A note on making analytic sets open

Matthew de Brecht^{*}

Graduate School of Human and Environmental Studies, Kyoto University, Japan matthew@i.h.kyoto-u.ac.jp

Let X be an effective quasi-Polish space, and let \hat{X} be the refinement of X that adds each (lightface) Σ_1^1 -subset as a c.e.-open subset. Although \widehat{X} is not quasi-Polish in general, in this note we will show that there is a "nice" computable embedding of \widehat{X} into an effective quasi-Polish space Y.

Theorem 1. There is a computable procedure which converts a code for an effective quasi-Polish space X into a code for an effective quasi-Polish space Y and a code for a computable retraction $f: Y \to X$ such that (i) each fiber of f has a unique maximal element (w.r.t. the specialization order of Y), (ii) the subspace $M \subseteq Y$ of maximal elements of the fibers of f is computably homeomorphic to \widehat{X} , and (iii) the restriction of f to M corresponds to the canonical map from \widehat{X} to X.

In particular, if X is a T_1 -space then \hat{X} embeds as the maximal elements of Y. Since the subspace of maximal elements of a quasi-Polish space is a strong Choquet space, this result generalizes Theorem 25.18 in [7]. In the special case that X is the Baire space, then X is the Gandy-Harrington space, which has important applications in descriptive set theory (e.g. [6]) and more recently in the study of enumeration degrees [8]. It was already known that Theorem 6.1 of [9] implies the Gandy-Harrington space embeds as the maximal elements of a quasi-Polish space, but this note provides a direct computable construction.

In this note we define quasi-Polish spaces [1] using a characterization from [5] (see also $[2], [3], \text{ and } [4]^1$).

Definition 1 ([5]). Let \prec be a transitive relation on \mathbb{N} . A subset $I \subseteq \mathbb{N}$ is an ideal (with respect to \prec) if and only if it is (1) non-empty $(I \neq \emptyset)$, (2) a lower set $(a \prec b \in I \implies a \in I)$, and (3) directed $(a, b \in I \implies (\exists c \in I)[a \prec c \& b \prec c])$. The collection $\mathbf{I}(\prec)$ of all ideals has the topology generated by basic open sets of the form $[n]_{\prec} = \{I \in \mathbf{I}(\prec) \mid n \in I\}$. A space is (effectively) quasi-Polish if and only if it is (computably) homeomorphic to $\mathbf{I}(\prec)$ for some (c.e.) transitive relation \prec on \mathbb{N} .

These definitions also apply to relations on sets that are computably isomorphic to a c.e. subset of \mathbb{N} . We call \prec a *code* for a space X when X is computably homeomorphic to $\mathbf{I}(\prec)$. For example, the strict prefix relation $\prec_{\mathbb{N}^{\mathbb{N}}}$ on the set $\mathbb{N}^{<\mathbb{N}}$ of all finite sequences of natural numbers is a code for the Baire space $\mathbb{N}^{\mathbb{N}}$.

Let \prec_1 and \prec_2 be c.e. transitive relations on \mathbb{N} . Each c.e. subset $R \subseteq \mathbb{N} \times \mathbb{N}$ is a *code* for a computable partial function $\lceil R \rceil :\subseteq \mathbf{I}(\prec_1) \to \mathbf{I}(\prec_2)$ defined as $\lceil R \rceil(I) = \{n \in \mathbb{N} \mid (\exists m \in I) \langle m, n \rangle \in R\}$. Note that the domain of $\lceil R \rceil$ is (lightface) Π_2^0 . It was shown in $[2]^2$ that a total function $f: \mathbf{I}(\prec_1) \to \mathbf{I}(\prec_2)$ is computable if and only if there is a c.e. code R with $f = \lceil R \rceil$. We say a code R is (\prec_1, \prec_2) -closed if for each $\langle m, n \rangle \in R$, if $m \prec_1 m'$ then $\langle m', n \rangle \in R$ and if $n' \prec_2 n$ then $\langle m, n' \rangle \in R$. The (\prec_1, \prec_2) -closure of R can be enumerated given R, \prec_1 , and \prec_2 , and taking the closure does not change the interpretation of codes for total functions.

For the remainder of this note, fix a c.e. transitive relation \prec on \mathbb{N} and an enumeration $(R_i)_{i\in\mathbb{N}}$ of all $(\prec_{\mathbb{N}^{\mathbb{N}}},\prec)$ -closed c.e. subsets of $\mathbb{N}\times\mathbb{N}$. We obtain an enumeration $(A_i)_{i\in\mathbb{N}}$ of all Σ_1^1 -subsets of $\mathbf{I}(\prec)$ by defining $A_i = \{I \in \mathbf{I}(\prec) \mid (\exists P \in \mathbf{I}(\prec_{\mathbb{N}^{\mathbb{N}}})) \upharpoonright R_i \urcorner (P) = I\}. \text{ For } i, n \in \mathbb{N}, \text{ let } R_i^{(n)} \text{ be the finite subset of } R_i \text{ enumerated} within n computation steps. Given a set S, let <math>\mathcal{P}_{\text{fin}}(S)$ be the set of all finite subsets of S. Define a relation \sqsubset on $\mathbb{N} \times \mathbb{N} \times \mathcal{P}_{\text{fin}}(\mathbb{N}^{<\mathbb{N}} \times \mathbb{N})$ as $\langle m, x, F \rangle \sqsubset \langle n, y, G \rangle$ if and only if the following all hold:

