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Let P : Set Ñ Set be the powerset functor. Then it is well known
that pP, η,Uq is a monad, where for a set X , x P X and
Y P P2pX q,

ηX pxq “ txu and UX pY q “
ď

Y .

The same is true in case of the compact hyperspace functor K
mapping a compact Hausdorff space to its hyperspace of nonempty
compact subsets.



In joint work with U. Berger a general framework for extracting
algorithms computing with elements of compact metric spaces as
well as compact subsets of such from proofs in a many-sorted
intuitionistic first-order logic extended by strictly positive inductive
and coinductive definitions has been introduced.

The approach is computationally equivalent to Weihrauch’s
Type-Two Theory of Effectivity.

However, contrary to this approach it is purely logical and
representation-free. Representations of the computed objects are
obtained via a realisability interpretation of the logic.

Note that though the logic is basically intuitionistic, a fair amount
of classical logic is available: any true disjunction-free formula can
be used as axiom.



1. Digit spaces

Definition
Let pX , µq be a compact metric space and D “ td1, . . . , dnu be a
finite set of contracting maps d : X arpdq Ñ X of finite arity arpdq.
Then pX ,Dq is called digit space if

X “
ď

t rangepdq | d P D u. (1)

The d P D are called digits. In case of (1) we also say they are
covering.

Example (Signed digit representation)

Let
X “ r´1, 1s and D “ t avi | i “ ´1, 0, 1 u,

where
avi pxq “ px ` iq{2.

Then rangepavi q “ rp´1 ` iq{2, p1 ` iq{2s and hence (1) holds.

This is also an example of a digit space such that all digits have
arity 1. Such spaces are called proper.



Let CX be the coinductively largest subset of X such that

x P CX Ñ pDdq

n
ł

σ“1

d “ dσ ^

pDy1, . . . , yarpdqq

arpdq
ľ

κ“1

yκ P CX ^ x “ dpy1, . . . , yarpdqq. (2)

Then X “ CX .
Since X may be a classically defined object, this equality is true
only classically.
In the constructive approach one works with CX instead of X ,
where in (2) the disjunction has to be interpreted constructively.

Thus, if e.g. all digits have arity 1, given x0 P X , one obtains some
d0 P D and some x1 P X with x0 “ d0px1q. By iterating this
procedure, one therefore receives a sequence pdi qiPN of self-maps in
D so that for each i P N,

x0 P rangepd0 ˝ ¨ ¨ ¨ ˝ di q.



Let pX ,Dq be proper and d1, . . . , dr P D be pairwise distinct.
Define rd1, . . . .dr s : KpX qr Ñ KpX q by

rd1, . . . , dr spK1, . . . ,Kr q :“
r

ď

ν“1

KpdνqpKνq,

where KpdqpK q “ drK s.

Let KpDq be the finite set of all such maps rd1, . . . , dr s.

As is well known KpX q is a compact metric space with respect to
the Hausdorff metric.

Assume that all d P D have contraction factor q. If KpX qr is
endowed with the maximum metric the maps rd1, . . . , dr s are also
contracting with contraction factor q.

Moreover, the d⃗ P KpDqq are covering. Therefore, pKpX q,KpDqq is
digit space and hence we have

KpX q “ CKpX q.



One would like to iterate the process described above to obtain
coinductive characterisations of the higher compact hyperspaces
KnpX q with n ą 1. Let us hereto switch to a more general setting.

Definition
For compact Hausdorff spaces X , Y and finite sets F of
continuous maps f : X arpf q Ñ Y we write

X
F
ÝÑ Y

to mean that for every y P Y there are f P F and
x1, . . . , xarpf q P X with y “ f px1, . . . , xarpf qq.



§ Products

Let X
F
ÝÑ Y and X 1 F 1

ÝÑ Y 1. Without restriction let all maps in
F Y F 1 have the same arity, say s (introduce redundant
arguments).
For f P F and f 1 P F 1 set

xf , f 1ypx , x 1q “ pf pxq, f 1px 1qq

and let xF ,F 1y be the set of all such pairs. Then

X ˆ X 1 xF ,F 1y
ÝÝÝÝÑ Y ˆ Y 1.

Instead of xF , . . . ,F y (n times) we write ΠnF .



