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Abstract

Algorithmic learning theory is a subfield of machine learning that attempts to
give a mathematical formalization of the notion of “learning” and investigate the
learnability and complexity of various learning problems. One well known model
is the “identification in the limit” paradigm, which was introduced by E. M.
Gold. In this paradigm, a learner receives information about some concept, and
the learner guesses hypotheses to explain the concept. If the learner converges to
a correct hypothesis after making only a finite number of incorrect guesses, then
we say that the learner has identified the concept in the limit. If every concept
in a collection of concepts, called a concept space, can be identified in the limit,
then the concept space is said to be identifiable in the limit. In this thesis,
we add algebraic and topological structure to concept spaces and investigate
the relationship between identifiability in the limit and various algebraic and
topological properties.

As for algebraic properties, we use algebraic closure operators and lattice
theory to characterize sufficient conditions for identifiability in the limit. In
particular, we introduce an algebraic closure operator for any given concept
space. Intuitively, such an operator determines all the information that can be
extracted from partially given information about some unknown concept. This
operator embeds the concept space into an algebraic closure system, and the
lattice theoretical aspects of this closure system are shown to be closely related
to the identifiability and complexity of identifying the concept space in the limit.
As an application, we use closure operators to construct a learning algorithm for
the class of unbounded unions of restricted pattern languages, and characterize
the complexity of this class using ordinals.

By naturally interpreting a concept space as a topological space, we were
able to give topological characterizations of several necessary and sufficient con-
ditions for identifiability. In addition, we clarified which structural properties
of concept spaces are topologically invariant. In particular, identifiability in the
limit is a topologically invariant property, so when an abstract topological space
is interpreted as a concept space, whether or not the space is identifiable in the
limit is independent of how the topological space is interpreted as a concept
space. We have also given complete characterizations of reductions between
learning problems using continuous functions. In some cases, it is possible to
construct more intuitive learning algorithms for a concept space by continuously
reducing it into a simpler space.

Finally, we analyzed the types of representations of concept spaces. In par-
ticular, we introduce a hierarchy of representations called Σ0

α-admissible rep-
resentations, and characterize which functions are realizable with respect to
different levels of representations. This hierarchy is a generalization of “admis-
sible representations,” which have become important to the field of computable
analysis. We show that the stream of information provided about an unknown
concept is often Σ0

1-admissible with respect to a suitable topology on the concept
space, and that the learner’s sequence of hypotheses is a Σ0

2-admissible repre-
sentation of the concept space with respect to the discrete topology. Based on
these results, we can provide a general framework that includes classification
in the limit, identification in the limit, and other variations of these learning
paradigms.
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Chapter 1

Introduction

In this thesis we will analyze connections between algorithmic learning theory,
topology, and algebra. We will mainly focus on the identification in the limit
model of learning proposed by E. M. Gold [21] in 1967. This is an abstract
model of the learning process, where a learner receives information about some
concept and attempts to converge to an explicit hypothesis for the concept.
From this standpoint, learning is interpreted as the process of constructing a
complete description of a concept when only partial information is available.
Although somewhat idealistic and oversimplified, the identification in the limit
model is unique as being one of the few attempts to create a mathematically
rigorous framework in which the learning process can be studied. Thus the
model is important not only for clarifying what we mean by “learning”, but
also for better understanding the limitations of learning agents and intelligent
agents in general.

The goal of this thesis is to better understand the identification in the limit
model using tools from algebra (particularly universal algebra) and general
topology. The purpose of our approach is twofold. First, several aspects of
the identification in the limit model are clarified by using algebraic and topo-
logical concepts. This will be the goal of Chapters 2 and 3, where we show
that notions like identifiability, mind-change complexity, and reducibility have
very simple algebraic and topological characterizations. These characterizations
not only make it easier to apply the model in practice, but also help bring less
explicit aspects of the model into the foreground. For example, the role that
partial orders and topology play in the identfication in the limit model show
that the intuitive notion of information in this model is closely related to the
way information is viewed in domain theory. Since learning theory and do-
main theory have very different origins and goals, these unexpected connections
are useful for understanding how humans conceptualize abstract notions like
“information”.

