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Let X be an effective quasi-Polish space, and let X̂ be the refinement of X that adds each (lightface)

Σ1
1 -subset as a c.e.-open subset. Although X̂ is not quasi-Polish in general, in this note we will show that

there is a “nice” computable embedding of X̂ into an effective quasi-Polish space Y .

Theorem 1. There is a computable procedure which converts a code for an effective quasi-Polish space X
into a code for an effective quasi-Polish space Y and a code for a computable retraction f : Y → X such
that (i) each fiber of f has a unique maximal element (w.r.t. the specialization order of Y ), (ii) the subspace

M ⊆ Y of maximal elements of the fibers of f is computably homeomorphic to X̂, and (iii) the restriction

of f to M corresponds to the canonical map from X̂ to X. ⊓⊔

In particular, if X is a T1-space then X̂ embeds as the maximal elements of Y . Since the subspace of
maximal elements of a quasi-Polish space is a strong Choquet space, this result generalizes Theorem 25.18 in
[7]. In the special case that X is the Baire space, then X̂ is the Gandy-Harrington space, which has important
applications in descriptive set theory (e.g. [6]) and more recently in the study of enumeration degrees [8].
It was already known that Theorem 6.1 of [9] implies the Gandy-Harrington space embeds as the maximal
elements of a quasi-Polish space, but this note provides a direct computable construction.

In this note we define quasi-Polish spaces [1] using a characterization from [5] (see also [2], [3], and [4]1).

Definition 1 ([5]). Let ≺ be a transitive relation on N. A subset I ⊆ N is an ideal (with respect to ≺)
if and only if it is (1) non-empty (I ̸= ∅), (2) a lower set (a ≺ b ∈ I =⇒ a ∈ I), and (3) directed
(a, b ∈ I =⇒ (∃c ∈ I)[a ≺ c& b ≺ c]). The collection I(≺) of all ideals has the topology generated by basic
open sets of the form [n]≺ = {I ∈ I(≺) | n ∈ I}. A space is (effectively) quasi-Polish if and only if it is
(computably) homeomorphic to I(≺) for some (c.e.) transitive relation ≺ on N. ⊓⊔

These definitions also apply to relations on sets that are computably isomorphic to a c.e. subset of N. We
call ≺ a code for a space X when X is computably homeomorphic to I(≺). For example, the strict prefix
relation ≺NN on the set N<N of all finite sequences of natural numbers is a code for the Baire space NN.

Let ≺1 and ≺2 be c.e. transitive relations on N. Each c.e. subset R ⊆ N× N is a code for a computable
partial function ⌜R⌝ :⊆ I(≺1) → I(≺2) defined as ⌜R⌝(I) = {n ∈ N | (∃m ∈ I) ⟨m,n⟩ ∈ R}. Note that the
domain of ⌜R⌝ is (lightface) Π0

2 . It was shown in [2]2 that a total function f : I(≺1) → I(≺2) is computable
if and only if there is a c.e. code R with f = ⌜R⌝. We say a code R is (≺1,≺2)-closed if for each ⟨m,n⟩ ∈ R,
if m ≺1 m′ then ⟨m′, n⟩ ∈ R and if n′ ≺2 n then ⟨m,n′⟩ ∈ R. The (≺1,≺2)-closure of R can be enumerated
given R, ≺1, and ≺2, and taking the closure does not change the interpretation of codes for total functions.

For the remainder of this note, fix a c.e. transitive relation ≺ on N and an enumeration (Ri)i∈N of all
(≺NN ,≺)-closed c.e. subsets of N×N. We obtain an enumeration (Ai)i∈N of all Σ1

1 -subsets of I(≺) by defining

Ai = {I ∈ I(≺) | (∃P ∈ I(≺NN)) ⌜Ri⌝(P ) = I}. For i, n ∈ N, let R(n)
i be the finite subset of Ri enumerated

within n computation steps. Given a set S, let Pfin(S) be the set of all finite subsets of S. Define a relation
⊏ on N× N× Pfin(N<N × N) as ⟨m,x, F ⟩ ⊏ ⟨n, y,G⟩ if and only if the following all hold:

1. m < n, x ≺ y, and F ⊆ G (monotonicity),

2. (∀⟨σ, i⟩ ∈ F )(∀⟨ρ, w⟩ ∈ R
(m)
i ) [ρ ≺NN σ =⇒ w ≺ y], and

3. (∀⟨σ, i⟩ ∈ F )(∃⟨τ, i⟩ ∈ G) [σ ≺NN τ & ⟨τ, x⟩ ∈ Ri].

⋆ This work was supported by JSPS KAKENHI Grant Number 18K11166.
1 Theorem 1 of [4] contains a related refinement result that applies to Π0

1 -sets.
2 We incorrectly omitted the requirement that ≺1 be a c.e. relation in the original paper. We are grateful to Ivan
Georgiev for pointing out this mistake and providing a counter example.



It is easy to see that⊏ is c.e. and transitive. Define f : I(⊏) → I(≺) as f(J) = {x ∈ N | (∃m,F ) ⟨m,x, F ⟩ ∈ J}
and define g : I(≺) → I(⊏) as g(I) = {⟨m,x, ∅⟩ | m ∈ N&x ∈ I}. The next lemma implies f(J) is a lower
set, and the other requirements for f(J) and g(I) to be ideals can be verified directly. Thus f and g are total
computable functions satisfying f(g(I)) = I for each I ∈ I(≺), hence I(≺) is a computable retract of I(⊏).

