the focus of Kleene's computability theory was normal functionals (which compute \exists^2 or \exists^3).

The Halting problem/Turing jump has the following counterpart:

 $(\forall f: \mathbb{N} \to \mathbb{N})(\exists^2 (f) = 0 \leftrightarrow (\exists n \in \mathbb{N})(f(n) = 0)).$

Kleene's quantifier \exists^2 is discontinuous at f = 11...Similarly: S_k^2 decides the truth of $\varphi \in \prod_k^1$ (Sieg-Feferman). The 'hyperjump' functional S_1^2 is called the Suslin functional. Everything we do is computable in Kleene's quantifier \exists^3 :

 $(\forall Y : \mathbb{N}^{\mathbb{N}} \to \mathbb{N})(\exists^{3}(Y) = 0 \leftrightarrow (\exists f \in \mathbb{N}^{\mathbb{N}})(Y(f) = 0)).$

which yields full second-order arithmetic.

Historically, the focus of Kleene's computability theory was normal functionals (which compute \exists^2 or \exists^3). (Hilbert-Bernays, Tait)

Kleene's quantifiers \exists^2 and \exists^3 :

$$(orall f:\mathbb{N}\to\mathbb{N})(\exists^2(f)=0\leftrightarrow(\exists n\in\mathbb{N})(f(n)=0)).$$

 $(orall Y:\mathbb{N}^{\mathbb{N}}\to\mathbb{N})(\exists^3(Y)=0\leftrightarrow(\exists f\in\mathbb{N}^{\mathbb{N}})(Y(f)=0)).$

Kleene's quantifiers \exists^2 and \exists^3 :

 $(orall f:\mathbb{N}\to\mathbb{N})(\exists^2(f)=0\leftrightarrow(\exists n\in\mathbb{N})(f(n)=0)).$ $(orall Y:\mathbb{N}^{\mathbb{N}}\to\mathbb{N})(\exists^3(Y)=0\leftrightarrow(\exists f\in\mathbb{N}^{\mathbb{N}})(Y(f)=0)).$

Huge abyss between \exists^2 and \exists^3 in terms of computational strength.

Kleene's quantifiers \exists^2 and \exists^3 :

 $(\forall f:\mathbb{N}\to\mathbb{N})(\exists^2(f)=0\leftrightarrow(\exists n\in\mathbb{N})(f(n)=0)).$

 $(\forall Y: \mathbb{N}^{\mathbb{N}} \to \mathbb{N})(\exists^3(Y) = 0 \leftrightarrow (\exists f \in \mathbb{N}^{\mathbb{N}})(Y(f) = 0)).$

Huge abyss between \exists^2 and \exists^3 in terms of computational strength. This talk:

(a) we identify basic (non-normal) functionals that are computable in \exists^2

Kleene's quantifiers \exists^2 and \exists^3 :

 $(\forall f:\mathbb{N}\to\mathbb{N})(\exists^2(f)=0\leftrightarrow(\exists n\in\mathbb{N})(f(n)=0)).$

 $(\forall Y: \mathbb{N}^{\mathbb{N}} \to \mathbb{N})(\exists^3(Y) = 0 \leftrightarrow (\exists f \in \mathbb{N}^{\mathbb{N}})(Y(f) = 0)).$

Huge abyss between \exists^2 and \exists^3 in terms of computational strength. This talk:

- (a) we identify basic (non-normal) functionals that are computable in \exists^2
- (b) and for which slight variations are computable in ∃³ but not computable in any functional S²_k (which decides Π¹_k-formulas).

Kleene's quantifiers \exists^2 and \exists^3 :

 $(\forall f:\mathbb{N}\to\mathbb{N})(\exists^2(f)=0\leftrightarrow(\exists n\in\mathbb{N})(f(n)=0)).$

 $(\forall Y: \mathbb{N}^{\mathbb{N}} \to \mathbb{N})(\exists^3(Y) = 0 \leftrightarrow (\exists f \in \mathbb{N}^{\mathbb{N}})(Y(f) = 0)).$

Huge abyss between \exists^2 and \exists^3 in terms of computational strength. This talk:

- (a) we identify basic (non-normal) functionals that are computable in \exists^2
- (b) and for which slight variations are computable in ∃³ but not computable in any functional S²_k (which decides Π¹_k-formulas).

