A note on making analytic sets open
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Let X be an effective quasi-Polish space, and let X be the refinement of X that adds each (lightface)
Y1-subset as a c.e—open subset. Although X is not quasi-Polish in general, in this note we will show that
there is a “nice” computable embedding of X into an effective quasi-Polish space Y.

Theorem 1. There is a computable procedure which converts a code for an effective quasi-Polish space X
into a code for an effective quasi-Polish space Y and a code for a computable retraction f: Y — X such
that (i) each fiber of f has a unique mazimal element (w.r.t. the specialization order of Y'), (ii) the subspace
M CY of mazimal elements of the fibers of f is computably homeomorphic to )/(\', and (i) the restriction
of f to M corresponds to the canonical map from X to X. O

In particular, if X is a Tj-space then X embeds as the maximal elements of Y. Since the subspace of
maximal elements of a quasi-Polish space is a strong Choquet space, this result generalizes Theorem 25.18 in
[7]. In the special case that X is the Baire space, then X is the Gandy-Harrington space, which has important
applications in descriptive set theory (e.g. [6]) and more recently in the study of enumeration degrees [8].
It was already known that Theorem 6.1 of [9] implies the Gandy-Harrington space embeds as the maximal
elements of a quasi-Polish space, but this note provides a direct computable construction.

In this note we define quasi-Polish spaces [1] using a characterization from [5] (see also [2], [3], and [4]!).

Definition 1 ([5]). Let < be a transitive relation on N. A subset I C N is an ideal (with respect to <)
if and only if it is (1) non-empty (I # 0), (2) a lower set (a < b € I = a € I), and (3) directed
(a,bel = (Fecea<c&b =< c]). The collection I(<) of all ideals has the topology generated by basic
open sets of the form [n]x = {I € I(<) | n € I}. A space is (effectively) quasi-Polish if and only if it is
(computably) homeomorphic to I(<) for some (c.e.) transitive relation < on N. |

These definitions also apply to relations on sets that are computably isomorphic to a c.e. subset of N. We
call < a code for a space X when X is computably homeomorphic to I(<). For example, the strict prefix
relation <y on the set N<N of all finite sequences of natural numbers is a code for the Baire space NV,

Let <1 and <5 be c.e. transitive relations on N. Each c.e. subset R C N x N is a code for a computable
partial function "R :C I(<1) — I(<2) defined as "R(I) = {n € N | (3m € I) (m,n) € R}. Note that the
domain of "R is (lightface) I13. It was shown in [2]? that a total function f: I(<;) — I(<2) is computable
if and only if there is a c.e. code R with f ="R™. We say a code R is (<1, <2)-closed if for each (m,n) € R,
if m <3 m’ then (m/,n) € R and if ' <o n then (m,n’) € R. The (<1, <2)-closure of R can be enumerated
given R, <1, and <5, and taking the closure does not change the interpretation of codes for total functions.

For the remainder of this note, fix a c.e. transitive relation < on N and an enumeration (R;);en of all
(=pw, <)-closed c.e. subsets of N x N. We obtain an enumeration (A4;);ey of all Xi-subsets of I(<) by defining
A;={I €I(<x)]| 3P € I(<y)) "R, (P) = I}. For i,n € N, let Rgn) be the finite subset of R; enumerated
within n computation steps. Given a set S, let Pg,(S) be the set of all finite subsets of S. Define a relation
C on N x N x P, (NN x N) as (m, z, F) C (n,y,G) if and only if the following all hold:

1. m<n,z <y, and F C G (monotonicity),
2. (V{o,i) € F)(V{p,w) € R"™) [p < 0 => w < y], and
3. (V(o,1) € F)(3(r,i) € G) [0 <= T& (1,2) € R;].

* This work was supported by JSPS KAKENHI Grant Number 18K11166.

! Theorem 1 of [4] contains a related refinement result that applies to IT{-sets.

2 We incorrectly omitted the requirement that <; be a c.e. relation in the original paper. We are grateful to Ivan
Georgiev for pointing out this mistake and providing a counter example.



