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Descriptive set theory

Quasi-Polish spaces are a generalization of Polish spaces that
includes non-metrizable spaces

“Quasi-Polish”
= “countably based & completely quasi-metrizable”

(The original characterization used Smyth-complete
quasi-metrics, but J. Goubault-Larrecq showed they can also
be characterized using Yoneda-complete quasi-metrics).
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Who cares about non-metrizable spaces?

Descriptive set theory (DST) rarely needs metrizability.

Polish and quasi-Polish spaces have essentially the same DST.
Many (but not all) proofs that use complete metrics can be
replaced with complete quasi-metrics or other proof methods.

Non-metrizable spaces have many important applications.

The Gandy-Harrington space (effective descriptive set theory).
Non-trivial solutions to domain equations such as D ∼= DD.
Spectrums of commutative rings with the Zariski topology.

You need non-metrizable spaces to topologize topology.

There is no Hausdorff topology on O(1) (the open subsets of
the singleton space 1 = {∗}) that makes countable unions⋃
: O(1)N → O(1) a continuous function.

Topologizing the powerset of the natural numbers as 2N

(Cantor space) is a topological representation of ∆0
1(N), but

not Σ0
1(N), since the latter is closed under countable joins.
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Borel Hierarchy

The following is a modification of the Borel Hierarchy, due to
V. Selivanov, which is needed for non-metrizable spaces.

Definition (Borel - Selivanov)

Let X be a topological space. For each ordinal α (1 ≤ α < ω1) define
Σ0

α(X) inductively as follows:

Σ0
1(X) is the set of open subsets of X,

For α > 1, A ∈ Σ0
α(X) iff A can be expressed in the form

A =
⋃
i∈N

Ui \ Vi,

where Ui, Vi ∈ Σ0
βi
(X) for some βi < α.

Furthermore, A ∈ Π0
α(X) ⇐⇒ X \A ∈ Σ0

α(X) and
A ∈ ∆0

α(X) ⇐⇒ A ∈ Σ0
α(X) ∩Π0

α(X)

B(X) =
⋃

α<ω1
Σ0

α(X) is the set of Borel subsets of X.
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Borel Hierarchy

Traditionally, the Σ0
2-sets are defined as Fσ (countable unions

of closed sets), and the Π0
2-sets are defined as Gδ (countable

intersections of open sets).

However, this is problematic for non-metrizable spaces:

Define the Sierpinski space to be the set S = {⊥,⊤} with
topology O(S) = {∅, {⊤},S}.
Then {⊤} ∈ Σ0

1 but {⊤} ̸∈ Fσ, and {⊥} ∈ Π0
1 but {⊥} ̸∈ Gδ.

(so under the traditional definition, {⊤} ̸∈ ∆0
n for all n < ω.)

Using V. Selivanov’s modified definition we obtain an actual
hierarchy (which still agrees with the classical definition for
metrizable spaces).
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Quasi-Polish spaces

Definition

A topological space is quasi-Polish iff it satisfies any of the
following equivalent properties:

It is a countably based space with a topology generated by a
(Smyth-) complete quasi-metric

It is homeomorphic to a Π0
2-subspace of SN

SN ∼= P(N), the powerset of the natural numbers with the
Scott-topology

It is a T0-space and the image of a Polish space under an
open continuous function

It is countably based and has an admissible representation
with Polish domain

and more...
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Examples

The following are quasi-Polish:

Polish spaces

N, R, C, NN, etc.

Countably based spaces that are locally homeomorphic to
some Polish space

the line with two origins
countably based non-Hausdorff topological manifolds
etc.

ω-continuous domains

S, N⊥, P(N), etc.
Countably based spectral spaces

Spec(Z), Spec(Q[x1, . . . , xn]), etc.

Countably based locally compact sober spaces

(Contains the last two categories)

(There are quasi-Polish spaces which do not fit into any of the
above categories).
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Counter-examples

The following are not quasi-Polish:

Non-Polish metric spaces
S2: Q with the subspace topology inherited from R
etc.

Non-sober spaces
S1: N with the cofinite topology
SD: (N, <) with the Scott-topology
etc.

And some others
S0: (N<∞,⪯prefix) with the lower topology
the Gandy-Harrington space
etc.

