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Let Top be the category of topological spaces and continuous maps, Loc the category of
locales, and €2: Top — Loc the usual functor mapping spaces to locales. §2 preserves colimits
(since it has a right adjoint pt: Loc — Top), but € does not preserve finite products in general.
The purpose of this note is to investigate subcategories of countably based sober spaces for which
the restriction of €2 does preserve finite products.

Let Sy be the countable space defined in [2]. The underlying set of Sy is N<N, the set of finite
sequences of natural numbers. A subbasis for the open subsets of Sy is given by sets of the form
{r € N*N|o £ 7}, where 0 € NN and < is the prefix relation. Note that Sy is a countably
based sober space, its specialization order is the reverse of the prefix relation, and that Sy has
uncountably many distinct open sets ([2]; Proposition 6.1).

We first show that the localic product Q(Sp) x; ©(Sp) is not spatial by describing a winning
strategy for Player I in the game G(Sp, So) defined by T. Plewe (see Theorem 1.1 in [5] and the
paragraph above it for a definition of the game). The proof strategy for the following lemma is
essentially the same as P. Johnstone’s proof that ©(Q) x; 2(Q) is not spatial (see Proposition II-
2.14 of [4]), but the game theoretic approach allows us to hide the use of transfinite ordinals.

Lemma 1. The localic product 2(Sy) x; Q(So) is not spatial.

Proof. We denote the length of o € N<N by |o|. The empty string is denoted as ¢, and the string
consisting of m zeros is written 0™ . The string obtained by appending n € N to o € N<N ig
written o o n. We also write o o 7 for the concatenation of strings. For o, 7 € N<N| define

F,,={son|neN&scNN&s<o&sonzo&n<lo|+|r]}, and
Upr ={te NN | (Vs € F,.)s At}

Then o € Uy, hence U = {U, » x U, » | 0,7 € NN} is an open cover of Sy x Sp.

Observe that if s € U, and every element of s is less than or equal to |o| + |7| then s < 0.
Also note that if U C Sy is open and ¢ € U, then there exist infinitely many n € N such that
every string that has o on as a prefix is also in U. This is because there must be a finite F' C Sy
such that the basic open set W = {r € N<N | (Vs € F)s £ 7} satisfies 0 € W C U. Fix any
n € N that is strictly larger than any element contained in any of the strings in F'. Then for
each s € F', we have that s A con and o on £ s, hence no extension of o ¢n has s as a prefix.
It follows that every extension of o ¢ n must be in W and therefore also in U.

Player I initializes the game by playing Sy x Sy and the open covering U of Sy x Sy. The game
begins with round 1. For convenience, define Vy = Wy = Sy, and zg = yo = €, and mg = ng = 0.
Player I’s strategy for the i-th round (¢ > 1) proceeds as follows:
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1. Player I chooses m; € N such that every sequence extending ;1 ¢ m; is in W;_;. Player 1
then plays x; = x;,_10on;_1 ¢ 0lma),

Player II must respond with an open subset V; C V;_; containing x;.

3. Next, Player I finds distinct n; and n} in N such that any sequence that has either x; o n;

N

or z; on} as a prefix is in V;. Player I plays y; = y;—1 om; © Qnitng),
4. Player II must respond with an open subset W; C W;_; containing y;.

The game then continues on to round 7 + 1.

We show that at the end of each round ¢ > 1, the open rectangle V; x W; chosen by Player 11
is not a subset of any open rectangle in Y. Fix any o,7 € NN with z; € U, , and y; € U, ,.
Since y;—1 =< y; we have y;_1 € U;,, and an inductive argument (keep reading) yields y;_1 < 7.
Using the fact that |y;—1| > n;—1 it can be shown that every element occurring in x; is less than
or equal to |y;—1| < |o| + |7], hence the assumption z; € U, , and the observation at the top
of the second paragraph of this proof implies x; =< o. Similarly, every element of y; is less than
or equal to |z;| < |7| + |o], hence y; € U, implies y; = 7 (thereby completing the inductive
argument). Either z; on; £ o or z; on} A o, and n;,nl < |y;| < |o| + |7|, thus x; on; & Uy, or
z;on; & Uy r, but both z; on; and x; o n} are in V;, so we conclude that V; x W; € Uy » X Ur 5.
Therefore, the above strategy is winning for Player I, hence Q(Sp) x; Q(Sp) is not spatial. O

Let wSob be the category of countably based sober spaces, and let QPol be the category of
quasi-Polish spaces [1]. wSob and QPol are closed under countable limits (as defined in Top),
and the restriction of € to QPol preserves all countable limits (Theorems 4.4 and 4.5 of [3]).

Theorem 1. Assume C is a full subcategory of wSob satisfying:

(1) C is closed under finite limits (as defined in Top),

(2) the restriction of Q to C preserves finite products,

(3) C contains P(N) (the powerset of N with the Scott-topology), and

(4) every space in C is co-analytic (i.e., homeomorphic to a IIi-subspace of P(N)).

Then C is a full subcategory of QPol.

Proof. Assume for a contradiction that there is some space X in C which is not quasi-Polish.
X is co-analytic by (4), hence Theorem 7.2 of [2] implies there is a ITI3-subspace Y of X which
is homeomorphic to either Sy or Q (the candidates Sp and S; mentioned in [2] can be omitted
because X is sober). Since Y is a ITI9-subspace of X, it is the equalizer of a pair of continuous
functions f,g: X — P(N) (see the concluding section of [1]), hence Y is in C by (1), (3), and
the assumption that C is a full subcategory of wSob. Lemma 1 and the fact that Q(Q) x; Q(Q)
is not spatial imply Q(Y x Y) # Q(Y) x; Q(Y). Therefore, the restriction of € to C does not
preserve products, which contradicts (2). ad

We conjecture that the above theorem still holds if (3) is omitted. It is consistent with ZFC
to replace “co-analytic” in (4) with any level of the projective hierarchy, and we conjecture that
it is consistent with ZF+(Dependent Choice) if (4) is removed completely.
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