The second purpose of our approach is to abstract away superficial aspects
of the model and try to get to the core of what the identification in the limit is
actually modeling. This is a long distance attack at the problem of obtaining
a theory of learning, as opposed to simply a collection of models of learning.
This is one of the underlying goals of Chapter 4, where we reduce the identifi-
cation in the limit model to representations of topological spaces and functions
between the spaces. From this perspective, the learner’s goal is to “compute” a
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8 CHAPTER 1. INTRODUCTION

function between topological spaces, where our use of the word “compute” here
is consistent with the Type 2 Theory of Effectivity [59]. By varying the repre-
sentations and the functions, several variations of the identification in the limit
model can be easily reproduced. Although we only focus on direct descendents
of Gold’s original model, our approach may provide useful insight for unifying
other “Platonic” learning models that view concepts as existing independently
of the learner.

In addition to generalizing the learning model framework, our abstraction
has emphasized the importance of better understanding how concepts are repre-
sented in terms of streams of information. This notion of representation includes
not only the stream of information a learner receives about a concept (i.e., the
learner’s input), but also in what sense a learner’s sequence of hypotheses (i.e.,
the learner’s output) provides a representation of the concept. If learning or
identifying a concept is to be anything more than just personal intellectual
gratification for the learner, then we must clarify in what sense the hypotheses
produced by the learner have greater utility than the original input stream of
data. The result of the learning process is a hypothesis which we expect the
learner will use in the future to achieve further goals. Clearly, if a hypothesis is
correct, then it provides a complete description of a concept in a compact form
that is more suitable for future computations or decisions than an incomplete
sequence of facts about the concept. On the other hand, in general there is
no guarantee that the learner’s current hypothesis is correct, and consequently
no guarantee that any computations the learner might make using the current
hypothesis will be correct. The abstraction of representations in Chapter 4 pro-
vides a topological perspective of this tradeoff in terms of the topology that a
representation induces on a set of concepts and the level of discontinuity of the
representation. Although we have not yet investigated other important aspects
of representations, such as data compression, probabilistic error, and computa-
tional complexity, our approach provides a unique perspective on the price that
must be paid when attempting to construct a complete hypothesis from partial
information.

1.1 Outline and Background

Since the goal of this thesis is to analyze connections between topology, algebra,
and learning theory, it is difficult to present the ideas in a linear order without
reference to one another. We therefore make a compromise by first introducing
learning theory and topology in the remainder of this Introduction, then discuss
the algebraic aspects in Chapter 2 so that by the time we get to Chapter 3 the
reader will be familiar with enough of the ideas that we can better show how
they are interrelated.

The ideas presented in the remainder of this Introduction are for the most
part unoriginal. Algorithmic learning theory was introduced by E. M. Gold
[21] in 1967 and intensively studied by many others ever since. Topology goes
back even further, and even the more recent interpretations of topology in terms
of “observable” properties have been proposed by many domain theorists like
Smyth [56], Abramsky [1], and Battenfeld, et al. [7]. The only part of our
introduction that might be considered original is the meshing of these two fields
together. For example, our definition of a “learner” differs from Gold’s in that
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we use the topological notion of continuous functions instead of Turing machines.
However, our formalization of learning theory is essentially equivalent to Gold’s
model, except that we will tend to ignore computability restraints.

The algebraic aspects of learning theory will be discussed in Chapter 2. The
main contribution of this chapter is the introduction of an algebraic closure
operator that embeds a concept space into an algebraic closure system. This
allows one to view an arbitrary concept space as a subset of a larger algebraic
system, and then one can use these algebraic properties to help solve the learning
problem. In particular, our results give an abstract generalization of previous
work by Stephan and Ventsov [57] on the learnability of algebraic structures.
Chapter 2 will also investigate partial orders and their order types, and show
how they are related to the complexity of learning. As an application of these
ideas, we will give close bounds on the complexity of learning unbounded unions
of a restricted family of pattern languages.

Then in Chapter 3 we will return to topology and its role in learning theory.
Connections between topology and learning theory have been investigated by
several researchers, such as Kelly [31], Luo and Schulte [34], and Martin et al.
[36]. Whereas Kelly and Martin et al. are more focused on the “classification
in the limit” paradigm in learning theory, we will focus on the “identification
in the limit” paradigm. The former deals with determining whether or not a
particular property holds for an infinite sequence of numbers. The latter can
be thought of as trying to determine which equivalence class a given infinite
sequence belongs. The two paradigms are thus closely related, but different
mathematical structures play different roles. The relationship between these
two paradigms will be discussed more in Chapter 4.