§ Compact hyperspaces

Let X
F
ÝÑ Y and KpF q be as defined earlier. We assume that

all f⃗ P KpF q have the same arity }F }. Then

KpX q}F } KpF q
ÝÝÝÑ KpY q.

If pX ,Dq is a digit space, we assume again that all digits have the
same arity sD . By unfolding the coinductive definition of CX we
obtain a sequence

X0
D0

ÐÝ X1
D1

ÐÝ X2
D2

ÐÝ X3 ÐÝ ¨ ¨ ¨

where

X0 “ X , Xi`1 “ X sD
i , D0 “ D, Di`1 “ ΠsDDi .

Note here and in the next diagram that we have introduced the
powers so that the maps involved are unary.



Then we obtain

KpX0q
KpD0q

ÐÝÝÝÝ KpX1q}D0}

Π}D0}KpD1q

ÐÝÝÝÝÝÝÝ pKpX2q}D1}q}D0}

Π}D0}pΠ}D1}KpD2qq

ÐÝÝÝÝÝÝÝÝÝÝÝÝ pppKpX3q}D2}q}D1}q}D0}

ÐÝ ¨ ¨ ¨

If we assume that pX ,Dq is proper, then sD “ 1, Xi “ X , and
Di “ D, for all i P N and hence

KpX0q “ KpX q, KpX1q “ KpX q}D}, KpX2q “ KpX q}D}2 , . . . .

Therefore

K2pX0q “ K2pX q, K2pX1q “ KpKpX1qq “ KpKpX q}D}q.

Hence the maps from K2pX1q to K2pX0q are no longer self-maps of
K2pX q.



This shows that the digit space concept is too narrow to deal with
the higher compact hyperspaces. The generalisation we just used,
however, opens us a promising way to follow.

For each cochain pYi`1
Fi
ÝÑ Yi qiPN let

§ Y “
ř

iPN Yi be the topological sum of the pYi qiPN and

§ F “
Ť

iPNtiu ˆ Fi be the disjoint union of the Fi .

Then pY,Fq is a locally finite, infinite (extended) IFS. The maps in
F operate only locally on the components, i.e. for pi , f q P F and
pj , yκq P Y.

pi , f qppj1, y1q, . . . , pjarpf q, yarpf qqq “

$

’

&

’

%

pi , f py1, . . . , yarpf qqq

if jκ “ i ` 1, (1 ď κ ď arpf q),

undefined otherwise.

For what follows assume that the Yi are compact metric spaces
and the f P Fi are contractions. Then Y carries a canonical
8-metric coinciding with the given metrics on the components.



Let CY be the coinductively largest subset of Y such that

pi , yq P CY Ñ pDf q f P Fi ^ pDz1, . . . , zarpf qq

arpf q
ľ

κ“1

pi`1, zκq P CY^pi , yq “ pi , f qppi`1, z1q, . . . , pi`1, zarpf qqq.

Then (classically)
Y “ CY.

Set
Cx0y

Y “ t y | p0, yq P CY u.

This will be the objects of our category.

Remark. Note that the family pFi qiPN of predicates has to be
definable in the underlying logic.



2. Morphisms

Let pXi`1
Di
ÝÑ Xi qiPN, pYi`1

Ei
ÝÑ Yi qiPN be cochains and pX,Dq,

pY,Eq the associated infinite IFS.
Moreover, for m ą 0, j P N, and j1 ď ¨ ¨ ¨ ď jm P N let

FpX,Yq
pjq
j1,...,jm

“ t f : Xm á Y |

dompf q “
ąm

ν“1
ptjνu ˆ Xjν q ^ rangepf q Ď tju ˆ Yj u,

FpX,Yqj1,...,jm “
ď

tFpX,Yq
pjq
j1,...,jm

| j P N u,

FpX,Yqpjq “
ď

tFpX,Yq
pjq
j1,...,jm

| j1 ď ¨ ¨ ¨ ď jm P N u,

FpX,Yq “
ď

mą0,jPN

ď

j1ď¨¨¨ďjm

FpX,Yq
pjq
j1,...,jm

.



The following is a generalisation of U. Berger’s coinductive-
inductive characterisation of the uniformly continuous functions on
the unit interval.