Item (a) deals (exactly) with definitions that have a built-in approximation-device for function values.

We always study $f : [0,1] \rightarrow \mathbb{R}$ for well-known function classes.

We always study $f : [0,1] \rightarrow \mathbb{R}$ for well-known function classes.

f is regulated (aka regular) if the left and right limits f(x-) and f(x+) exist everywhere.

We always study $f : [0,1] \rightarrow \mathbb{R}$ for well-known function classes.

f is regulated (aka regular) if the left and right limits f(x-) and f(x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e. f(x) = f(x+) everywhere.

We always study $f : [0,1] \rightarrow \mathbb{R}$ for well-known function classes.

f is regulated (aka regular) if the left and right limits f(x-) and f(x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e. f(x) = f(x+) everywhere.

Both have (at most) countably many points of discontinuity and a rich history (PDE, probability, Bourbaki, Scheeffer, ...).

We always study $f : [0,1] \rightarrow \mathbb{R}$ for well-known function classes.

f is regulated (aka regular) if the left and right limits f(x-) and f(x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e. f(x) = f(x+) everywhere.

 $\exists^2 \text{ computes sup}_{x \in [p,q]} f(x) \text{ for any cadlag } f : [0,1] \to \mathbb{R} \text{ and } p, q \in [0,1].$

We always study $f : [0,1] \rightarrow \mathbb{R}$ for well-known function classes.

f is regulated (aka regular) if the left and right limits f(x-) and f(x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e. f(x) = f(x+) everywhere.

 $\exists^2 \text{ computes sup}_{x \in [p,q]} f(x) \text{ for any cadlag } f : [0,1] \to \mathbb{R} \text{ and } p, q \in [0,1].$

 $\exists^3 \text{ computes } \sup_{x \in [p,q]} f(x) \text{ for any regulated } f : [0,1] \to \mathbb{R} \text{ and } p, q \in [0,1].$

We always study $f : [0,1] \rightarrow \mathbb{R}$ for well-known function classes.

f is regulated (aka regular) if the left and right limits f(x-) and f(x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e. f(x) = f(x+) everywhere.

 $\exists^2 \text{ computes sup}_{x \in [p,q]} f(x) \text{ for any cadlag } f : [0,1] \to \mathbb{R} \text{ and } p, q \in [0,1].$

 $\exists^3 \text{ computes } \sup_{x \in [p,q]} f(x) \text{ for any regulated } f : [0,1] \to \mathbb{R} \text{ and } p, q \in [0,1].$

Sharp: the functional S_k^2 , which decides \prod_k^1 -formulas, cannot in general compute suprema for regulated functions (holds for any k).

We always study $f : [0,1] \rightarrow \mathbb{R}$ for well-known function classes.

f is regulated (aka regular) if the left and right limits f(x-) and f(x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e. f(x) = f(x+) everywhere.

 $\exists^2 \text{ computes sup}_{x \in [p,q]} f(x) \text{ for any cadlag } f : [0,1] \to \mathbb{R} \text{ and } p, q \in [0,1].$

 $\exists^3 \text{ computes } \sup_{x \in [p,q]} f(x) \text{ for any regulated } f : [0,1] \to \mathbb{R} \text{ and } p, q \in [0,1].$

Sharp: the functional S_k^2 , which decides $\prod_{k=1}^{1}$ -formulas, cannot in general compute suprema for regulated functions (holds for any k).

NB: right-continuity as in f(x) = f(x-) allows us to approximate f(x) given only f(q) for all $q \in \mathbb{Q} \cap [0, 1]$.

Baire 1 means: pointwise limit of sequence of continuous functions.

Baire 1 means: pointwise limit of sequence of continuous functions. Baire 2 means: pointwise limit of sequence of Baire 1 functions.