Luo and Schulte showed some applications of topology in the identification
in the limit model. In particular, they gave a topological characterization of
the mind-change complexity of learning a concept from positive data. Chap-
ter 3 extends Luo and Schulte’s work by giving topological characterizations of
many other sufficient criteria for learnability. Luo and Schulte also briefly noted
a relationship between continuous functions and reducibility between learning
problems, and we will give a full characterization of this relationship. We also
give characterizations of properties of concept spaces that are purely topological,
and analyze the topological aspects of representations of concept spaces. These
results are important because, if a characterization of some property is topo-
logically invariant, then results concerning the property can be easily applied
in other variations of the learning model. In particular, we can easily convert
Luo and Schulte’s characterization of mind-change complexity for learning from
positive data into a characterization for learning from positive and negative
data.

In addition to the technical results just mentioned, a major contribution of
Chapter 3 is the way that we treat topology as fundamental in learning theory.
In particular, our characterization of the learning problem allows us to treat the
learner, concept space, representations of concepts, and outputted hypotheses
as topological objects, which in several cases allows simpler and more intuitive
proofs than the papers just cited.

Chapter 4 generalizes the identification in the limit model to the more general
problem of computing between represented sets. This generalization allows us
to include other learning models, such as the classification in the limit model
mentioned above, within a single coherent framework. The work in this chapter
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is heavily influenced and compatible with the Type II model of effectivity and
approach to computable analysis introduced by Weihrauch [59].

The major contribution of Chapter 4 is the introduction and analysis of
Σ0

α-admissible representations, which generalize the admissible representations
introduced by Weihrauch [59] and Schröder [48] for computable analysis. This
includes a large class of ways of representing sets of objects, as we give charac-
terizations of the functions between such sets that are “computable”. Chapter
4 generalizes work on the realizability of discontinuous functions and “limit-
computable” functions by computable analysists such as V. Brattka [8], M.
Ziegler [62], and Brattka and Makananise [9].

The last two sections of this chapter introduce algorithmic learning theory
and topology. We have placed more effort in these two sections in intuitively
explaining the motivation of our formalization of learning theory and the role
that topology plays. The body of later chapters will be more technical, but
we will precede each chapter with a brief intuitive explanation of the ideas and
results.

1.2 Algorithmic learning theory

By the term “algorithmic learning theory” we are referring to the collection
of formal models of learnability that were inspired by E. M. Gold’s 1967 pa-
per “Language identification in the limit” [21]. The goal of these models is to
provide a formal definition for the word “learn”, and then to understand when
learning is possible and how complex such a learning task is. These models are
characterized by the assumption that there is a learner (usually a Turing ma-
chine) that receives information about some unknown concept, and occasionally
outputs hypotheses to explain the concept. The learner successfully learns the
concept if it eventually converges to some hypothesis that is reasonably correct.

In this section, we will introduce the basic identification in the limit model.
In particular, we give formal definitions to words like “concept” and “learner”,
and give some of the motivation for the way we formalize these terms. Our
formalization of the identification in the limit model is slightly more abstract
than Gold’s original definition, although it results in an essentially equivalent
model. The advantage of our formalization is in its generality and that it will
make it easier to analyze the topological aspects of the model. Although it
is typical in algorithmic learning theory to require learners to be computable
functions, we will not do so here. We do, however, formalize the model in a way
that computability requirements can be naturally introduced if desired.

1.2.1 Concept spaces

The abstract notion of a concept will be handled formally by using the extension
of the concept, which is the set of all objects or properties belonging to the
concept. For example, the concept “prime integer” can be interpreted as the
set of all prime integers. The precise definition of a concept is then heavily
dependent on the set of objects and properties, or universe, we are considering.
Since a major goal of algorithmic learning theory is to analyze learnability with
respect to Turing machines, it is convenient to assume that our universe is a
countable set, which implies that all concepts are countable sets. This means
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that we cannot define the concept “irrational real” as the set of all irrational real
numbers, but we can define “irrational real” as the set of all sentences defining
irrational numbers within some formal (countable) language.

Since we have required the universe to be countable, we can encode it as
(a subset of) the natural numbers, which we denote by ω. Therefore, we will
not lose any generality by simply assuming that the universe is ω. We can now
formally define a concept to be any subset of ω.