Define Φ : PpFpX,Yqq Ñ pPpFpX,Yqq Ñ PpFpX,Yqqq by

ΦpF qpG q “t f P FpX,Yq |

rpDpi , eq P EqpDh1, . . . , harpeq P F X FpX,Yqpi`1qq

f “ pi , eq ˝ ph1 ˆ ¨ ¨ ¨ ˆ harpeqqs _

rpDj1 ď ¨ ¨ ¨ ď jarpf q P Nq f P FpX,Yqj1,...,jarpf q
^

pD1 ď ν ď arpf qqp@d P Djν q f ˝ pjν , d
pν,arpf qqq P G s u

where

d pν,mqppj1, x1q, . . . , pjm, xmqq “

ppj1, x1q, . . . , pjν´1, xν´1q, pjν , dpxνqq, pjν`1, xν`1q, . . . , pjm, xmqq,

for xκ P Xjκ (κ P tj1, . . . , jmuztjνu) and xν P Xjν`1.



Set
J pF q “ µΦpF q.

Then J pF q is the least subset G of FpX,Yq so that

W If pi , eq P E and h⃗ P pF X FpX,Yqpi`1qqarpeq then
pi , eq ˝ h⃗ P G .

R If f P FpX,Yq and ν, j1, . . . , jarpf q P N so that

§ j1 ď ¨ ¨ ¨ ď jarpf q and f P FpX,Yqj1,...,jarpf q

§ 1 ď ν ď arpf q and for all d P Djν ,
f ˝ d pν,arpf qq P G ,

then f P G .

Set

CFpX,Yq “ νJ and CFpXx0y,Yx0yq “ CFpX,Yq X
ď

mą0

FpX,Yq
p0q

0pmq

where x pmq “ px , . . . , xq (m times).



Proposition

Let pXi`1
Di
ÝÑ Xi qiPN, pYi`1

Ei
ÝÑ Yi qiPN and pZi`1

Ci
ÝÑ Zi qiPN be

cochains and pX,Dq, pY,Eq, pZ,Cq be the associated infinite IFS.
If f P CFpYx0y,Zx0yq and g1, . . . , garpf q P CFpXx0y,Yx0yq, then
f ˝ pg1, . . . , garpf qq P CFpXx0y,Zx0yq.

Proof Let

F “ t f ˝ pg1, . . . , garpf qq | f P CFpY,Zq ^ g1, . . . , garpf q P CFpX,Yq u.

Then, by coinduction according to the definition of CFpX,Zq one has
to show that

F Ď J X,ZpF q.

That is one needs to show that CFpY,Zq Ď G , where

G “ t f P FpY,Zq | p@g1, . . . , garpf q P CFpX,Yqq

f ˝ pg1 ˆ ¨ ¨ ¨ ˆ garpf qq P J X,ZpF q u.



Since CFpY,Zq “ J Y,ZpCFpY,Zqq, it suffices to show

J Y,ZpCFpY,Zqq Ď G .

By the inductive definition of J Y,ZpCFpY,Zqq it is therefore
sufficient to demonstrate that

ΦY,ZpCFpY,ZqqpG q Ď G ,

which means that one has to show that the corresponding Rules
(W) and (R) hold.
This kind of proof is typical for all the next results.



Lemma
idXx0y P CFpXx0y,Xx0yq.

Proposition

For m ě 0 let ev : FpmqpX,Yq
p0q

0pmq ˆ Xm
0 Ñ Y0 with

evpf , x⃗q “ f px⃗q be the evaluation map. Then

evrCpmq

FpXx0y,Yx0yq
ˆ pCx0y

X qms Ď Cx0y

Y .

That is the spaces CFpX,Yq behave properly with respect to
evaluation.



For f P Fp1qpX,Yq
p0q

0 and K P KpX0q, Kpf qpK q “ f rK s. If f is
continuous, we know that f rK s P KpY0q and Kpf q is continuous as
well. The next result is an analogue of this statement in the
constructive framework presented here.

Theorem
Let pXi`1

Di
ÝÑ Xi qiPN and pYi`1

Ei
ÝÑ Yi qiPN be cochains and pX,Dq,

pY,Eq the associated infinite IFS. Then for all f P Cp1q

FpXx0y,Yx0yq
,

Kpf q P CFpKpXqx0y,KpYqx0yq.