Theorem (Generalized Hurewicz Theorem)

Any Π1
1 subspace of a quasi-Polish space which is not quasi-Polish

will contain a Π0
2-subset homeomorphic to one of the four spaces

(S2, S1, SD, or S0) highlighted above.
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Some basic DST results

A space is Polish if and only if it is a metrizable quasi-Polish space.

Every countably based T0-space embeds into a quasi-Polish space.

If X is quasi-Polish, then A ⊆ X is quasi-Polish iff A ∈ Π0
2(X).

QPol is the smallest (up to equivalence) full subcategory of Top
that contains S and is closed under countable limits.

Every quasi-Polish space is a Baire space, which means that the
intersection of countably many dense open sets is dense.

They are completely Baire: every closed subspace is Baire.

A partial continuous function into a quasi-Polish space can be
extended to a continuous function with Π0

2-domain.

Extending a quasi-Polish topology with countably many ∆0
2-sets

results in a quasi-Polish topology.

If X is quasi-Polish and A ⊆ X is Borel, then there is a quasi-Polish
topology that refines the topology on X and such that A is open in
the refinement.
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Domain Theory

Quasi-Polish spaces are a generalization of ω-continuous
domains

A space is quasi-Polish iff it is homeomorphic to the
non-compact elements of an ω-continuous domain.
A space is quasi-Polish iff it is a convergent approximation
space (V. Becher & S. Grigorieff, 2014).
They can also be characterized as spaces of ideals, similar to
the “abstract basis” characterization of domains, but without
the finite interpolation requirement.
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Spaces of ideals

Definition

Let ≺ be a transitive relation on N. A subset I ⊆ N is an ideal
(with respect to ≺) if and only if:

1 I ̸= ∅, (I is non-empty)

2 (∀a ∈ I)(∀b ∈ N) (b ≺ a⇒ b ∈ I), (I is a lower set)

3 (∀a, b ∈ I)(∃c ∈ I) (a ≺ c& b ≺ c). (I is directed)

The collection I(≺) of all ideals has the topology generated by
basic open sets of the form [n]≺ = {I ∈ I(≺) | n ∈ I} for n ∈ N.

N encodes pieces of information about points in an abstract space.

The relation a ≺ b means b contains more information than a.
A point (i.e., an ideal I ∈ I(≺)) is any consistent collection of
arbitrarily precise information.

14 / 52



Spaces of Ideals

The following was shown in joint work with A. Pauly &
M. Schröder when investigating computable quasi-Polish spaces.

Theorem (d., A. Pauly, & M. Schröder, 2019)

A space is quasi-Polish if and only if it is homeomorphic to a space
of the form I(≺) for some transitive relation ≺ on N.

If ≺ is a partial order, then we get ω-algebraic domains.

If ≺ satisfies the following finite interpolation property, then
we get ω-continuous domains.

For every finite F ⊆ N and z ∈ N,

F ≺ z implies (∃y ∈ N)F ≺ y ≺ z

where F ≺ z is shorthand for (∀x ∈ F )x ≺ z.
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Examples

Example

If = is the equality relation on N, then I(=) is homeomorphic to N
with the discrete topology.

We also consider relations on other countable sets (encoded by N)

Example

If ≺ is the strict prefix relation on the set N<∞ of finite sequences
of natural numbers, then I(≺) is homeomorphic to the Baire space
NN.

Example

If ⊆ is the usual subset relation on the set Pfin(N) of finite subsets
of N, then I(⊆) is homeomorphic to P(N), the powerset of the
natural numbers with the Scott-topology.
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Examples: Completion of separable metric spaces

Let (X, d) be a separable metric space. Fix a countable dense
subset D ⊆ X, and define a transitive relation ≺ on
P = D × N as

⟨x, n⟩ ≺ ⟨y,m⟩ ⇐⇒ d(x, y) < 2−n − 2−m.

This definition guarantees that the open ball with center x and
radius 2−n contains the closed ball with center y and radius
2−m.

I(≺) is homeomorphic to the metric completion of (X, d).

This is related to the formal ball models in domain theory.
(Note that the metrizable spaces of ideals are precisely the
Polish spaces)
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Upper and lower powerspaces

The upper and lower powerspaces are used for

(Topology) Constructing multi-valued functions
(Computer science) Modeling non-deterministic programs
(Logic) Providing semantics for modal logics

Definition

Given a topological space X with topology O(X), define the
topological spaces A(X) and K(X) as follows:

A(X) (Lower powerspace):

Set of closed subsets of X with lower Vietoris topology, which
has subbasis ♢U := {A ∈ A(X) |A ∩ U ̸= ∅} for U ∈ O(X)

K(X) (Upper powerspace):

Set of saturated compact subsets of X with upper Vietoris
topology, which has subbasis □U := {K ∈ K(X) |K ⊆ U} for
U ∈ O(X)

Note: S ⊆ X is saturated iff S =
⋂
{W ∈ O(X) | S ⊆W}.