A set of concepts is called a concept space. If we specify some “rule” for
interpreting some of our intuitive concepts formally as subsets of natural num-
bers, then the set of concepts that can be formalized in this way determines a
concept space. For example, we can assign a number from 1 to 52 to each card
in a deck of playing cards. Then for each of the properties in the categories suit
(heart, club, spade, diamond), rank (ace, two, three, four, five, six, seven, eight,
nine, ten, jack, queen, king), and color (red, black) we can assign the subset
of numbers that encodes all of the cards having the given property. Taking all
boolean combinations of suits, ranks, and colors determines a concept space of
the basic properties of playing cards. This determines a straight forward way to
formalize concepts like “either a heart or a diamond”, “two of spades”, or “not
a red king”. By defining concepts in this way, we can analyze the relationships
between concepts by the structure of the concept space. For example, the ob-
servation that “every diamond is red” is captured by the fact that the concept
“diamond” is a subset of the concept “red”.

As in the example above with playing cards, it is convenient to give the
concepts names or descriptions like “red” or “spade”. If a concept is a recursive
set, then the Gödel number of a function that computes the characteristic func-
tion of the concept is often used as a description. We generalize these notions
by defining a hypothesis space for a concept space L to be a pair 〈H, h〉 with
H ⊆ ω and h:H → L a surjective function. An element H ∈ H is called a
hypothesis or a name for h(H) ∈ L. The surjectiveness of h guarantees that
every concept has a name. Note that if a concept space has a hypothesis space
then it can only have countably many concepts. Returning to the playing cards
example, we can define a hypothesis space by encoding meaningful descriptions
like “either a heart or diamond” as natural numbers, and then define h to map
the description to the appropriate set of cards.

1.2.2 Texts and informants

Once we have determined a concept space, we must next determine how infor-
mation about the concepts is represented to the learner. Once again, since we
are concerned with the applicability of our theory to Turing machines, we will
assume that information comes in discrete packets that have been encoded as
natural numbers. We can then imagine that our learner receives a sequence
of natural numbers encoding pieces of information about the concept. Such a
sequence will be called a representation of the concept. For formal reasons, it
will be convenient to assume that the representation is infinite, but finite repre-
sentations can be modelled by using some number as an “end of input” marker,
and letting the remainder of the sequence be arbitrary.

Let ωω denote the set of all infinite sequences of natural numbers. A repre-
sentation of a concept space L is a pair 〈R, ρ〉 where R ⊆ ωω and ρ:R → L is a
surjective function. An element R ∈ R is called a representation for ρ(R) ∈ L.
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Note that a hypothesis space can also be interpreted as a representation by
replacing each H ∈ H by the sequence consisting of infinitely many copies of H .

We next introduce two types of representations that will play a major role
in this thesis. We will use # as a special symbol (# �∈ ω) which will be used
to mean a “pause” or “no information”. Given a set X let Xω be the set of all
countably infinite sequences of elements of X . For ξ ∈ Xω, ξ(n) will denote the
(n+1)-th element in the sequence ξ, and ξ[i] will denote the initial subsequence
of length i of ξ (i.e., ξ[i] = 〈ξ(0), ξ(1), . . . , ξ(i − 1)〉). In particular, ξ[0] is the
empty sequence, which we denote by ε.

Let L be a concept space and L ∈ L a concept. A text for L is a sequence
T ∈ (ω∪{#})ω such that L = {i ∈ ω | ∃n ∈ ω : T (n) = i}. Intuitively, a text for
L is a sequence enumerating exactly the elements of L, with occasional pauses
denoted by #. A text for L is also sometimes called a positive presentation of
L. We define

T (L) = {T ∈ (ω ∪ {#})ω | ∃L ∈ L : T is a text for L}

and define the function τL: T (L) → L so that

τL(T ) = {i ∈ ω | ∃n ∈ ω : T (n) = i}.

Thus, T (L) is the set of all texts for all concepts in L, and τL maps a text to
the concept in L that it represents.