Baire 1 means: pointwise limit of sequence of continuous functions. Baire 2 means: pointwise limit of sequence of Baire 1 functions. Effectively Baire 2 means: iterated limit of double sequence of continuous functions (\approx second-order codes for Baire 2).

Baire 1 means: pointwise limit of sequence of continuous functions. Baire 2 means: pointwise limit of sequence of Baire 1 functions. Effectively Baire 2 means: iterated limit of double sequence of continuous functions (\approx second-order codes for Baire 2). Baire (1905) notes that Baire 2 functions can be represented as iterated limits.

Baire 1 means: pointwise limit of sequence of continuous functions. Baire 2 means: pointwise limit of sequence of Baire 1 functions. Effectively Baire 2 means: iterated limit of double sequence of continuous functions (\approx second-order codes for Baire 2).

 $\exists^2 \text{ computes sup}_{x \in [p,q]} f(x) \text{ given Baire 1 } f:[0,1] \to [0,1],$ $p,q \in [0,1], \text{ and the associated sequence of continuous functions.}$

Baire 1 means: pointwise limit of sequence of continuous functions. Baire 2 means: pointwise limit of sequence of Baire 1 functions. Effectively Baire 2 means: iterated limit of double sequence of continuous functions (\approx second-order codes for Baire 2).

 $\exists^2 \text{ computes sup}_{x \in [p,q]} f(x) \text{ given Baire 1 } f:[0,1] \to [0,1],$ $p,q \in [0,1], \text{ and the associated sequence of continuous functions.}$ $\exists^3 \text{ computes sup}_{x \in [p,q]} f(x) \text{ given Baire 2 } f:[0,1] \to [0,1],$ $p,q \in [0,1], \text{ and the associated sequence of Baire 1 functions.}$

Baire 1 means: pointwise limit of sequence of continuous functions. Baire 2 means: pointwise limit of sequence of Baire 1 functions. Effectively Baire 2 means: iterated limit of double sequence of continuous functions (\approx second-order codes for Baire 2).

 \exists^2 computes $\sup_{x \in [p,q]} f(x)$ given Baire 1 $f : [0,1] \to [0,1]$, $p, q \in [0,1]$, and the associated sequence of continuous functions. \exists^3 computes $\sup_{x \in [p,q]} f(x)$ given Baire 2 $f : [0,1] \to [0,1]$, $p, q \in [0,1]$, and the associated sequence of Baire 1 functions. Sharp: the functional S_k^2 , which decides \prod_k^1 -formulas, cannot in general compute suprema for Baire 2 functions (holds for any k).

Baire 1 means: pointwise limit of sequence of continuous functions. Baire 2 means: pointwise limit of sequence of Baire 1 functions. Effectively Baire 2 means: iterated limit of double sequence of continuous functions (\approx second-order codes for Baire 2).

 $\exists^2 \text{ computes sup}_{x \in [p,q]} f(x) \text{ given Baire } 1 f : [0,1] \rightarrow [0,1],$ $p, q \in [0, 1]$, and the associated sequence of continuous functions. \exists^3 computes $\sup_{x \in [p,q]} f(x)$ given Baire 2 $f : [0,1] \to [0,1]$, $p, q \in [0, 1]$, and the associated sequence of Baire 1 functions. Sharp: the functional S_k^2 , which decides $\prod_{k=1}^{1}$ -formulas, cannot in general compute suprema for Baire 2 functions (holds for any k). Borderline: the Suslin functional S_1^2 computes $\sup_{x \in [p,a]} f(x)$ given effectively Baire 2 $f: [0,1] \rightarrow [0,1]$, $p,q \in [0,1]$, and the associated double sequence of continuous functions.