(Every subset of a T1-space is saturated).
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Upper and lower powerspaces

Somewhat surprisingly, several constructions on ω-algebraic
domains due to M. Smyth still apply in this generality.

Theorem

Let ≺ be a binary transitive relation on N. Define binary transitive
relations ≺L,≺U on Pfin(N) as follows:

A ≺L B iff (∀a ∈ A)(∃b ∈ B) a ≺ b,

A ≺U B iff (∀b ∈ B)(∃a ∈ A) a ≺ b.

Then

I(≺L) ∼= A(I(≺)), the lower powerspace of I(≺)
(i.e. the set of closed sets with the lower Vietoris topology)

I(≺U ) ∼= K(I(≺)), the upper powerspace of I(≺)
(i.e. the set of saturated compact sets with the upper Vietoris topology)

19 / 52



Double powerspace

Definition (Double powerspace)

SSX is the space of continuous functions from SX to S
(The notation can be justified by embedding QPol into the
cartesian closed category QCB0.)

The exponentials SX and SSX in QCB0 both have the

Scott-topology, which is equivalent to the compact-open topology

when X is quasi-Polish. If X is quasi-Polish then SX is quasi-Polish

if and only if X is locally compact.

This is realized by composing A and K, because

SSX ∼= A(K(X)) ∼= K(A(X)) when X is quasi-Polish (d. &
T. Kawai, 2019).

This is closely related to work by S. Vickers on the double
powerlocale and work by P. Taylor on Abstract Stone Duality.
See also recent work by E. Neumann investigating applications
of the upper, lower, and double powerspace functors on
effective represented spaces.
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Valuations powerspace

Definition (Valuations)

A valuation on X is a continuous function ν : O(X) → R+

satisfying:
1 ν(∅) = 0, and (strictness)
2 ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V ). (modularity)

V(X) (valuations powerspace) is the set of all valuations on
X with the topology induced by subbasic opens of the form
⟨U, q⟩ := {ν ∈ V(X) | ν(U) > q} with U ∈ O(X) and
q ∈ R+ \ {∞}.

O(X) and R+ = [0,∞] are assumed to have the Scott-topology.

Valuations are commonly used instead of Borel measures in
computable topology and constructive logic.

Every (locally finite) valuation on a quasi-Polish space extends
(uniquely) to a Borel measure. Conversely, restricting any
Borel measure to the open subsets results in a valuation.
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Valuations powerspace

Theorem

Let ≺ be a binary transitive relation on N. Define the binary
transitive relation ≺V on the (countable) set
{r :⊆ N → Q>0 | dom(r) is finite } as r ≺V s iff∑

b∈F r(b) <
∑

{s(c) | c ∈ dom(s)& (∃b ∈ F ) b ≺ c} for every
non-empty F ⊆ dom(r).

Then I(≺V ) ∼= V(I(≺)).

This is related to work by C. Jones on the probabilistic
powerdomain in domain theory, which is used to model
probabilistic computations.
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Computable topology

Quasi-Polish spaces are “complete” computable topological
spaces

The effective part of the definition of a computable topological
space uniquely determines a complete computable topological
space, which is computably equivalent to a space of ideals over
a c.e. relation.

This leads to effective notions of quasi-Polish spaces that are
equivalent to earlier proposals.

The advantage of the “spaces of ideals” approach to
computable topology is that it requires fewer assumptions on
the mathematical foundations.

For example, it can be formalized within second-order
arithmetic.
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Effective version of quasi-Polish spaces

Theorem (d., A. Pauly, & M. Schröder, 2019)

The following are equivalent for a represented space X:

X is computably isomorphic to I(≺) for some c.e. transitive
relation ≺ on N.
X is computably isomorphic to a Π0

2-subspace of O(N).
X has an effectively fiber-overt computably admissible
representation with domain in Π0

2(NN).

This is equivalent to what M. Korovina & O. Kudinov (2017)
called computable quasi-Polish spaces.