- 1. $m < n, x \prec y$, and $F \subseteq G$ (monotonicity),
- 2. $(\forall \langle \sigma, i \rangle \in F) (\forall \langle \rho, w \rangle \in R_i^{(m)}) [\rho \prec_{\mathbb{N}^{\mathbb{N}}} \sigma \implies w \prec y]$, and 3. $(\forall \langle \sigma, i \rangle \in F) (\exists \langle \tau, i \rangle \in G) [\sigma \prec_{\mathbb{N}^{\mathbb{N}}} \tau \& \langle \tau, x \rangle \in R_i].$

^{*} This work was supported by JSPS KAKENHI Grant Number 18K11166.

¹ Theorem 1 of [4] contains a related refinement result that applies to Π_1^0 -sets.

² We incorrectly omitted the requirement that \prec_1 be a c.e. relation in the original paper. We are grateful to Ivan Georgiev for pointing out this mistake and providing a counter example.

It is easy to see that \Box is c.e. and transitive. Define $f: \mathbf{I}(\Box) \to \mathbf{I}(\prec)$ as $f(J) = \{x \in \mathbb{N} \mid (\exists m, F) \langle m, x, F \rangle \in J\}$ and define $g: \mathbf{I}(\prec) \to \mathbf{I}(\Box)$ as $g(I) = \{\langle m, x, \emptyset \rangle \mid m \in \mathbb{N} \& x \in I\}$. The next lemma implies f(J) is a lower set, and the other requirements for f(J) and g(I) to be ideals can be verified directly. Thus f and g are total computable functions satisfying f(g(I)) = I for each $I \in \mathbf{I}(\prec)$, hence $\mathbf{I}(\prec)$ is a computable retract of $\mathbf{I}(\Box)$.

Lemma 1. If $J \in \mathbf{I}(\Box)$ and $\langle n, y, G \rangle \in J$, then (i) $\langle m, y, G \rangle \in J$ for each $m \in \mathbb{N}$, (ii) $x \prec y$ implies $\langle n, x, G \rangle \in J$, and (iii) $F \subseteq G$ implies $\langle n, y, F \rangle \in J$. In particular, g(I) is the unique minimal element of $f^{-1}(\{I\})$ for each $I \in \mathbf{I}(\prec)$.

Proof. For (i), fix $m \in \mathbb{N}$. Using the directedness of J, we can find $\langle n', y', G' \rangle \in J$ with $\langle n, y, G \rangle \sqsubset \langle n', y', G' \rangle$ and m < n'. Then $\langle m, y, G \rangle \sqsubset \langle n', y', G' \rangle$ hence $\langle m, y, G \rangle \in J$. The proof for (ii) and (iii) are similar, but (ii) uses the assumption that R_i is $(\prec_{\mathbb{N}^{\mathbb{N}}}, \prec)$ -closed to show the third item in the definition of \sqsubset holds. \Box

Lemma 2. For each $I \in \mathbf{I}(\prec)$, there is a unique maximal element \hat{I} in $f^{-1}(\{I\})$.

Proof. $f^{-1}(\{I\})$ is non-empty because it contains g(I), and it is quasi-Polish because it is Π_2^0 . We show it is directed with respect to \subseteq , which is the specialization order on $f^{-1}(\{I\})$. Assume $f(J_1) = f(J_2) = I$. Set $J = \{\langle m, x, F_1 \cup F_2 \rangle \mid \langle m, x, F_1 \rangle \in J_1 \& \langle m, x, F_2 \rangle \in J_2 \}$. It is clear that J is non-empty, and the previous lemma can be used to show it is a lower set. To see J is directed, assume $\langle m, x, F_1 \cup F_2 \rangle$ and $\langle m', x', F'_1 \cup F'_2 \rangle$ are in J. Fix a \sqsubset -upper bound $\langle n_i, y_i, G_i \rangle$ of $\langle m, x, F_i \rangle$ and $\langle m', x', F'_i \rangle$ in J_i $(i \in \{1, 2\})$. Let y be a \prec -upper bound of y_1 and y_2 in I, and set $n = \max(n_1, n_2)$. It is straightforward to show that $\langle n, y, G_1 \cup G_2 \rangle$ is in J, and it is a \sqsubset -upper bound of $\langle m, x, F_1 \cup F_2 \rangle$ and $\langle m', x', F'_1 \cup F'_2 \rangle$, hence J is directed. Thus $J_1, J_2 \subseteq J \in f^{-1}(\{I\})$, hence $f^{-1}(\{I\})$ is directed. It follows from the sobriety of $f^{-1}(\{I\})$ that it has a unique maximal element.