An informant for a concept L ∈ L is a sequence I ∈ ((ω × {0, 1}) ∪ {#})ω

such that for every i ∈ ω either 〈i, 0〉 or 〈i, 1〉 (but not both) occurs in I and
L = {i ∈ ω | ∃n ∈ ω : I(n) = 〈i, 1〉}. We define I(L) to be the set of all
informants for all concepts in L, and define ιL: I(L) → L to be the function
that maps each informant to the concept it represents. Intuitively, an informant
for a concept is a sequence listing all of the natural numbers along with flags
indicating whether or not each number is in the concept. Informants are also
sometimes called complete presentations. Elements of the form 〈i, 1〉 are usually
called positive data and elements of the form 〈i, 0〉 are called negative data.

To aid intuition we have defined texts and informants so that they are not
elements of ωω, but it is trivial to encode them as such and the reader should
imagine that such an encoding has been done. We can therefore view 〈T (L), τL〉
and 〈I(L), ιL〉 as two different representations of L.

There is a sense in which informants are more informative about the concept
they represent than texts, because they tell us not only which elements are in
the concept, but also which elements are not in the concept. Thus, given an
informant for a concept, we can produce a text for the concept by simply filtering
out the negative data. However, if we assume that the learner only has access
to a finite initial segment of a representation at any time, then it is not always
possible to produce an informant given a text.

The notion of a text, however, is more general than that of an informant.
For example, given a concept space L, we can re-encode each concept L ∈ L as

L̂ = {〈i, 1〉 | i ∈ L} ∪ {〈i, 0〉 | i �∈ L}

and define the concept space L̂ = {L̂ |L ∈ L}. Then the texts for L̂ are
exactly the informants for L. Therefore, any results concerning texts also apply
to informants. For this reason, we will be mainly concerned with texts, and
informants will play only a minor role.
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1.2.3 Learners

We next give a formal definition of a learner. Within our framework, we think of
a learner as some agent that receives a representation of a concept and outputs
hypotheses to explain the concept. It is possible that the learner may output
a hypothesis and, after receiving more information, realize that the original
hypothesis was mistaken. The learner can then output a new hypothesis that
better explains the information received. Therefore, a learner can be viewed
as a particular function from infinite streams of information to infinite streams
of hypotheses. Requiring that the streams be infinite is only a mathematical
convenience, and, as we mentioned before, a finite stream can be modeled by
marking the end of it with some special symbol and allowing the remainder of
the stream to be arbitrary.

We will assume that the hypotheses that the learner can choose from and
their interpretation as concepts will be predetermined. This means that the
learner must choose hypotheses from some hypothesis space 〈H, h〉 for some
concept space L. This requirement is to prevent the learner from outputing
hypotheses like “the concept that is being presented to me now” which would
have different interpretations depending on the situation and thus little practical
value.

Since the learner’s choice of hypotheses is restricted, we will be mainly con-
cerned with the behaviour of the learner when it receives information about a
concept that it can describe by some available hypothesis. Therefore, in addi-
tion to the hypothesis space 〈H, h〉 for L, we will assume some representation
〈R, ρ〉 of L that determines the kind of information the learner will receive.

Figure 1.1: A finite portion of a learner ψ’s output only depends on a finite
portion of its input.

A learner is then a function from R (streams of information) to Hω (se-
quences of hypotheses). We do not, however, expect that every function from
R to Hω is a learner. In particular, although a learner receives an infinite se-
quence of information, at any point in time it can only have access to some
finite initial segment of the sequence. Therefore, if the learner outputs a se-
quence H0, H1, . . . , Hm of hypotheses in response to seeing some representation
R ∈ R of a concept, then there must be some n ∈ ω such that the learner has
only seen the initial finite sequence σ = 〈i0, i1, . . . , in〉 of R when it outputted
its mth hypothesis. This implies that given any representation of a concept that
begins with σ the sequence of hypotheses outputted by the learner will always
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begin with the finite sequence H0, H1, . . . , Hm (see Figure 1.1). In other words,
every finite portion of the learner’s output depends on only a finite portion of its
input. We will call a function that satisfies this property a continuous function.
This is the only property that we will require every learner to have. Formally,
we define a learner to be any continuous function ψ:R → Hω, where R and H
are respectively a representation and a hypothesis space for some concept space
L.