It is also related to the effective convergent approximation
spaces considered by V. Selivanov (2015).

d., A. Pauly, & M. Schröder (2019) called them
precomputable quasi-Polish spaces.
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Effective version of overt quasi-Polish spaces

The following is from d., A. Pauly, & M. Schröder (2019) and M. Hoyrup,
C. Rojas, V. Selivanov, & D. Stull (2019).

Theorem

The following are equivalent for an admissibly represented space X:

X ∼= I(≺), where ≺ and E≺ = {n ∈ N | [n]≺ ̸= ∅} are both c.e.

X is computably isomorphic to an overt Π0
2-subspace of O(N).

X is empty or has an effectively fiber-overt computably admissible total
representation.

X is empty or it is the image of NN under a computable effectively open
map.

d., A. Pauly, & M. Schröder (2019) called them computable quasi-Polish
spaces.

M. Hoyrup, C. Rojas, V. Selivanov, & D. Stull (2019) called them
effective quasi-Polish spaces.

They correspond to effectively enumerable computable quasi-Polish
spaces in the terminology of M. Korovina & O. Kudinov (2017).
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Computable functions

Definition

Let ≺ and ⊏ be transitive relations on N.
A code for a partial function is any subset R ⊆ N× N.
Each code R represents the partial function
⌜R⌝ :⊆ I(≺) → I(⊏) defined as

⌜R⌝(I) = {n ∈ N | (∃m ∈ I) ⟨m,n⟩ ∈ R},
dom(⌜R⌝) = {I ∈ I(≺) | ⌜R⌝(I) ∈ I(⊏)}.

Note that dom(⌜R⌝) is a Π0
2-subset of I(≺).
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Computable functions

Computability of functions between spaces of ideals can be
easily defined in a way that is compatible with TTE.

An admissible representation δ :⊆ NN → I(≺) is given by
defining δ(p) = I ⇐⇒ range(p) = I. In other words, a name
of an ideal in I(≺) is just an enumeration of its elements.

Theorem

Let ≺ and ⊏ be c.e. transitive relations on N. A total function
f : I(≺) → I(⊏) is computable if and only if there is a c.e. code
R ⊆ N× N such that f = ⌜R⌝.

Intuitively, a function f : I(≺) → I(⊏) is computable if and only if
there is an algorithm that produces an enumeration of f(I) ∈ I(⊏)
when given an enumeration of I ∈ I(≺).
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Compatibility with the powerspace functors

For any total I(≺) I(⊏)⌜R⌝ and P ∈ {A,K,V}, the composition

P(I(≺)) ∼= I(≺P ) I(⊏P ) ∼= P(I(⊏))
⌜RP ⌝

is equal to P(⌜R⌝).

Lower powerspace:

A(f)(A) = ClY ({f(x) | x ∈ A}).
A ≺L B ⇐⇒ (∀a ∈ A)(∃b ∈ B) a ≺ b for A,B ∈ Pfin(N).
RL = {⟨A,B⟩ | (∀b ∈ B)(∃a ∈ A) ⟨a, b⟩ ∈ R}.

Upper powerspace:

K(f)(K) = SatY ({f(x) | x ∈ K}).
A ≺U B ⇐⇒ (∀b ∈ B)(∃a ∈ A) a ≺ b for A,B ∈ Pfin(N).
RU = {⟨A,B⟩ | (∀a ∈ A)(∃b ∈ B) ⟨a, b⟩ ∈ R}.

Valuations powerspace:

V(f)(ν) = λU.ν(f−1(U))
RV ={
⟨r, s⟩

∣∣∣ (∀G ⊆ dom(s))
[
G ̸= ∅ ⇒

∑
a∈AG

r(a) >
∑

b∈G s(b)
]}

where

AG = {a ∈ dom(r) | (∃a0 ∈ N)(∃b ∈ G) [a0 ≺ a& ⟨a0, b⟩ ∈ R]}.
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Computable topological spaces

Definition

A (countably based) computable topological space is a tuple
(X,φ, S) where:

1 X is a T0-space,

2 φ : N → O(X) is an enumeration of a basis for X,

3 S ⊆ N3 is a c.e. set satisfying
φ(n) ∩ φ(m) =

⋃
{φ(k) | ⟨n,m, k⟩ ∈ S} for each n,m ∈ N.

The only effective aspect of this definition is the c.e. set S.