It is easy to see that T is c.e. and transitive. Define f: I(C) — I(<) as f(J) = {zx € N| (Im, F) (m,z, F) € J}
and define g: I(<) — I(C) as g(I) = {(m,z,0) | m € N&z € I'}. The next lemma implies f(.J) is a lower
set, and the other requirements for f(J) and g(I) to be ideals can be verified directly. Thus f and g are total
computable functions satisfying f(g(I)) = I for each I € I(<), hence I(<) is a computable retract of I(C).

Lemma 1. If J € I(C) and (n,y,G) € J, then (i) (m,y,G) € J for each m € N, (ii) x < y implies
(n,z,G) € J, and (iii) F C G implies (n,y, F) € J. In particular, g(I) is the unique minimal element of
FY{I}) for each I € I(<).

Proof. For (i), fix m € N. Using the directedness of J, we can find (n’,y’, G') € J with (n,y,G) C (n’,y',G")
and m < n/. Then (m,y,G) C (n',y’',G’) hence (m,y,G) € J. The proof for (i) and (iii) are similar, but
(ii) uses the assumption that R; is (<, <)-closed to show the third item in the definition of T holds. O

Lemma 2. For each I € I(<), there is a unique mazimal element I in f~1({I}).

Proof. f~Y({I}) is non-empty because it contains g(I), and it is quasi-Polish because it is II3. We show it
is directed with respect to C, which is the specialization order on f~1({I}). Assume f(J;) = f(J2) = I.
Set J = {(m,z,F} UFy) | (m,a,F1) € Jy&(m,z,F3) € Jo}. It is clear that J is non-empty, and the
previous lemma can be used to show it is a lower set. To see J is directed, assume (m,z, Fy U Fy) and
(m/,a’, F] U F}) are in J. Fix a C-upper bound (n;,y;, G;) of (m,z, F;) and (m’,2’, F/) in J; (i € {1,2}).
Let y be a <-upper bound of y; and y, in I, and set n = max(nq, nq). It is straightforward to show that
(n,y, G1UG2) is in J, and it is a C-upper bound of (m,z, Fy UFy) and (m/,z’, F{ U Fy), hence J is directed.
Thus Ji, Jo € J € f~1({I}), hence f=*({I}) is directed. It follows from the sobriety of f~1({I}) that it has
a unique maximal element. a

Let M = {I € I(C) | I € I(<)}, which is a IT}-subset of I(C). For i € N and o € N<V, let U? be the
c.e.-open subset of all J € I(C) with (m, z,{(c,i)}) € J for some m,z € N. For each 0 € N< we also define
A? ={I € I(<) | 3P € I(=<w))[oc € P&"R;(P) = I]}. We can assume our enumeration of (R;);en is
reasonable enough that there is a computable function h satisfying Ry (s = R N ({7 € NN | o < 7} x N)
for each 0 € N<N and 7 € N, hence Ap(o,i) = A7 . The next lemma completes the proof of Theorem 1.

Lemma 3. U? C f~Y(A9) and U "M = f~1(AZ)N M for eachi € N and o € N<N,

Proof. Assume J € U N M and fix a C-ascending sequence ((my, zk, Fi))ken that is cofinal in J. We can
assume without loss of generality that (o,i) € Fp, so the definition of C implies there is a <yv-ascending
sequence (oy)reny With o9 = o and (oy,4) € Fi, and (0j4+1,2) € R; for each k € N. Let P € I(<w) be
the ideal generated by the <yn-ascending sequence (oy)gen, and let I € I(<) be the ideal generated by the
<-ascending sequence (x)gen. Then o € P and it can be shown that "R;(P) = I by using the assumption
that R; is (<, <)-closed, hence I € A?. Clearly I C f(J), and if x € f(J) then since ((mg, Tk, Fi))ren is
cofinal in J there is k € N with x < xy, hence x € I. Therefore, f(J) =1 € A7.

For the second claim, assume I € f~1(A?) N M and fix P € I(<yv) with o € P and "R; (P) = I. Define
J={(m,z,F) |meN&xz e I&F C P x {i} is finite}. Then J € U7 and f(J) = I hence Ie Uys. O
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