Lemma 1. If J ∈ I(⊏) and ⟨n, y,G⟩ ∈ J , then (i) ⟨m, y,G⟩ ∈ J for each m ∈ N, (ii) x ≺ y implies
⟨n, x,G⟩ ∈ J , and (iii) F ⊆ G implies ⟨n, y, F ⟩ ∈ J . In particular, g(I) is the unique minimal element of
f−1({I}) for each I ∈ I(≺).

Proof. For (i), fix m ∈ N. Using the directedness of J , we can find ⟨n′, y′, G′⟩ ∈ J with ⟨n, y,G⟩ ⊏ ⟨n′, y′, G′⟩
and m < n′. Then ⟨m, y,G⟩ ⊏ ⟨n′, y′, G′⟩ hence ⟨m, y,G⟩ ∈ J . The proof for (ii) and (iii) are similar, but
(ii) uses the assumption that Ri is (≺NN ,≺)-closed to show the third item in the definition of ⊏ holds. ⊓⊔
Lemma 2. For each I ∈ I(≺), there is a unique maximal element Î in f−1({I}).
Proof. f−1({I}) is non-empty because it contains g(I), and it is quasi-Polish because it is Π0

2. We show it
is directed with respect to ⊆, which is the specialization order on f−1({I}). Assume f(J1) = f(J2) = I.
Set J = {⟨m,x, F1 ∪ F2⟩ | ⟨m,x, F1⟩ ∈ J1 & ⟨m,x, F2⟩ ∈ J2}. It is clear that J is non-empty, and the
previous lemma can be used to show it is a lower set. To see J is directed, assume ⟨m,x, F1 ∪ F2⟩ and
⟨m′, x′, F ′

1 ∪ F ′
2⟩ are in J . Fix a ⊏-upper bound ⟨ni, yi, Gi⟩ of ⟨m,x, Fi⟩ and ⟨m′, x′, F ′

i ⟩ in Ji (i ∈ {1, 2}).
Let y be a ≺-upper bound of y1 and y2 in I, and set n = max(n1, n2). It is straightforward to show that
⟨n, y,G1 ∪G2⟩ is in J , and it is a ⊏-upper bound of ⟨m,x, F1 ∪F2⟩ and ⟨m′, x′, F ′

1 ∪F ′
2⟩, hence J is directed.

Thus J1, J2 ⊆ J ∈ f−1({I}), hence f−1({I}) is directed. It follows from the sobriety of f−1({I}) that it has
a unique maximal element. ⊓⊔

Let M = {Î ∈ I(⊏) | I ∈ I(≺)}, which is a Π1
1 -subset of I(⊏). For i ∈ N and σ ∈ N<N, let Uσ

i be the
c.e.-open subset of all J ∈ I(⊏) with ⟨m,x, {⟨σ, i⟩}⟩ ∈ J for some m,x ∈ N. For each σ ∈ N<N we also define
Aσ

i = {I ∈ I(≺) | (∃P ∈ I(≺NN)) [σ ∈ P & ⌜Ri⌝(P ) = I]}. We can assume our enumeration of (Ri)i∈N is
reasonable enough that there is a computable function h satisfying Rh(σ,i) = Ri∩ ({τ ∈ N<N | σ ⪯NN τ}×N)
for each σ ∈ N<N and i ∈ N, hence Ah(σ,i) = Aσ

i . The next lemma completes the proof of Theorem 1.

Lemma 3. Uσ
i ⊆ f−1(Aσ

i ) and Uσ
i ∩M = f−1(Aσ

i ) ∩M for each i ∈ N and σ ∈ N<N.

Proof. Assume J ∈ Uσ
i ∩M and fix a ⊏-ascending sequence (⟨mk, xk, Fk⟩)k∈N that is cofinal in J . We can

assume without loss of generality that ⟨σ, i⟩ ∈ F0, so the definition of ⊏ implies there is a ≺NN-ascending
sequence (σk)k∈N with σ0 = σ and ⟨σk, i⟩ ∈ Fk and ⟨σk+1, xk⟩ ∈ Ri for each k ∈ N. Let P ∈ I(≺NN) be
the ideal generated by the ≺NN -ascending sequence (σk)k∈N, and let I ∈ I(≺) be the ideal generated by the
≺-ascending sequence (xk)k∈N. Then σ ∈ P and it can be shown that ⌜Ri⌝(P ) = I by using the assumption
that Ri is (≺NN ,≺)-closed, hence I ∈ Aσ

i . Clearly I ⊆ f(J), and if x ∈ f(J) then since (⟨mk, xk, Fk⟩)k∈N is
cofinal in J there is k ∈ N with x ≺ xk, hence x ∈ I. Therefore, f(J) = I ∈ Aσ

i .

For the second claim, assume Î ∈ f−1(Aσ
i )∩M and fix P ∈ I(≺NN) with σ ∈ P and ⌜Ri⌝(P ) = I. Define

J = {⟨m,x, F ⟩ | m ∈ N&x ∈ I &F ⊆ P × {i} is finite}. Then J ∈ Uσ
i and f(J) = I hence Î ∈ Uσ

i . ⊓⊔
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