In particular, if (X,φ, S) is a computable topological space,
and e : Y → X is any embedding, then (Y, ψ, S) is also a
computable topological space, where ψ = O(e) ◦ φ.

O(e) : O(X) → O(Y ) maps U 7→ e−1(U)
(ψ just restricts the basic open subsets of X enumerated by φ
to the subspace Y )
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Completion of computable topological spaces

Definition

Let S ⊆ N3 be a c.e. set. A computable topological space
(X,φ, S) is complete if and only if for any computable topological
space (Y, ψ, S) there is a unique computable embedding
e : Y → X satisfying ψ = O(e) ◦ φ.

Intuitively, (X,φ, S) is a complete computable topological space if
and only if all other computable topological spaces associated to S
are essentially just subspace embeddings e : Y → X on the
previous slide.
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Completion of computable topological spaces

Theorem

For every c.e. subset S ⊆ N3, there is a Π0
2-subspace

X ⊆ P(N) such that (X,λn.{x ∈ X | n ∈ x}, S) is a
complete computable topological space.

Hence X is computably homeomorphic to a space of the form
I(≺) for some transitive c.e. relation ≺ on N.

Conversely, for every transitive c.e. relation ≺ on N, there is a
c.e. S ⊆ N3 such that (I(≺), λn.[n]≺, S) is a complete
computable topological space.

As a corollary, we get a (computably) equivalent notion of
computable topological space if we defined them to be a pair
(≺, X), where ≺ is a transitive c.e. relation and X ⊆ I(≺).

In other words, the effective aspect of the definition of a
computable topological space determines a quasi-Polish space.
The non-effective aspect of the definition corresponds to some
subspace of the quasi-Polish space.
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Geometric Logic

Quasi-Polish spaces are countably axiomatized propositional
geometric theories

Dual perspective due to R. Heckmann.
Points of the space are models of the theory.
Topological completeness corresponds to logical completeness.
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Propositional geometric logic

Propositional geometric formulas are built from propositional
variables, constants ⊥ and ⊤, finite conjunctions, and
infinitary disjunctions, but not negation nor implication.

S. Abramsky, S. Vickers and others have described it as the
logic of “observable properties”

A propositional geometric theory is a set of sequents of the
form ϕ ⊢ ψ, where ϕ and ψ are propositional geometric
formulas.

Rules of inference (see P. Johnstone or S. Vickers):

ϕ ⊢ ϕ (identity)
ϕ ⊢ ψ ψ ⊢ χ

(cut)
ϕ ⊢ χ

ϕ ⊢ ⊤, ϕ ∧ ψ ⊢ ϕ, ϕ ∧ ψ ⊢ ψ, ϕ ⊢ ψ ϕ ⊢ χ
ϕ ⊢ ψ ∧ χ

⊥ ⊢ ψ, ϕ ⊢
∨
S (ϕ ∈ S),

ϕ ⊢ ψ (all ϕ ∈ S)∨
S ⊢ ψ

ϕ ∧
∨
S ⊢

∨
{ϕ ∧ ψ |ψ ∈ S}
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Frames

The Lindenbaum algebra of a propositional geometric theory is a
frame.

Definition

A frame is a complete lattice satisfying a ∧
∨
i∈I bi =

∨
i∈I(a ∧ bi)

for arbitrary index sets I.

(Equivalently, a frame is a complete Heyting algebra)

A frame homomorphism is a function between frames that
preserves finite meets and arbitrary joins.

(But it need not preserve implication)

Example

If X is a topological space then O(X) is a frame.

If f : X → Y is a continuous function between topological
spaces then f−1 : O(Y ) → O(X) is a frame homomorphism.
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Frame presentations

A frame presentation consists of

a set G of generators (= propositional variables), and
a set R of relations (= axioms) of the form “ϕ ⊢ ψ”, where ϕ
and ψ are frame expressions involving the constants ⊤,⊥,
elements of G, and the operators ∧,

∨
.

A presentation uniquely determines a frame ⟨G | R⟩ satisfying:
There is i : G→ ⟨G | R⟩ that preserves the relations in R

If p0 ∧ . . . ∧ pm ⊢
∨

i∈I q
i
0 ∧ . . . ∧ qini

is in R, then
i(p0) ∧ . . . ∧ i(pm) ≤

∨
i∈I i(q

i
0) ∧ . . . ∧ i(qini

) holds in ⟨G | R⟩
If Y is any frame and j : G→ Y preserves R, then there is a unique
frame homomorphism F : ⟨G | R⟩ → Y such that F ◦ i = j

⟨G | R⟩ Y

G

F

i
j (R preserving)

(The frame ⟨G | R⟩ is the Lindenbaum algebra of the theory with

variables G and axioms R)
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Theorem (R. Heckmann)

A frame has a countable presentation (i.e., G and R are both
countable) if and only if it is isomorphic to the open set lattice of a
quasi-Polish space.

