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Given a topological space X, O(X) denotes the lattice of open subsets of X with the Scott-topology,
K(X) denotes the space of saturated compact subsets of X with the upper-Vietoris topology, and A(X)
denotes the space of closed subsets of X with the lower-Vietoris topology (see [5]). If X is countably based
and sober, then A(X), K(X), and O(O(X)) are all countably based and sober. These and other powerspaces
frequently appear in computable analysis and the theory of represented spaces [1, 9, 8, 7, 4]. Our main result
is about the complexity of K(X) and O(O(X)) when X is a countably based co-analytic sober space.

A subspace S ⊆ X of a quasi-Polish space X is analytic (or Σ1
1) if there exists a continuous function

f : NN → X such that the range of f is equal to S (see [2]). A subspace of a quasi-Polish space is co-analytic
(or Π1

1) if its complement is analytic. A countably based space is analytic (co-analytic) if it is homeomorphic
to an analytic (co-analytic) subspace of a quasi-Polish space.

A space is a Baire space if the intersection of any countable sequence of dense open subsets is dense. A
space is completely Baire if each of its closed subspaces is a Baire space. If X is a countably based completely
Baire space, then so is every Π0

2-subspace of X ([3], Theorem 4.1).
Our main result is the following:

Theorem 1. The following are equivalent for every countably based co-analytic sober space X:

1. K(X) is analytic,
2. K(X) is completely Baire,
3. O(O(X)) is analytic,
4. O(O(X)) is completely Baire,
5. X is quasi-Polish.

ut
It is well-known that a similar result (restricted to metrizable spaces) holds for the Vietoris powerspace

(see Exercise 33.5 in [6]). Note that the Vietoris powerspace has a strictly finer topology than the powerspace
K(X) defined here.

The proof of Theorem 1 will easily follow from previous results and Lemma 1 below. In the following, we
will write X ∈̃Π0

2(Y ) to mean that X is homeomorphic to a Π0
2-subspace of Y . We also recall the definition

of the countable space S0 from [3]. The underlying set of S0 is N<N (all finite strings of natural numbers),
and a subbasis for the closed subsets of S0 is given by sets of the form {τ ∈ N<N|σ � τ}, where σ ∈ N<N

and � is the prefix relation. Note that the specialization order of S0 is the inverse of the prefix relation.

Lemma 1. If S ⊆ NN is co-analytic then S ∈̃Π0
2(K(S0)).

Proof. For σ ∈ N<N, let 〈σ〉0 be the substring of σ of elements with even indices, and let 〈σ〉1 be the odd
elements. We write σ � τ for the concatenation of σ and τ , and |σ| for the length of σ. Our notation will
treat N and N2 as subspaces of N<N. Fix an enumeration {τn}n∈N of N<N.

Sets of the form {K ∈ K(S0) | τn 6∈ K} (for n ∈ N) form a subbase for the open subsets of K(S0). It is
easy to see that the elements of K(S0) are precisely the well founded trees on N, which is the underlying set
of a standard example of a Π1

1-complete set [6] (note that the topology on K(S0) is strictly weaker than the
more standard zero-dimensional topology used in [6]).

We use the notation ↑σ = {x ∈ NN|σ � x} for basic clopen subsets of NN. Let U ⊆ NN × NN be open
such that S = {x ∈ NN | (∀y ∈ NN)〈x, y〉 ∈ U}. For x ∈ NN define

α(x) = {0 � σ ∈ N<N | 〈σ〉0 � x& ↑〈σ〉0 × ↑〈σ〉1 6⊆ U ]}
β(x) = {1 � n ∈ N2 | τn � x} ∪ {2 � n ∈ N2 | τn 6� x}
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Define γ : S → K(S0) so that γ(x) is the saturation of α(x)∪ β(x). It is easy to see that γ is continuous and
well-defined (the choice of U guarantees that α(x) does not contain an infinite branch if and only if x ∈ S).
Furthermore, τn � x if and only if 2 � n 6∈ γ(x), hence γ is an embedding.

