
A note on the closed prime spectrums
of coPolish commutative rings

Matthew de Brecht?

Graduate School of Human and Environmental Studies, Kyoto University, Japan
matthew@i.h.kyoto-u.ac.jp

A topological space X is coPolish if it is the direct limit of an increasing sequence of compact metrizable
subspaces (Xk)k∈N. CoPolish spaces were introduced and studied by M. Schröder in [11] in the context of
Type-2 complexity theory, and have also appeared in work on the Weihrauch complexity of overt choice [4]
and the descriptive complexity of non-countably based spaces [1]. A countably based space is coPolish if and
only if it is a locally compact Polish space, and there are many natural examples of non-countably based
coPolish spaces, such as the free topological group generated by R and the space R[X] of polynomials1.

A coPolish ring is a ring equipped with a coPolish topology making it a topological group with respect
to addition and a topological monoid with respect to multiplication2. We will mainly be concerned with
commutative rings in this note. A subset I of a commutative ring R is an ideal if it is an additive subgroup
of R such that rx ∈ I for every r ∈ R and x ∈ I. An ideal I is prime if it does not equal the whole ring and
xy ∈ I implies x ∈ I or y ∈ I.

The prime spectrum Spec(R) of a commutative ring R is defined to be the set of all prime ideals of R
equipped with the Zariski topology. Although it plays a fundamental role in modern algebraic geometry [5],
the prime spectrum of many important coPolish rings are not QCB0-spaces, such as Spec(2Z) (assuming
the axiom of choice) and Spec(R[X]), hence it is not suitable from a computability theoretic perspective
[10]. As a replacement, we define the closed prime spectrum cSpec(R) of a coPolish commutative ring R to
be the set of topologically closed prime ideals of R with the topology generated by basic open sets of the
form BK = {I ∈ cSpec(R) | I ∩K = ∅}, where K varies over compact subsets of R. The next proposition
suggests it is reasonable to restrict attention to closed ideals when working with coPolish commutative rings.

Proposition 1. Let R be a coPolish commutative ring and I ⊆ R an ideal. The following hold:

1. The topological closure of I is an ideal.
2. I with the subspace topology is coPolish if and only if I is topologically closed.
3. The quotient ring R/I with the quotient topology is a coPolish ring if and only if I is topologically closed.

Proof. 1. Let C be the topological closure of I. It is a standard result for topological groups that C is an
additive subgroup of R. If r, x ∈ R and rx 6∈ C, then W = {y ∈ R | ry 6∈ C} is an open neighborhood of x
that is disjoint from I, hence x 6∈ C. Therefore, C is an ideal.

2. By an unpublished result of M. Schröder (personal communication), a subspace of a coPolish space is
coPolish if and only if it is locally closed, so we only need to show that every locally closed ideal I ⊆ R is
closed. Let C be the topological closure of I and let U ⊆ R be open such that I = C ∩ U . Assume for a
contradiction there is some x ∈ C \ I. Let W = {y ∈ R | x+ y ∈ U}. If y ∈ W ∩ I, then using the fact that
I and C are ideals we would have −y ∈ I and x + y ∈ I hence x ∈ I, a contradiction. Therefore, W is an
open neighborhood of x disjoint from I, which contradicts x being in the closure of I. It follows that I = C
is a closed subset of R.

3. Using standard techniques for topological groups, R/I is a Hausdorff topological ring if and only if I
is closed. The claim follows because every coPolish space is Hausdorff and coPolish spaces are closed under
Hausdorff quotients. ut
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1 [9, Theorem 5.2] is stated for kω-spaces, but the same argument shows that coPolish spaces are closed under the
construction of free topological groups. Similarly, R[X] with the topology described in [1] is the free topological
commutative R-algebra generated by the singleton {X}.

2 Topological products, sequential products, and localic products all coincide for coPolish spaces, so there is no
ambiguity about the continuity of binary operations on coPolish spaces.



If R has the discrete topology then cSpec(R) and Spec(R) are identical, but they differ in general. The
next result shows cSpec(R) is more suitable from a computability theoretic perspective (see [2, 7, 4, 6, 3]).

Theorem 1. If R is a coPolish commutative ring, then cSpec(R) is a quasi-Polish space.

Proof. Let S be the Sierpinski space, with the two elements ⊥ (bottom or false) and > (top or true). Since
R is coPolish the QCB0 exponentials SR and SR×R are quasi-Polish [11, 4]. O(R), the open set lattice of
R with the Scott-topology, is homeomorphic to SR [12, Proposition 2.2], hence also quasi-Polish. By [8,
Theorem 3.3], the Scott-topology on O(R) has a basis of open sets of the form OK = {U ∈ O(R) | K ⊆ U}
with K varying over compact subsets of R. Therefore, the map sending I ∈ cSpec(R) to its complement in
O(R) is a topological embedding. For U ∈ O(R), the complement of U is a prime ideal of R if and only if

1. 1 ∈ U ,
2. 0 6∈ U ,
3. x+ y ∈ U implies x ∈ U or y ∈ U ,
4. rx ∈ U implies x ∈ U , and
5. x ∈ U and y ∈ U implies xy ∈ U .

Define continuous maps f1, g1, f2, g2 : O(R)→ S and f3, g3, f4, g4, f5, g5 : O(R)→ SR×R as

1. f1(U) = (1 ∈ U) and g1(U) = >,
2. f2(U) = (0 ∈ U) and g2(U) = ⊥,
3. f3(U) = λ〈x, y〉.(x+ y ∈ U) and g3(U) = λ〈x, y〉.(x+ y ∈ U) ∧ ((x ∈ U) ∨ (y ∈ U)),
4. f4(U) = λ〈r, x〉.(rx ∈ U) and g4(U) = λ〈r, x〉.(rx ∈ U) ∧ (x ∈ U),
5. f5(U) = λ〈x, y〉.(x ∈ U) ∧ (y ∈ U) and g5(U) = λ〈x, y〉.(x ∈ U) ∧ (y ∈ U) ∧ (xy ∈ U),

and define continuous maps f, g : O(R)→ S× S× SR×R × SR×R × SR×R as

f(U) = 〈f1(U), f2(U), f3(U), f4(U), f5(U)〉 and g(U) = 〈g1(U), g2(U), g3(U), g4(U), g5(U)〉.

Then cSpec(R) is the equalizer of f and g, which implies cSpec(R) is quasi-Polish. ut
If the ring operations and constants 0, 1 ∈ R are computable and O(R) is precomputable in the sense of

[4], then f and g are computable hence cSpec(R) is a precomputable quasi-Polish space.
A continuous ring homomorphism f : R→ S between coPolish commutative rings determines a continuous

function cSpec(f) : cSpec(S) → cSpec(R) defined as cSpec(f)(I) = f−1(I) for each I ∈ cSpec(S). The
function cSpec(f) is well-defined because the preimage of a prime ideal under a ring homomorphism is a
prime ideal, and the continuity of cSpec(f) follows from the continuity of f . It is clear that cSpec(f) is
computable whenever f is, so we obtain the following.

Theorem 2. cSpec is a functor from the category of coPolish commutative rings and continuous (com-
putable) ring homomorphisms to the category of quasi-Polish spaces and continuous (computable) functions.

ut
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