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Let Top be the category of topological spaces and continuous maps, Loc the category of
locales, and Ω : Top → Loc the usual functor mapping spaces to locales. Ω preserves colimits
(since it has a right adjoint pt : Loc→ Top), but Ω does not preserve finite products in general.
The purpose of this note is to investigate subcategories of countably based sober spaces for which
the restriction of Ω does preserve finite products.

Let S0 be the countable space defined in [2]. The underlying set of S0 is N<N, the set of finite
sequences of natural numbers. A subbasis for the open subsets of S0 is given by sets of the form
{τ ∈ N<N |σ 6� τ}, where σ ∈ N<N and � is the prefix relation. Note that S0 is a countably
based sober space, its specialization order is the reverse of the prefix relation, and that S0 has
uncountably many distinct open sets ([2]; Proposition 6.1).

We first show that the localic product Ω(S0)×lΩ(S0) is not spatial by describing a winning
strategy for Player I in the game G(S0, S0) defined by T. Plewe (see Theorem 1.1 in [5] and the
paragraph above it for a definition of the game). The proof strategy for the following lemma is
essentially the same as P. Johnstone’s proof that Ω(Q)×lΩ(Q) is not spatial (see Proposition II-
2.14 of [4]), but the game theoretic approach allows us to hide the use of transfinite ordinals.

Lemma 1. The localic product Ω(S0)×l Ω(S0) is not spatial.

Proof. We denote the length of σ ∈ N<N by |σ|. The empty string is denoted as ε, and the string
consisting of m zeros is written 0(m). The string obtained by appending n ∈ N to σ ∈ N<N is
written σ � n. We also write σ � τ for the concatenation of strings. For σ, τ ∈ N<N, define

Fσ,τ = {s � n | n ∈ N & s ∈ N<N & s � σ & s � n 6� σ & n ≤ |σ|+ |τ |}, and

Uσ,τ = {t ∈ N<N | (∀s ∈ Fσ,τ ) s 6� t}.

Then σ ∈ Uσ,τ , hence U = {Uσ,τ × Uτ,σ | σ, τ ∈ N<N} is an open cover of S0 × S0.

Observe that if s ∈ Uσ,τ and every element of s is less than or equal to |σ|+ |τ | then s � σ.
Also note that if U ⊆ S0 is open and σ ∈ U , then there exist infinitely many n ∈ N such that
every string that has σ �n as a prefix is also in U . This is because there must be a finite F ⊆ S0

such that the basic open set W = {τ ∈ N<N | (∀s ∈ F ) s 6� τ} satisfies σ ∈ W ⊆ U . Fix any
n ∈ N that is strictly larger than any element contained in any of the strings in F . Then for
each s ∈ F , we have that s 6� σ � n and σ � n 6� s, hence no extension of σ � n has s as a prefix.
It follows that every extension of σ � n must be in W and therefore also in U .

Player I initializes the game by playing S0×S0 and the open covering U of S0×S0. The game
begins with round 1. For convenience, define V0 = W0 = S0, and x0 = y0 = ε, and m0 = n0 = 0.
Player I’s strategy for the i-th round (i ≥ 1) proceeds as follows:
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1. Player I chooses mi ∈ N such that every sequence extending yi−1 �mi is in Wi−1. Player I
then plays xi = xi−1 � ni−1 � 0(mi).

2. Player II must respond with an open subset Vi ⊆ Vi−1 containing xi.
3. Next, Player I finds distinct ni and n′i in N such that any sequence that has either xi � ni

or xi � n′i as a prefix is in Vi. Player I plays yi = yi−1 �mi � 0(ni+n
′
i).

4. Player II must respond with an open subset Wi ⊆Wi−1 containing yi.

The game then continues on to round i+ 1.
We show that at the end of each round i ≥ 1, the open rectangle Vi×Wi chosen by Player II

is not a subset of any open rectangle in U . Fix any σ, τ ∈ N<N with xi ∈ Uσ,τ and yi ∈ Uτ,σ.
Since yi−1 � yi we have yi−1 ∈ Uτ,σ, and an inductive argument (keep reading) yields yi−1 � τ .
Using the fact that |yi−1| ≥ ni−1 it can be shown that every element occurring in xi is less than
or equal to |yi−1| ≤ |σ| + |τ |, hence the assumption xi ∈ Uσ,τ and the observation at the top
of the second paragraph of this proof implies xi � σ. Similarly, every element of yi is less than
or equal to |xi| ≤ |τ | + |σ|, hence yi ∈ Uτ,σ implies yi � τ (thereby completing the inductive
argument). Either xi � ni 6� σ or xi � n′i 6� σ, and ni, n

′
i ≤ |yi| ≤ |σ|+ |τ |, thus xi � ni 6∈ Uσ,τ or

xi � n′i 6∈ Uσ,τ , but both xi � ni and xi � n′i are in Vi, so we conclude that Vi×Wi 6⊆ Uσ,τ ×Uτ,σ.
Therefore, the above strategy is winning for Player I, hence Ω(S0)×l Ω(S0) is not spatial. ut

Let ωSob be the category of countably based sober spaces, and let QPol be the category of
quasi-Polish spaces [1]. ωSob and QPol are closed under countable limits (as defined in Top),
and the restriction of Ω to QPol preserves all countable limits (Theorems 4.4 and 4.5 of [3]).

Theorem 1. Assume C is a full subcategory of ωSob satisfying:

(1) C is closed under finite limits (as defined in Top),
(2) the restriction of Ω to C preserves finite products,
(3) C contains P(N) (the powerset of N with the Scott-topology), and
(4) every space in C is co-analytic (i.e., homeomorphic to a Π1

1-subspace of P(N)).

Then C is a full subcategory of QPol.

Proof. Assume for a contradiction that there is some space X in C which is not quasi-Polish.
X is co-analytic by (4), hence Theorem 7.2 of [2] implies there is a Π0

2-subspace Y of X which
is homeomorphic to either S0 or Q (the candidates SD and S1 mentioned in [2] can be omitted
because X is sober). Since Y is a Π0

2-subspace of X, it is the equalizer of a pair of continuous
functions f, g : X → P(N) (see the concluding section of [1]), hence Y is in C by (1), (3), and
the assumption that C is a full subcategory of ωSob. Lemma 1 and the fact that Ω(Q)×l Ω(Q)
is not spatial imply Ω(Y × Y ) 6= Ω(Y ) ×l Ω(Y ). Therefore, the restriction of Ω to C does not
preserve products, which contradicts (2). ut

We conjecture that the above theorem still holds if (3) is omitted. It is consistent with ZFC
to replace “co-analytic” in (4) with any level of the projective hierarchy, and we conjecture that
it is consistent with ZF+(Dependent Choice) if (4) is removed completely.
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