Let G be the set of all K ∈ K(S0) such that the following hold (n,m ∈ N and σ ∈ N<N):

1. (∀n)[1 � n ∈ K ⇐⇒ 2 � n 6∈ K]
2. (∀m,n satisfying τn � τm)[1 �m ∈ K ⇒ 1 � n ∈ K]
3. (∀m,n satisfying τn 6� τm)[1 �m ∈ K ⇒ 1 � n 6∈ K]
4. (∀m)(∃n)[m ≤ |τn|& 2 � n 6∈ K]
5. (∀σ satisfying |σ| > 1)[1 � σ 6∈ K & 2 � σ 6∈ K]
6. (∀n > 2)n 6∈ K
7. (∀σ, n satisfying τn = 〈σ〉0)[0 � σ ∈ K ⇐⇒ (1 � n ∈ K & ↑〈σ〉0 × ↑〈σ〉1 6⊆ U)]

Each of the conditions above correspond to a countable intersection of finite boolean combinations of open
subsets of K(S0), hence G is a Π0

2-subspace of K(S0). It is easy to verify that γ(x) ∈ G for each x ∈ S.
FixK ∈ G and let P = {τn ∈ N<N | 1�n ∈ K}. The second and third conditions guarantee that P is closed

under prefixes and linearly ordered by �, and the first and fourth conditions guarantee that the lengths of the
strings in P are unbounded. Hence there is a unique x ∈ NN such that τn � x ⇐⇒ τn ∈ P ⇐⇒ 1 � n ∈ K.
Condition one now implies 2 � n ∈ K ⇐⇒ τn 6� x, and using the fifth condition we have that the strings in
K starting with 1 or 2 are exactly the strings in β(x). The remaining non-empty strings in K must begin
with 0 because of the sixth condition, and the seventh condition guarantees that these remaining strings are
precisely the elements of α(x). The compactness of K implies α(x) has no infinite branch, hence x ∈ S and
K = γ(x). Therefore, γ is a homeomorphism between S and the Π0

2-subspace G of K(S0). ut
Using Lemma 1, we can now prove Theorem 1 as follows. First note that if X is quasi-Polish, then K(X)

and O(O(X)) are quasi-Polish (see [4, 5]), so items (1) through (4) all follow from (5). So assume that X
is a countably based co-analytic sober space which is not quasi-Polish. Then X contains a Π0

2-subspace S
which is homeomorphic to either Q or S0 (see [3]). It was shown in ([4], Corollary 5.5) that K(Q) is not
analytic, and Lemma 1 implies that K(S0) is not analytic, hence K(S) is not analytic. Furthermore, K(S)
is not completely Baire because Q ∈̃Π0

2(K(Q)) ([5], Proposition 8) and Q ∈̃Π0
2(K(S0)) (Lemma 1 above).

We have K(S)∈̃Π0
2(K(X)) by ([4], Theorem 5.3). Sobriety ofX impliesX∈̃Π0

2(A(X)) ([5], Proposition 3),
hence S ∈̃Π0

2(A(X)), which implies K(S)∈̃Π0
2(K(A(X))). Since K(A(X)) and O(O(X)) are homeomorphic

([5], Theorem 22) we have K(S) ∈̃Π0
2(O(O(X))). Thus K(X) and O(O(X)) both have a Π0

2-subspace which
is neither analytic nor completely Baire. Both of these properties are hereditary under Π0

2-subspaces, hence
items (1) through (4) do not hold for X. This completes the proof of Theorem 1.

It would be interesting to see if an effective (light-faced) version of Lemma 1 holds, and also to have a
full characterization of the Π0

2-subspaces of K(Q) and K(S0). We also have the following question.

Question 1. If X is a QCB0-space and O(X) is a countably based analytic space, then is O(X) quasi-Polish?

The author has learned from M. Schröder that his previous results ([10], Theorem 7.3) imply that the
above question has a positive answer if X is Hausdorff, even when the “analytic” assumption is removed.
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