1.2.4 Identification in the limit

We now give a criterion to define a successful learner. The sequence of hy-
potheses output by a successful learner should approach the concept that is
being presented to the learner. This means that if the learner is seeing a rep-
resentation R of a concept, its goal is to find a hypothesis H such that h(H)
(the concept H describes) is a good approximation of ρ(R) (the concept being
presented). In the identification model of learning, we require that the learner
finds a hypothesis H such that ρ(R) = h(H). This is a very strict criterion, but
it results in very many interesting learning problems.

An infinite sequence H0, H1, . . . of hypotheses converges to a hypothesis H
if and only if there is m ∈ ω such that Hn = H for all n ≥ m. In other words, a
sequence of hypotheses converges to H if and only if all but a finite number of
hypotheses in the sequence are equal to H . In this case, we will also say that
H is the limit of the sequence H0, H1, . . ..

Let L be a concept space and 〈R, ρ〉 and 〈H, h〉 be a representation and a
hypothesis space of L, respectively. If ψ:R → Hω is a learner and L ∈ L is
a concept, then we say that ψ identifies L in the limit (with respect to 〈R, ρ〉
and 〈H, h〉) if and only if for every representation R of L, ψ(R) converges to a
hypothesis H such that h(H) = ρ(R) = L. In other words, ψ identifies L in
the limit if and only if when ψ is given any representation of L, ψ outputs at
most a finite number of hypotheses describing a concept different from L before
converging to a correct hypothesis for L. We say that ψ identifies L in the limit
(with respect to 〈R, ρ〉 and 〈H, h〉) if and only if ψ identifies every concept of L
in the limit. In other words, ψ identifies L in the limit if and only if for every
R ∈ R, ψ(R) converges to some H ∈ H such that ρ(R) = h(H). A concept
space L is identifiable in the limit or learnable in the limit (with respect to
〈R, ρ〉 and 〈H, h〉) if and only if there exists a learner ψ that identifies L in the
limit.

Identification in the limit with respect to the representation 〈T (L), τL〉 of
L is called identification in the limit from positive data. If we use 〈I(L), ιL〉
as a representation then we say indentification in the limit from positive and
negative data.

Finally, we introduce an important characterization due to Angluin [3] of
concept spaces that are identifiable in the limit from positive data.

Definition 1.2.1 Let L be a concept space and let L ∈ L be a concept. A finite
tell-tale of L is a finite set F ⊆ L such that for every L′ ∈ L, if F ⊆ L′ then L′

is not a proper subset of L. 
�

Theorem 1.2.2 (Angluin [3]) Let L be a concept space and 〈H, h〉 a hypoth-
esis space for L. Then L is identifiable in the limit from positive data with
respect to 〈H, h〉 if and only if every concept in L has a finite tell-tale. 
�
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Example 1.2.3 Let Ln = {m ∈ ω |m ≤ n} and L = {Ln |n ∈ ω}. Then a text
for Ln is just an infinite sequence composed of all of the natural numbers less
than or equal to n (with occasional pauses denoted by “#”). Each Ln ∈ L has
{n} as a finite tell-tale, so L is identifiable in the limit from positive data. A
learner that outputs Lm as hypothesis, where m is the largest natural number
that has appeared so far in the text, will identify L in the limit.

Next consider L+ = L∪{ω}. Then ω has no finite tell-tale in L+, because for
any finite F ⊆ ω, F ⊆ Lmax(F ) and Lmax(F ) is a proper subset of ω. Therefore,
L+ is not identifiable in the limit from positive data. Assume for a contradiction
that ψ identifies L+ in the limit. Start feeding ψ a text T0 for ω. Since ψ
identifies L+, at some point it must output a hypothesis for ω. However, since
ψ’s output only depends on a finite portion of its input, ψ can only have seen
some initial segment σ0 of the text T0 when it outputs ω as hypothesis. If we let
n1 be the largest number that appears in σ0, then σ0 can be extended to a text
T1 for Ln1 . Thus, there must be some finite initial segment σ1 of T1 such that
σ1 extends σ0 and ψ outputs Ln1 as hypothesis after reading in σ1. Clearly, σ1

can be extended to a text for ω, and we can repeat the above process of forcing
ψ to change hypotheses between ω and some proper subset of ω indefinitely.
Thus, we can construct a text for ω on which ψ never converges, which is a
contradiction. 
�

1.3 Observable properties and Topology

In this section we give some basic definitions from general topology. The main
goal here is to give some intuitive explanation of the definitions, so that the
reader can better understand how topology is related to learning theory as we
have defined it in the previous section. In particular, we will view topology as
a formalization of the notion of the “observable properties” of a system. This
perspective is not new, and the relationship between topology and observable
properties has been investigated by many domain theorists, in particular Smyth
[56], Abramsky [1], and Battenfeld, et al. [7]. Our discussion of observable
properties is heavily based on these references, except that our discussion will
be from the perspective of learning theory. The most important reference is
[7] because it extends the analogy between topology and observable sets to
represented spaces, which is crucial in the learning theory framework we use.

