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Let P: Set — Set be the powerset functor. Then it is well known
that (P,n, U) is a monad, where for a set X, x € X and
Y € P?(X),

nx (x) = {x} and Ux(Y) = U Y.

The same is true in case of the compact hyperspace functor K
mapping a compact Hausdorff space to its hyperspace of nonempty
compact subsets.



In joint work with U. Berger a general framework for extracting
algorithms computing with elements of compact metric spaces as
well as compact subsets of such from proofs in a many-sorted
intuitionistic first-order logic extended by strictly positive inductive
and coinductive definitions has been introduced.

The approach is computationally equivalent to Weihrauch's
Type-Two Theory of Effectivity.

However, contrary to this approach it is purely logical and
representation-free. Representations of the computed objects are
obtained via a realisability interpretation of the logic.

Note that though the logic is basically intuitionistic, a fair amount

of classical logic is available: any true disjunction-free formula can
be used as axiom.



1. Digit spaces

Definition

Let (X, u) be a compact metric space and D = {di,...,d,} be a
finite set of contracting maps d: X*(4) — X of finite arity ar(d).
Then (X, D) is called digit space if

X = J{range(d) | de D}. (1)

The d € D are called digits. In case of (1) we also say they are
covering.

Example (Signed digit representation)

Let
€ X =[-1,1] and D={av;|i=-1,0,1},

avi(x) = (x +1)/2.
Then range(av;) = [(—=1 + )/2,(1 + i)/2] and hence (1) holds.

This is also an example of a digit space such that all digits have
arity 1. Such spaces are called proper.

where



Let Cx be the coinductively largest subset of X such that

n
xeCx—(3d) \/d=d, A
o=1
ar(d)
(Elylv s 7yar(d)) /\ Yk € Cx nx= d(yla s 7yar(d))' (2)

k=1
Then X = Cx.
Since X may be a classically defined object, this equality is true
only classically.
In the constructive approach one works with Cx instead of X,
where in (2) the disjunction has to be interpreted constructively.
Thus, if e.g. all digits have arity 1, given xg € X, one obtains some
do € D and some x; € X with xg = dp(x1). By iterating this
procedure, one therefore receives a sequence (d;);en of self-maps in
D so that for each i € N,

Xo € range(dp o - - - o d;).



Let (X, D) be proper and di, ..., d, € D be pairwise distinct.
Define [d1,....d]: K(X)" — K(X) by

[di,...,d/](Ki,...,K/) = UlCd
1

where K(d)(K) = d[K].
Let (D) be the finite set of all such maps [d, ..., d/].

As is well known IC(X) is a compact metric space with respect to
the Hausdorff metric.

Assume that all d € D have contraction factor q. If (X)" i
endowed with the maximum metric the maps [d1, ..., d,] are aIso
contracting with contraction factor q.

Moreover, the d € K(D)) are covering. Therefore, (K(X),K(D)) is
digit space and hence we have

K(X) = Cx(x)-



One would like to iterate the process described above to obtain
coinductive characterisations of the higher compact hyperspaces
K"(X) with n > 1. Let us hereto switch to a more general setting.

Definition
For compact Hausdorff spaces X, Y and finite sets F of
continuous maps f: X&) Y we write

x5y

to mean that for every y € Y there are f € F and
X1y ooy Xar(f) € X With y = f(x1, ..., Xar(r))-



» Products

!
Let X 5 ¥ and X’ £5 ¥’ Without restriction let all maps in
F U F’ have the same arity, say s (introduce redundant

arguments).
For f € F and f' € F' set

(£, x) = (F(x), (X))
and let (F, F") be the set of all such pairs. Then
Xx X' EE y oy

Instead of {F,...,F) (n times) we write [1,F.



» Compact hyperspaces

Let X £ Y and IC(F) be as defined earlier. We assume that
all f € K(F) have the same arity |F|. Then

KOOIF 2B, ey,

If (X, D) is a digit space, we assume again that all digits have the
same arity sp. By unfolding the coinductive definition of Cx we
obtain a sequence

XO&XMﬂXz&Xw—'“
where
Xo =X, Xiz1 =X, Do =D, Dir1=Ng,D;.

Note here and in the next diagram that we have introduced the
powers so that the maps involved are unary.