Kleene computability theory

Exploring the abyss

Out there: quasi-continuity and around

f is quasi-continuous if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ with $(\forall y \in (a, b))(|f(x) - f(y)| < \epsilon)$.

f is quasi-continuous if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ with $(\forall y \in (a, b))(|f(x) - f(y)| < \epsilon)$. *f* is cliquish if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ such that $(\forall y, z \in (a, b))(|f(z) - f(y)| < \epsilon)$.

f is quasi-continuous if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ with $(\forall y \in (a, b))(|f(x) - f(y)| < \epsilon)$. *f* is cliquish if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ such that $(\forall y, z \in (a, b))(|f(z) - f(y)| < \epsilon)$. Some properties:

• Studied by Baire, Volterra, Hankel, ... starting ca 1870.

f is quasi-continuous if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ with $(\forall y \in (a, b))(|f(x) - f(y)| < \epsilon)$. *f* is cliquish if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ such that $(\forall y, z \in (a, b))(|f(z) - f(y)| < \epsilon)$. Some properties:

- Studied by Baire, Volterra, Hankel, ... starting ca 1870.
- Cliquish = continuity points are dense = pointwise discontinuous.

f is quasi-continuous if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ with $(\forall y \in (a, b))(|f(x) - f(y)| < \epsilon)$. *f* is cliquish if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ such that $(\forall y, z \in (a, b))(|f(z) - f(y)| < \epsilon)$.

Some properties:

- Studied by Baire, Volterra, Hankel, ... starting ca 1870.
- Cliquish = continuity points are dense = pointwise discontinuous.
- There are $2^{|\mathbb{R}|}$ non-measurable quasi-cont. functions and $2^{|\mathbb{R}|}$ non-Borel measurable quasi-cont. functions.

f is quasi-continuous if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ with $(\forall y \in (a, b))(|f(x) - f(y)| < \epsilon)$. *f* is cliquish if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ such that $(\forall y, z \in (a, b))(|f(z) - f(y)| < \epsilon)$.

Some properties:

- Studied by Baire, Volterra, Hankel, ... starting ca 1870.
- Cliquish = continuity points are dense = pointwise discontinuous.
- There are $2^{|\mathbb{R}|}$ non-measurable quasi-cont. functions and $2^{|\mathbb{R}|}$ non-Borel measurable quasi-cont. functions.
- Closely related: every cliquish function is the sum of two quasi-continuous functions (on the reals).

f is quasi-continuous if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ with $(\forall y \in (a, b))(|f(x) - f(y)| < \epsilon)$. *f* is cliquish if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ such that $(\forall y, z \in (a, b))(|f(z) - f(y)| < \epsilon)$. Closely related: every cliquish function is the sum of two

quasi-continuous functions (on the reals).

f is quasi-continuous if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ with $(\forall y \in (a, b))(|f(x) - f(y)| < \epsilon)$. f is cliquish if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ such that $(\forall y, z \in (a, b))(|f(z) - f(y)| < \epsilon)$. Closely related: every cliquish function is the sum of two quasi-continuous functions (on the reals).

 $\exists^2 \text{ computes } \sup_{x \in [p,q]} f(x) \text{ given } quasi-continuous } f: [0,1] \rightarrow [0,1], p,q \in [0,1].$

f is quasi-continuous if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ with $(\forall y \in (a, b))(|f(x) - f(y)| < \epsilon)$. *f* is cliquish if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ such that $(\forall y, z \in (a, b))(|f(z) - f(y)| < \epsilon)$. Closely related: every cliquish function is the sum of two quasi-continuous functions (on the reals).

 $\exists^2 \text{ computes sup}_{x \in [p,q]} f(x) \text{ given quasi-continuous}$ $f : [0,1] \rightarrow [0,1], p,q \in [0,1].$

 $\exists^3 \text{ computes } \sup_{x \in [p,q]} f(x) \text{ given cliquish } f : [0,1] \to [0,1], p, q \in [0,1].$

f is quasi-continuous if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ with $(\forall y \in (a, b))(|f(x) - f(y)| < \epsilon)$. *f* is cliquish if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ such that $(\forall y, z \in (a, b))(|f(z) - f(y)| < \epsilon)$. Closely related: every cliquish function is the sum of two

quasi-continuous functions (on the reals).

 $\exists^2 \text{ computes } \sup_{x \in [p,q]} f(x) \text{ given } quasi-continuous } f: [0,1] \rightarrow [0,1], p,q \in [0,1].$

 $\exists^3 \text{ computes } \sup_{x \in [p,q]} f(x) \text{ given cliquish } f : [0,1] \to [0,1], p, q \in [0,1].$

Sharp: the functional S_k^2 , which decides \prod_k^1 -formulas, cannot in general compute suprema for cliquish functions (holds for any k).