Quasi-Polish space = countable propositional geometric theory

Open set lattice ≈ Lindenbaum algebra

Open sets ≈ Propositions

Points ≈ Models of the theory

Note: Recent work by R. Chen extends R. Heckmann’s results to
predicate logic and further develops connections between
descriptive set theory and locale theory.
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Topological Duality

Quasi-Polish spaces are coPolish-presented locales

Putting the topology back into locale theory
Dual relationship with the coPolish spaces that were proposed
by M. Schröder.
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SX as a topological frame

Proposition (d. & T. Kawai, 2019)

If X is quasi-Polish then the following are continuous:∨
: A(SX) → SX , A 7→

⋃
U∈A U .∧

: K(SX) → SX , K 7→
⋂
U∈K U .

SX is an Eilenberg-Moore algebra of the monads K and A
with the above structure maps.

Algebras of these monads were studied in depth by A. Schalk.
SX is also an algebra of the double powerspace monad with

structure map SηX : SSS
X

→ SX (see P. Taylor’s work on
ASD).

The observation that a compact intersection of opens is open is due

to M. Escardó (2004). The above proposition holds for all

represented spaces (A. Pauly, 2015) if the QCB0-version of the

powerspaces are used (M. Schröder, 2002).
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SX as a topological frame

By R. Heckmann’s result, the spaces SX for quasi-Polish X are
precisely the countably presented frames with the Scott-topology.

Since SX is an algebra of both A and K, we can view it as a
topological frame with overt joins and compact meets.

This allows a precise connection between open sets and
c.e.-sets, since it avoids the problematic “arbitrary” unions.

Beck distributivity holds for A and K in this case, which implies
overt joins and compact meets distribute over each other.

The maps below are equivalent to SηX .

A(K(SX)) K(A(SX))

A(SX) K(SX)

SX

A(
∧
)

∼=

K(
∨
)

∨ ∧
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Countably presented frames as spaces

Let G and R be countable sets (discrete spaces).

Each pair of functions φ,ψ : R→ SSG ∼= A(K(G)) determines
the frame presentation with generators G and relations∨

F∈φ(r)

∧
F =

∨
F ′∈ψ(r)

∧
F ′

for each r ∈ R (F, F ′ ∈ K(G) are finite because G is
discrete).

Conversely, every countable frame presentation can be viewed
as a pair of functions φ,ψ : R→ SSG ∼= A(K(G)) for suitable
G and R.
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Countably presented frames as spaces

We obtain the frame presented by φ,ψ : R→ SSG as follows:

Let φ̂, ψ̂ : SG → SR be the double transpose of φ,ψ.
(i.e., φ̂(U)(r) = φ(r)(U) and ψ̂(U)(r) = ψ(r)(U))

The equalizer e : X → SG of φ̂ and ψ̂ is quasi-Polish.
Then SX is the frame presented by φ,ψ.

If we interpret “frame” to mean “double powerspace algebra”,
then we get the same result if G (or R) is any space such that
SG is a quasi-Polish double powerspace algebra.

It follows that quasi-Polish spaces are exactly the
coPolish-presented locales.

Example: If X is quasi-Polish then

O(A(X)) ∼= ⟨♢U(U ∈ O(X)) | ♢⊥ = ⊥,♢(U ∨ V ) = ♢U ∨ ♢V ⟩
O(K(X)) ∼= ⟨□U(U ∈ O(X)) | □⊤ = ⊤,□(U ∧ V ) = □U ∧□V ⟩

(Relations for preserving directed joins are unnecessary if all maps in

the ambient category are continuous)
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Regular frames

Since countably presented frames are topological frames, it makes
sense to look at quasi-Polish frames.

Definition

A frame X is regular iff each x ∈ X satisfies

x =
∨

{y ∈ X | (∃z ∈ X)[ y ∧ z = ⊥ and x ∨ z = ⊤ ]}.