Then we obtain

k(D
K(Xo) <2 i (x,) 1ol

oo RO e )Py 1ol

M) o) (M oy | K(D2)) (((C(Xg) P2y D1l Dol

If we assume that (X, D) is proper, then sp =1, X; = X, and
D; = D, for all i € N and hence

K(Xo) = K(X), K(X1) = KX)IPI (%) = £(x)IPF, ..
Therefore
K2(Xo) = K2(X), K2(X1) = K(K(X1)) = K(K(X) 1P,

Hence the maps from KC?(X1) to K2(Xp) are no longer self-maps of
K2(X).



This shows that the digit space concept is too narrow to deal with
the higher compact hyperspaces. The generalisation we just used,
however, opens us a promising way to follow.

For each cochain (Yi;1 LiN Yi)ien let
» 9 = Dy Yi be the topological sum of the (Y;);en and
» § = U;en{i} x Fi be the disjoint union of the F;.

Then (9),3) is a locally finite, infinite (extended) IFS. The maps in
§ operate only locally on the components, i.e. for (i, f) € § and

U yx) €.

(ia f(ylv s ayar(f)))
(15 )Gy y1)s - -+ s Uar(r)s Yar(r))) = if ju =17+1, (1 <k <ar(f)),
undefined otherwise.

For what follows assume that the Y; are compact metric spaces
and the f € F; are contractions. Then 2) carries a canonical
co-metric coinciding with the given metrics on the components.



Let Cy be the coinductively largest subset of 2) such that

( )EC@ — (Hf)fe Fi A (ElZ]_,...,Zar(f))

/\ i+1,2:) € Cya(i,y) = (i, F)((i+1,21), ..., (i+1, Zu(s)))-

Then (classically)
2) = Cy.
Set
Cy ={y|(0,y)eCy}.

This will be the objects of our category.

Remark. Note that the family (F;);en of predicates has to be
definable in the underlying logic.



2. Morphisms
Let (Xit+1 LN Xi)ien, (Yit1 &, Y:)ien be cochains and (X, ),
(2), €) the associated infinite IFS.
Moreover, for m >0, jeN, and j; <--- < j, € N let
F(x,)Y = {fxm~
( ’@)lemdm { " @‘
dom(f) = X" ({is} x X;,) A range(f) € [} x ¥; ),
F(X, D). = | J{FE )Y, |jeN},
F,9)Y = J{F& )Y , |ih<  <jnmeN},

U U %2)0)

m>0jeN j1<---<jm



The following is a generalisation of U. Berger's coinductive-
inductive characterisation of the uniformly continuous functions on
the unit interval.

Define & : P(F(X,9)) — (P(F(X,9)) — P(F(X,9))) by
®(F)(G) ={feF(X,) |
[(3(i,e) € €)(3hn,. .., haye) € F 0 F(X,9)0HD)
f=1(i,e)o(hx X hye)] v
[(Gh <+ <Ju(r) EN) FEF(X, D)ooy A
(A1 <v<ar(f))(Vd e Dj,) f o (ji, d= ) e 6]}

where

d(V’m)((jl,Xl), ey Ums Xm)) =
(U, x1), -y Upe1sX0—1)s Uy d(%0))s U1y Xot1)s - - 5 Umy Xm)),

for xc € Xj, (k€ {j1,---,Jjm}\Up}) and x, € Xj, 11.



Set
T(F) = 1u(F),
Then J(F) is the least subset G of F(X,9)) so that
W If (i,e) € € and h e (F 0 F(X,9)0 ) then
(i,e)ohe G.
RIffeF(X,9) and v, j1,. ., jar(r) € N so that

> Jl SR g..IElI‘(f-) and f € F(x’@)jlv-“vjar(f)
» 1<wv<ar(f)and forall d e D;,
fodvalf) e G,

then f € G.
Set

Crag) =vJ and Cyixo goy = Crag) N U F(%@)é‘?%

m>0

where x(™) = (x, ..., x) (m times).



Proposition

Let (Xis1 2> Xi)ient, (Yie1 = Yi)ien and (Zis1 <> Z;)ien be
cochains and (X,9), (), €), (3,¢) be the associated infinite IFS.
If f € Cgg 300y and g1, ..., 8ar(r) € Cy(xo gy, then

fo(gl - 8a(r) € Cram 30)-

Proof Let

F={fo(g - &) | f€Cripsz A&l 8ur) € Crixy) }-

Then, by coinduction according to the definition of Cp(x 3) one has

to show that
Fc J55(F).