Quasi-continuity and around

f is quasi-continuous if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ with $(\forall y \in (a, b))(|f(x) - f(y)| < \epsilon)$. *f* is cliquish if for all $\epsilon > 0, N \in \mathbb{N}, x \in [0, 1]$, there is $(a, b) \subset B(x, \frac{1}{2^N})$ such that $(\forall y, z \in (a, b))(|f(z) - f(y)| < \epsilon)$.

Closely related: every cliquish function is the sum of two quasi-continuous functions (on the reals).

 $\exists^2 \text{ computes } \sup_{x \in [p,q]} f(x) \text{ given } quasi-continuous } f: [0,1] \rightarrow [0,1], p,q \in [0,1].$

 $\exists^3 \text{ computes } \sup_{x \in [p,q]} f(x) \text{ given cliquish } f : [0,1] \to [0,1], p, q \in [0,1].$

Sharp: the functional S_k^2 , which decides \prod_k^1 -formulas, cannot in general compute suprema for cliquish functions (holds for any k). Note that quasi-continuity allows us to approximate f(x) given only f(q) for all $q \in \mathbb{Q} \cap [0, 1]$. Kleene computability theory

 $\underset{0000 \bullet 00000}{\text{Exploring the abyss}}$

Decompositions of continuity

Kleene computability theory

Decompositions of continuity

continuity \leftrightarrow [weak continuity notion A + weak continuity notion B].

continuity \leftrightarrow [weak continuity notion A + weak continuity notion B]. Example: continuity \leftrightarrow [quasi-continuity + graph continuity].

continuity \leftrightarrow [weak continuity notion A + weak continuity notion B]. Example: continuity \leftrightarrow [quasi-continuity + graph continuity]. graph continuity: the closure of the graph contains the graph of a continuous function.

- $\mathsf{continuity} \leftrightarrow [\mathsf{weak} \ \mathsf{continuity} \ \mathsf{notion} \ \mathsf{A} + \mathsf{weak} \ \mathsf{continuity} \ \mathsf{notion} \ \mathsf{B}].$
- Example: continuity \leftrightarrow [quasi-continuity + graph continuity].
- graph continuity: the closure of the graph contains the graph of a continuous function.
- As before, \exists^2 computes $\sup_{x \in [p,q]} f(x)$ given quasi-continuous $f : [0,1] \rightarrow [0,1]$, $p, q \in [0,1]$.

- $\mathsf{continuity} \leftrightarrow [\mathsf{weak} \ \mathsf{continuity} \ \mathsf{notion} \ \mathsf{A} + \mathsf{weak} \ \mathsf{continuity} \ \mathsf{notion} \ \mathsf{B}].$
- Example: continuity \leftrightarrow [quasi-continuity + graph continuity].
- graph continuity: the closure of the graph contains the graph of a continuous function.
- As before, \exists^2 computes $\sup_{x \in [p,q]} f(x)$ given quasi-continuous $f : [0,1] \rightarrow [0,1]$, $p, q \in [0,1]$.

The supremum functional $\lambda f. \sup_{x \in [0,1]} f(x)$ for graph continuous $f : [0,1] \to \mathbb{R}$ is computable in \exists^3 , but not in weaker oracles.

 $\mathsf{continuity} \leftrightarrow [\mathsf{weak} \ \mathsf{continuity} \ \mathsf{notion} \ \mathsf{A} + \mathsf{weak} \ \mathsf{continuity} \ \mathsf{notion} \ \mathsf{B}].$

Example: continuity \leftrightarrow [quasi-continuity + graph continuity].

graph continuity: the closure of the graph contains the graph of a continuous function.

As before, \exists^2 computes $\sup_{x \in [p,q]} f(x)$ given quasi-continuous $f : [0,1] \rightarrow [0,1]$, $p, q \in [0,1]$.