A quasi-Polish (regular) frame is a quasi-Polish space whose
specialization order is a (regular) frame and such that binary
joins and binary meets are continuous functions.

Note: If X is a sober space, then O(X) is a regular frame iff X is
a regular Hausdorff space.
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CoPolish spaces

Definition

A space is coPolish iff it is the direct limit of an increasing
sequence of its compact metrizable subspaces.

M. Schröder introduced coPolish spaces when investigating Type-2
complexity theory, and has found many characterizations and
natural examples of them.

Proposition (M. Schröder)

Every coPolish space is a regular Hausdorff QCB0-space.

Example: The polynomial ring R[X] is coPolish but not countably
based.

(pi)i∈N → p in R[X] iff {deg(pi) | i ∈ N} is bounded and the
coefficients of the pi converge to the coefficients of p.
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Quasi-Polish regular frames and coPolish spaces

It was known early on from M. Schröder’s original work on
coPolish spaces that the frame of a coPolish space (with the
Scott-topology) is qusai-Polish. The following spatiality result is a
converse to this observation.

Theorem

The following are equivalent for a quasi-Polish regular frame Y :

1 Y is an algebra of the double powerspace monad,

2 Y is homeomorphic to O(X) (with the Scott-topology) for
some coPolish space X.
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CoPolish spaces

Just as Polish spaces have many applications in analysis, coPolish spaces

have many applications in topological algebra.

Proposition

If X is coPolish, then G(X), the free topological group generated
by X, is coPolish.

(Other free algebra constructions are possible, such as R[X], which is the free
commutative R-algebra generated by a single indeterminate X.)

Proof: Every coPolish space is a kω-space, and it is known that G(−)

preserves kω-spaces. Most constructions of G(X) in the literature are highly

non-constructive, so it can be difficult to see that the size constraint is

satisfied. A more constructive construction can be found in the J. Isbell et al.

paper “Remarks on localic groups”, which only requires frame coproducts and

countable frame limits, so it can be carried out with quasi-Polish frames. The

same J. Isbell et al. paper shows that localic products of kω-spaces are spatial,

and that if the localic free group is spatial then it corresponds with the

topological free group, so the localic and topological constructions agree.
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Quasi-Polish = Enough compact sets?

It is well-known that the completely Baire property characterizes
Polish spaces among “definable” countably based metrizable spaces.

This does not extend to quasi-Polish spaces, because S0 is a
countably based completely Baire non-quasi-Polish space.

However, K(X) is completely Baire iff X is quasi-Polish, whenever
X is a “definable” countably based sober space.

Consonance also says a space has “enough” compact sets, so does
this also characterize quasi-Polish spaces?

A space X is consonant iff the Scott-topology and
compact-open topology agree on SX .

Open Problem

Is it consistent with ZF+DC that every countably based sober
consonant space is quasi-Polish?

(It is known that a co-analytic countably based sober space is

quasi-Polish iff every Π0
2-subspace is consonant).
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Cartesian closed subcategories?

For more comparisons with domains and other applications to
computation, it is important to know more about the
cartesian closed subcategories of QPol.

I am mainly interested in full sub-CCCs of QCB0 that are
contained in QPol, so exponentials will have the compact-open
topology.

X ∈ QPol is exponentiable (i.e., Y X ∈ QPol for all Y ∈ QPol)
if and only if X is locally compact. However, the locally
compact spaces do not form a cartesian closed subcategory.

ωFS-domains (the largest cartesian closed full subcategory of
ω-continuous domains) is a full sub-CCC of QCB0 contained
in QPol, but it is unknown if it is maximal in QPol.

Open Problem

Are ωFS-domains a maximal cartesian closed subcategory of QPol?
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Spaces vs. Locales

Locales are a generalization of quasi-Polish spaces, where
uncountable sets of generators and relations are allowed.

R. Chen’s work shows how locale theory is in many ways a
generalization of descriptive set theory, but without the
countability restrictions.

Spatial locales and sober spaces have some similarities, until
you start doing mathematics with them.

The theories of countably presented locales and quasi-Polish
spaces are equivalent if you assume classical logic, but:
Quiz: Is addition on the subobject Q of R computable?

Open Problem

Is it consistent with ZF+DC that QPol is the largest full
subcategory of countably based sober spaces where localic
products are spatial?

Some initial progress on this problem was presented at
“Computability, Continuity, Constructivity (CCC 2019)”.
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