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A topological space X is coPolish if it is the direct limit of an increasing sequence of compact metrizable
subspaces (Xg)ren. CoPolish spaces were introduced and studied by M. Schroder in [11] in the context of
Type-2 complexity theory, and have also appeared in work on the Weihrauch complexity of overt choice [4]
and the descriptive complexity of non-countably based spaces [1]. A countably based space is coPolish if and
only if it is a locally compact Polish space, and there are many natural examples of non-countably based
coPolish spaces, such as the free topological group generated by R and the space R[X] of polynomials®.

A coPolish ring is a ring equipped with a coPolish topology making it a topological group with respect
to addition and a topological monoid with respect to multiplication?. We will mainly be concerned with
commutative rings in this note. A subset I of a commutative ring R is an ideal if it is an additive subgroup
of R such that rz € I for every r € R and = € I. An ideal I is prime if it does not equal the whole ring and
zy € I impliesz € I ory € I.

The prime spectrum Spec(R) of a commutative ring R is defined to be the set of all prime ideals of R
equipped with the Zariski topology. Although it plays a fundamental role in modern algebraic geometry [5],
the prime spectrum of many important coPolish rings are not QCBog-spaces, such as Spec(2%) (assuming
the axiom of choice) and Spec(R[X]), hence it is not suitable from a computability theoretic perspective
[10]. As a replacement, we define the closed prime spectrum cSpec(R) of a coPolish commutative ring R to
be the set of topologically closed prime ideals of R with the topology generated by basic open sets of the
form Bg = {I € cSpec(R) | IN K = (}, where K varies over compact subsets of R. The next proposition
suggests it is reasonable to restrict attention to closed ideals when working with coPolish commutative rings.

Proposition 1. Let R be a coPolish commutative ring and I C R an ideal. The following hold:

1. The topological closure of I is an ideal.
2. I with the subspace topology is coPolish if and only if I is topologically closed.
3. The quotient ring R/I with the quotient topology is a coPolish ring if and only if I is topologically closed.

Proof. 1. Let C be the topological closure of I. It is a standard result for topological groups that C is an
additive subgroup of R. If r,z € R and rx ¢ C, then W = {y € R | ry ¢ C} is an open neighborhood of
that is disjoint from I, hence x ¢ C. Therefore, C' is an ideal.

2. By an unpublished result of M. Schroder (personal communication), a subspace of a coPolish space is
coPolish if and only if it is locally closed, so we only need to show that every locally closed ideal I C R is
closed. Let C' be the topological closure of I and let U C R be open such that I = C'NU. Assume for a
contradiction there is some x € C\I.Let W ={y € R|z+y € U}. If y € W NI, then using the fact that
I and C' are ideals we would have —y € I and « +y € I hence = € I, a contradiction. Therefore, W is an
open neighborhood of = disjoint from I, which contradicts = being in the closure of I. It follows that I = C'
is a closed subset of R.

3. Using standard techniques for topological groups, R/I is a Hausdorfl topological ring if and only if T
is closed. The claim follows because every coPolish space is Hausdorff and coPolish spaces are closed under
Hausdorff quotients. a
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'[9, Theorem 5.2] is stated for k,-spaces, but the same argument shows that coPolish spaces are closed under the
construction of free topological groups. Similarly, R[X] with the topology described in [1] is the free topological
commutative R-algebra generated by the singleton {X}.

2 Topological products, sequential products, and localic products all coincide for coPolish spaces, so there is no
ambiguity about the continuity of binary operations on coPolish spaces.



If R has the discrete topology then cSpec(R) and Spec(R) are identical, but they differ in general. The
next result shows cSpec(R) is more suitable from a computability theoretic perspective (see [2,7,4, 6, 3]).

Theorem 1. If R is a coPolish commutative ring, then cSpec(R) is a quasi-Polish space.

Proof. Let S be the Sierpinski space, with the two elements L (bottom or false) and T (top or true). Since
R is coPolish the QCBy exponentials S and S®*f are quasi-Polish [11,4]. O(R), the open set lattice of
R with the Scott-topology, is homeomorphic to S¥ [12, Proposition 2.2], hence also quasi-Polish. By [8,
Theorem 3.3], the Scott-topology on O(R) has a basis of open sets of the form VK ={U € O(R) | K C U}
with K varying over compact subsets of R. Therefore, the map sending I € cSpec(R) to its complement in
O(R) is a topological embedding. For U € O(R), the complement of U is a prime ideal of R if and only if

1eU,

0&U,
r+yeUimplieszeUoryeU,
rx € U implies z € U, and

x €U and y € U implies zy € U.

ANl

Define continuous maps flugl7f2792: O(R) — S and f37g37f47g47f5795: O(R) - SRXR as

1. L1(U)=(1€U)and ¢1(U) =T,

2. fo(U)=(0€U)and g2(U) = L,

3. f3(U) = Mz,y).(zr +y € U) aHdg:a( ) =Mz, y).(z+yeU)A((z €eU)V (yel)),
4. f4(U) = Xr,z).(re € U) and g4(U) = A(r,x).(re € U) A (z € U),

5. f3(U) = Az, y).(z € UY A (y € U) and g5(U) = Az, y)-(z € U) A (y € U) A (ay € U),

and define continuous maps f,g: O(R) — S x S x SFXE x SAXE  SEXE 44

fU) = (f1(U), f2(U), f3(U), faU), fs(U)) and g(U) = (91(U), 92(U), g3(U), 9a(U), g5(U)).
Then cSpec(R) is the equalizer of f and g, which implies cSpec(R) is quasi-Polish. O

If the ring operations and constants 0,1 € R are computable and O(R) is precomputable in the sense of
[4], then f and g are computable hence cSpec(R) is a precomputable quasi-Polish space.

A continuous ring homomorphism f: R — S between coPolish commutative rings determines a continuous
function cSpec(f): cSpec(S) — cSpec(R) defined as cSpec(f)(I) = f~*(I) for each I € cSpec(S). The
function cSpec(f) is well-defined because the preimage of a prime ideal under a ring homomorphism is a
prime ideal, and the continuity of cSpec(f) follows from the continuity of f. It is clear that cSpec(f) is
computable whenever f is, so we obtain the following.

Theorem 2. cSpec is a functor from the category of coPolish commutative rings and continuous (com-
putable) ring homomorphisms to the category of quasi-Polish spaces and continuous (computable) functions.
O
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