The supremum functional $\lambda f. \sup_{x \in [0,1]} f(x)$ for graph continuous $f : [0,1] \to \mathbb{R}$ is computable in \exists^3 , but not in weaker oracles.

Many such decompositions exist, with numerous similar examples.

The supremum principle is not special; the same abyss is observed for other basic properties.

• Coverings lemmas (Cousin, Vitali, Heine-Borel, ...) for coverings $\bigcup_{x \in [0,1]} B(x, \Psi(x))$ and $\Psi : [0,1] \to \mathbb{R}^+$.

- Coverings lemmas (Cousin, Vitali, Heine-Borel, ...) for coverings $\bigcup_{x \in [0,1]} B(x, \Psi(x))$ and $\Psi : [0,1] \to \mathbb{R}^+$.
- Finding an RM-code for the set of continuity points C_f .

- Coverings lemmas (Cousin, Vitali, Heine-Borel, ...) for coverings $\bigcup_{x \in [0,1]} B(x, \Psi(x))$ and $\Psi : [0,1] \to \mathbb{R}^+$.
- Finding an RM-code for the set of continuity points C_f .
- Deciding whether f is continuous at a given real $x \in [0, 1]$.

- Coverings lemmas (Cousin, Vitali, Heine-Borel, ...) for coverings ∪_{x∈[0,1]}B(x, Ψ(x)) and Ψ : [0,1] → ℝ⁺.
- Finding an RM-code for the set of continuity points C_f .
- Deciding whether f is continuous at a given real $x \in [0, 1]$.
- Jordan decomposition theorem.

The supremum principle is not special; the same abyss is observed for other basic properties.

- Coverings lemmas (Cousin, Vitali, Heine-Borel, ...) for coverings ∪_{x∈[0,1]}B(x, Ψ(x)) and Ψ : [0,1] → ℝ⁺.
- Finding an RM-code for the set of continuity points C_f .
- Deciding whether f is continuous at a given real $x \in [0, 1]$.
- Jordan decomposition theorem.
- For a Riemann integrable $f : [0,1] \rightarrow [0,1]$ with $\int_0^1 f(x) dx = 0$, find $x \in [0,1]$ such that f(x) = 0.

• . . .

The supremum principle is not special; the same abyss is observed for other basic properties.

- Coverings lemmas (Cousin, Vitali, Heine-Borel, ...) for coverings ∪_{x∈[0,1]}B(x, Ψ(x)) and Ψ : [0,1] → ℝ⁺.
- Finding an RM-code for the set of continuity points C_f .
- Deciding whether f is continuous at a given real $x \in [0, 1]$.
- Jordan decomposition theorem.
- For a Riemann integrable $f : [0,1] \rightarrow [0,1]$ with $\int_0^1 f(x) dx = 0$, find $x \in [0,1]$ such that f(x) = 0.
- ...

Finally, how do we prove our negative results?

Cantor's first set theory paper (1874): uncountability of \mathbb{R} .

Cantor's first set theory paper (1874): uncountability of \mathbb{R} .

Cantor realisers (CR) perform the following associated operation:

Cantor's first set theory paper (1874): uncountability of \mathbb{R} .

Cantor realisers (CR) perform the following associated operation: on input a countable set $X \subset \mathbb{R}$, output an element $y \in \mathbb{R} \setminus X$.

Cantor's first set theory paper (1874): uncountability of \mathbb{R} .

Cantor realisers (CR) perform the following associated operation: on input a countable set $X \subset \mathbb{R}$, output an element $y \in \mathbb{R} \setminus X$.

A countable set $X \subset \mathbb{R}$ is a pair (X, Y) where $Y : \mathbb{R} \to \mathbb{N}$ is assumed to be injective (or even bijective) on X.

Cantor's first set theory paper (1874): uncountability of \mathbb{R} .

Cantor realisers (CR) perform the following associated operation:

on input a countable set $X \subset \mathbb{R}$, output an element $y \in \mathbb{R} \setminus X$.

A countable set $X \subset \mathbb{R}$ is a pair (X, Y) where $Y : \mathbb{R} \to \mathbb{N}$ is assumed to be injective (or even bijective) on X.