Let $M = \{ \hat{I} \in \mathbf{I}(\Box) \mid I \in \mathbf{I}(\prec) \}$, which is a Π_1^1 -subset of $\mathbf{I}(\Box)$. For $i \in \mathbb{N}$ and $\sigma \in \mathbb{N}^{<\mathbb{N}}$, let U_i^{σ} be the c.e.-open subset of all $J \in \mathbf{I}(\Box)$ with $\langle m, x, \{ \langle \sigma, i \rangle \} \rangle \in J$ for some $m, x \in \mathbb{N}$. For each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we also define $A_i^{\sigma} = \{ I \in \mathbf{I}(\prec) \mid (\exists P \in \mathbf{I}(\prec_{\mathbb{N}^{\mathbb{N}}})) [\sigma \in P \& \ulcorner R_i \urcorner (P) = I] \}$. We can assume our enumeration of $(R_i)_{i \in \mathbb{N}}$ is reasonable enough that there is a computable function h satisfying $R_{h(\sigma,i)} = R_i \cap (\{\tau \in \mathbb{N}^{<\mathbb{N}} \mid \sigma \preceq_{\mathbb{N}^{\mathbb{N}}} \tau\} \times \mathbb{N})$ for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ and $i \in \mathbb{N}$, hence $A_{h(\sigma,i)} = A_i^{\sigma}$. The next lemma completes the proof of Theorem 1.

Lemma 3. $U_i^{\sigma} \subseteq f^{-1}(A_i^{\sigma})$ and $U_i^{\sigma} \cap M = f^{-1}(A_i^{\sigma}) \cap M$ for each $i \in \mathbb{N}$ and $\sigma \in \mathbb{N}^{<\mathbb{N}}$.

Proof. Assume $J \in U_i^{\sigma} \cap M$ and fix a \sqsubset -ascending sequence $(\langle m_k, x_k, F_k \rangle)_{k \in \mathbb{N}}$ that is cofinal in J. We can assume without loss of generality that $\langle \sigma, i \rangle \in F_0$, so the definition of \sqsubset implies there is a $\prec_{\mathbb{N}^N}$ -ascending sequence $(\sigma_k)_{k \in \mathbb{N}}$ with $\sigma_0 = \sigma$ and $\langle \sigma_k, i \rangle \in F_k$ and $\langle \sigma_{k+1}, x_k \rangle \in R_i$ for each $k \in \mathbb{N}$. Let $P \in \mathbf{I}(\prec_{\mathbb{N}^N})$ be the ideal generated by the $\prec_{\mathbb{N}^N}$ -ascending sequence $(\sigma_k)_{k \in \mathbb{N}}$, and let $I \in \mathbf{I}(\prec)$ be the ideal generated by the $\prec_{\mathrm{ascending}}$ sequence $(x_k)_{k \in \mathbb{N}}$. Then $\sigma \in P$ and it can be shown that $\ulcorner R_i \urcorner (P) = I$ by using the assumption that R_i is $(\prec_{\mathbb{N}^N}, \prec)$ -closed, hence $I \in A_i^{\sigma}$. Clearly $I \subseteq f(J)$, and if $x \in f(J)$ then since $(\langle m_k, x_k, F_k \rangle)_{k \in \mathbb{N}}$ is cofinal in J there is $k \in \mathbb{N}$ with $x \prec x_k$, hence $x \in I$. Therefore, $f(J) = I \in A_i^{\sigma}$.

For the second claim, assume $\hat{I} \in f^{-1}(A_i^{\sigma}) \cap M$ and fix $P \in \mathbf{I}(\prec_{\mathbb{N}^N})$ with $\sigma \in P$ and $\lceil R_i \rceil(P) = I$. Define $J = \{\langle m, x, F \rangle \mid m \in \mathbb{N} \& x \in I \& F \subseteq P \times \{i\} \text{ is finite}\}$. Then $J \in U_i^{\sigma}$ and f(J) = I hence $\hat{I} \in U_i^{\sigma}$.

References

- 1. M. de Brecht, Quasi-Polish spaces, Annals of Pure and Applied Logic 164 (2013), 356–381.
- _____, Some notes on spaces of ideals and computable topology, Proceedings of the 16th Conference on Computability in Europe, CiE 2020, Lecture Notes in Computer Science, vol. 12098, 2020, pp. 26–37.
- 3. _____, The category of quasi-Polish spaces as a represented space, The 68th Topology Symposium of the Topology Section of the Mathematical Society of Japan (https://www.mathsoc.jp/section/topology/topsymp.html), 2021.
- M. de Brecht, T. Kihara, and V. Selivanov, Ideal presentations and numberings of some classes of effective quasi-Polish spaces, (arXiv:2301.08469, to appear in Computability), 2023.
- 5. M. de Brecht, A. Pauly, and M. Schröder, Overt choice, Computability 9 (2020), 169–191.
- L. Harrington, A. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, Journal of the American Mathematical Society 3 (1990), no. 4, 903–928.
- 7. A.S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, 1995.
- 8. T. Kihara, K.M. Ng, and A. Pauly, Enumeration degrees and non-metrizable topology, arXiv: 1904.04107, 2020.
- 9. C. Mummert and F. Stephan, Topological aspects of Poset spaces, Michigan Mathematical Journal **59** (2010), no. 1, 3 24.