That is one needs to show that Cp(g) 3) S G, where

G = {f € F(@,B) | (Vgla -+ Bar(f) € (CIF(Z{,QJ))
fo (gl Koo X gar(f)) € ji’B(F) }



Since CF@’S) = j@ﬁ(CF@’g))), it suffices to show

jg“]"% (CF(@’@) cG.

By the inductive definition of .723’3((31[:@,3)) it is therefore
sufficient to demonstrate that

¢33 (Crp 3))(G) < G,

which means that one has to show that the corresponding Rules
(W) and (R) hold.
This kind of proof is typical for all the next results.



Lemma
idxw € Cpx© x©)-

Proposition
For m =0 let ev: F(™ (%, 2))0( ) X Xg" — Yo with
ev(f,X) = f(X) be the evaluation map. Then

m 0)\m 0
eV[Cl(F(a)e<o>,g<o>) X ((C:<{>) [R= C%X

That is the spaces Cp(x g)) behave properly with respect to
evaluation.



For f e FO(x,9)\9 and K € K(Xo), K(f)(K) = f[K]. If  is
continuous, we know that f[K] € K(Yp) and K(f) is continuous as
well. The next result is an analogue of this statement in the
constructive framework presented here.

Theorem 5 c
Let (Xiv1 —> Xi)jen and (Yiy1 —> Yi)ien be cochains and (X,D),

(2), €) the associated infinite IFS. Then for all f € C](Fl()x<o>@<o>),

K(f) € Criax)©,2@)©)-



Here, (R(X), R(D)) is obtained from (Xj;1 N Xi)ien in the
following way. First, we have to introduce powers of the involved
spaces so that the maps in the sets D; all are unary:

X = (- (X7 1)5=2)...)%  Di=Ng - NgD;

1

where s; is the maximal arity of the maps in D;. Then by applying
D!
the functor K to each X/ _; — X/, we obtain the cochain

(KX 1) 2P0 K (X!)) e, of which, finally, (R(X), &(D)) is the

associated infinite IFS.



It follows that the structure CDS with

: : D; :
» Objects: (C;O>, for cochains (Xjy1 — Xj)jeny with compact
metric spaces X; and finite sets D; of contractions
d: Dit1— D;
1

» Morphisms: (C]gr()35<o>@<o>)

is a category and R: CDS — CDS is a functor.



For a cochain (Xj+1 b, Xi)ien and its associated infinite IFS
(X,D) set

nx(i,x) o= (1, (- () E2)) ),

where for ze Z, 2" = (z,...,z) (n times).

Then
nx(i,x) € {i} x K(X7) = {i} x K((--- (X7)52)---)%).

Moreover, @
Nx € (C F(XO /(X)©)"



In addition, define

Uz (i, K) = (i, - <<U<”fol”>><nolu>>. NEIR)

where for a map f, f& = f x ... x f (n-times).
Note that

R2((X)i = {i} < K((-+- (K((- -+ (X2 %) IDi=ally oy Dol

1

Then

Us & Ciia ey
Furthermore,
Theorem

(R,n,U) is a monad.



3. Computable maps

Definition
Let (X, u, Q) be a metric space with countable dense subspace Q.
Then (X, u, Q) is computable if the sets

{(u,v,rN e @x Q@ xQ | p(u,v)<r}
{(u,v,r) e @x Q x Q| p(u,v)>r}

are effectively enumerable.



Definition
Let (X,u, Q) and (X', 1/, Q") be metric spaces with countable
dense subspaces @ and @', respectively. A map h: X' — X' is

1. uniformly continuous if there is a map £: Q4 — Q4 called
modulus of continuity, such that for all e € Q. , X,y € X".

H(%.7) < £() — i (h(R), h(7)) < e.

2. computable if it has a computable modulus of continuity and
there is a procedure Gy, which given e Q' and n> 0
computes some v € Q' with

w (h(d),v) <27



Definition

A cochain (Xj11 L Xi)ien is computable if the underlying metric
spaces X; are computable and all d € D; are computable, both
uniformly in /.

Theorem b
Let ((Xi-i,-l, QXH—l) — (Xia QX;))iEN and

((Yit1, Qviyy) &y, Qv,))ien be computable cochains so that
stronger for every i € N,
1. Xi = J{int(range(d)) | d € D; },
2. every d € D; has a right inverse d’, uniformly computable in i,
where d’ is a right inverse of d if

dod = idrauage(d)’

and similarly for (Yi, Ei, Qy,). Then

C]F(x<o>m<o>) ={fe F(%,Q})é?ir<f>) | f computable}.