 \exists^3 can compute a CR, but S_k^2 cannot compute a CR (hold for any k).

Cantor realisers

Cantor realisers (CR) perform the following operation:

on input a countable set $A \subset \mathbb{R}$, output an element $y \in \mathbb{R} \setminus X$.

A countable set $X \subset \mathbb{R}$ is a pair (X, Y) where $Y : \mathbb{R} \to \mathbb{N}$ is injective (or even bijective) on X.

 \exists^3 can compute a CR, but no S_k^2 can compute a CR.

Cantor realisers

Cantor realisers (CR) perform the following operation:

on input a countable set $A \subset \mathbb{R}$, output an element $y \in \mathbb{R} \setminus X$.

A countable set $X \subset \mathbb{R}$ is a pair (X, Y) where $Y : \mathbb{R} \to \mathbb{N}$ is injective (or even bijective) on X.

 \exists^3 can compute a CR, but no S_k^2 can compute a CR.

Our negative results are obtained by computing a CR from the functionals at hand

Cantor realisers

Cantor realisers (CR) perform the following operation:

on input a countable set $A \subset \mathbb{R}$, output an element $y \in \mathbb{R} \setminus X$.

A countable set $X \subset \mathbb{R}$ is a pair (X, Y) where $Y : \mathbb{R} \to \mathbb{N}$ is injective (or even bijective) on X.

 \exists^3 can compute a CR, but no S_k^2 can compute a CR.

Our negative results are obtained by computing a CR from the functionals at hand using:

$$f(x) := \begin{cases} \frac{1}{2^{Y(x)+1}} & \text{if } x \in X \\ 0 & \text{otherwise} \end{cases}$$

which is BV, semi-continuous, cliquish, ... and is found in the literature.

The abyss:

- (a) there are basic (non-normal) functionals that are computable in \exists^2 .
- (b) and for which slight variations are computable in \exists^3 , but not computable in S_k^2 .

The abyss:

- (a) there are basic (non-normal) functionals that are computable in \exists^2 .
- (b) and for which slight variations are computable in \exists^3 , but not computable in S_k^2 .

Its origin: item (a) deals exactly with definitions that have a built-in approximation-device for function values.

The abyss:

- (a) there are basic (non-normal) functionals that are computable in \exists^2 .
- (b) and for which slight variations are computable in \exists^3 , but not computable in S_k^2 .

Its origin: item (a) deals exactly with definitions that have a built-in approximation-device for function values.

• Like item (a): Baire 1, effectively Baire *n*, normalised bounded variation, regulated such that $f(x) = \frac{f(x-)+f(x+)}{2}$ everywhere.

The abyss:

- (a) there are basic (non-normal) functionals that are computable in \exists^2 .
- (b) and for which slight variations are computable in \exists^3 , but not computable in S_k^2 .

Its origin: item (a) deals exactly with definitions that have a built-in approximation-device for function values.

- Like item (a): Baire 1, effectively Baire *n*, normalised bounded variation, regulated such that $f(x) = \frac{f(x-)+f(x+)}{2}$ everywhere.
- Like item (b): simple continuity, semi-continuity, fragmented, bounded variation, Baire 1^{*}, F_{σ} -measurable.

The abyss:

- (a) there are basic (non-normal) functionals that are computable in \exists^2 .
- (b) and for which slight variations are computable in \exists^3 , but not computable in S_k^2 .

Its origin: item (a) deals exactly with definitions that have a built-in approximation-device for function values.

- Like item (a): Baire 1, effectively Baire *n*, normalised bounded variation, regulated such that $f(x) = \frac{f(x-)+f(x+)}{2}$ everywhere.
- Like item (b): simple continuity, semi-continuity, fragmented, bounded variation, Baire 1^{*}, F_{σ} -measurable.

Mathematically close (or equivalent) notions can land on either side of the abyss!

Kleene computability theory

Exploring the abyss 000000000

Thanks! Questions?

Funded by the Klaus Tschira Foundation, German DFG, and RUB Bochum.