Here, pKpXq,KpDqq is obtained from pXi`1
Di
ÝÑ Xi qiPN in the

following way. First, we have to introduce powers of the involved
spaces so that the maps in the sets Di all are unary:

X 1
i “ p¨ ¨ ¨ ppX

si´1

i qsi´2q ¨ ¨ ¨ qs0 , D 1
i “ Πsi´1 ¨ ¨ ¨Πs0Di

where si is the maximal arity of the maps in Di . Then by applying

the functor K to each X 1
i`1

D1
i

ÝÑ X 1
i , we obtain the cochain

pKpX 1
i`1q

KpD1
i q

ÝÝÝÑ KpX 1
i qqiPN, of which, finally, pKpXq,KpDqq is the

associated infinite IFS.



It follows that the structure CDS with

§ Objects: Cx0y

X , for cochains pXi`1
Di
ÝÑ Xi qiPN with compact

metric spaces Xi and finite sets Di of contractions
d : Di`1 Ñ Di

§ Morphisms: Cp1q

FpXx0y,Yx0yq

is a category and K : CDS Ñ CDS is a functor.



For a cochain pXi`1
Di
ÝÑ Xi qiPN and its associated infinite IFS

pX,Dq set

ηXpi , xq :“ pi , tp¨ ¨ ¨ ppx psi´1qqqpsi´2qq ¨ ¨ ¨ qs0uq,

where for z P Z , zpnq “ pz , . . . , zq (n times).

Then

ηXpi , xq P tiu ˆ KpX 1
i q “ tiu ˆ Kpp¨ ¨ ¨ ppX

si´1

i qsi´2q ¨ ¨ ¨ qs0q.

Moreover,
ηX P Cp1q

FpXx0y,KpXqx0yq
.



In addition, define

UXpi ,Kq “ pi , x¨ ¨ ¨ xx
ďp}Di´1}q

yp}D1}qy ¨ ¨ ¨yp}D0}qpKqq,

where for a map f , f xny “ f ˆ ¨ ¨ ¨ ˆ f (n-times).

Note that

K2ppX qqi “ tiu ˆ Kpp¨ ¨ ¨ pKpp¨ ¨ ¨ pX
si´1

i q ¨ ¨ ¨ qs0q}Di´1}q ¨ ¨ ¨ q}D0}q.

Then
UX P Cp1q

FpK2pXqx0y,KpXqx0yq
.

Furthermore,

Theorem
pK, η,Uq is a monad.



3. Computable maps

Definition
Let pX , µ,Qq be a metric space with countable dense subspace Q.
Then pX , µ,Qq is computable if the sets

t pu, v , rq P Q ˆ Q ˆ Q | µpu, vq ă r u

t pu, v , rq P Q ˆ Q ˆ Q | µpu, vq ą r u

are effectively enumerable.



Definition
Let pX , µ,Qq and pX 1, µ1,Q 1q be metric spaces with countable
dense subspaces Q and Q 1, respectively. A map h : X i Ñ X 1 is

1. uniformly continuous if there is a map ξ : Q` Ñ Q`, called
modulus of continuity, such that for all ε P Q`, x⃗ , y⃗ P X i .

µpx⃗ , y⃗q ă ξpεq Ñ µ1phpx⃗q, hpy⃗qq ă ε.

2. computable if it has a computable modulus of continuity and
there is a procedure Gh, which given u⃗ P Q i and n ą 0
computes some v P Q 1 with

µ1phpu⃗q, vq ă 2´n.



Definition
A cochain pXi`1

Di
ÐÝ Xi qiPN is computable if the underlying metric

spaces Xi are computable and all d P Di are computable, both
uniformly in i .

Theorem
Let ppXi`1,QXi`1

q
Di

ÐÝ pXi ,QXi
qqiPN and

ppYi`1,QYi`1
q

Ei
ÐÝ pYi ,QYi

qqiPN be computable cochains so that
stronger for every i P N,
1. Xi “

Ť

t intprangepdqq | d P Di u,

2. every d P Di has a right inverse d 1, uniformly computable in i ,
where d 1 is a right inverse of d if

d ˝ d 1 “ idrangepdq,

and similarly for pYi ,Ei ,QYi
q. Then

CFpXx0y,Yx0yq “ t f P FpX,Yq
p0q

0parpf qq
| f computable u.