1.3.1 Observable properties

Given a class of objects, a property of the objects is interpreted as the set of all
objects that have the property. For example, if the class of objects is “animals”,
then the property “mammalian” will be interpreted as the set of all mammals.
If the class of objects is “Turing machines”, then “never halts on input i” is the
set of all Turing machines that fail to halt when given i as input. Similar to
concepts, the precise definition of a property will depend on the class, or type,
of the objects to which it is being applied.

Of particular interest are the properties that we can actually observe in
practice. For example, if we present a horse to a trained biologist, we expect
that the biologist will be able to observe that the horse is a mammal within a
finite amount of time. If we gave the biologist a frog instead of a horse, then
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the biologist will not mistakenly claim that the frog is a mammal. Since this
distinction can be made, we consider the property mammalian to be observable.

On the other hand, the property “never halts on input i” of Turing machines
is not observable. Even if a Turing machine with input i does not halt after
one hundred years, there is still no guarantee that it will never halt. We can,
however, observe when a Turing machine does halt.

We define an observable property to be a property which, when presented
with any object that has the property we can determine in finite time that the
object has the property, and when presented with an object that does not have
the property we will not mistakenly claim that it has the property.

Note that the definition of an observable property is one-sided, because we
do not require that we can always observe when a property is not present. So
“halts” is observable while “does not halt” is not observable, even though they
are complements of each other.

Our definition of observable property has been somewhat informal, but we
can make it more formal using the learning theory framework introduced in the
previous section. Given a concept space L, a property of concepts in L is just
any subset P of L. If we are also given a representation 〈R, ρ〉 of L, then we can
say a property P is observable (with respect to 〈R, ρ〉) if and only if, given any
representation R ∈ R of a concept, if ρ(R) ∈ P then we can conclusively say so
within a finite amount of time, and if ρ(R) �∈ P then we will never mistakenly
say to the contrary.

It is important to notice that this definition of observability depends on
the representation of a concept space. For example, if the representation is
〈T (L), τL〉, then the set of concepts containing the number i is observable with
respect to this representation, but we cannot always observe when a concept
does not contain i. However, it is possible to observe that a concept does not
contain i with respect to the representation 〈I(L), ιL〉. Therefore, different
representations result in different notions of observability.

1.3.2 The information ordering of properties

The goal of a learner in the identification paradigm is to “observe” the identity of
the concept being presented. However, the property “is equal to L” is in general
not observable for an arbitrary concept L ∈ L. Instead, the learner must rely
on the properties of concepts that are observable and use these observations to
produce better and better hypotheses.

Since the learner has a definite goal, namely to identify the concept being
presented, it is clear that some observable properties of concepts are more useful
or informative than others. For example, the property “is a concept in L” (the
property L) is trivially observable because by assumption every representation
is for a concept in L. However, if the learner could observe the property “is equal
to L” (the property {L}), then the learner would have successfully completed
the learning problem. In general, observing a property that only applies to a few
number of concepts is more helpful in identifying the concept. We can therefore
assign a natural ordering, which we call the information ordering, to properties
by saying property P1 is more informative than P2 if and only if P1 is a strict
subset of P2. For example, in our earlier example with playing cards, observing
that a card is a heart is more informative than observing that it is red.
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The idea of an information ordering is common in domain theory, where
partially ordered sets are used to model the semantics of computation [20].
Note that we only order properties according to their informativeness, and do
not assign a measure of the information content as is done in Shannon’s theory
of information [53].

However, our notion of an information ordering is compatible with Shannon’s
theory in the following sense. For simplicity, we will assume that L is a finite set
of concepts. Let p be any probability measure on L, such that every singleton
subset of L has non-zero probability. Let L∗ be a random variable with values in
L. Intuitively, L∗ is the result of randomly choosing a concept from L according
to the probability measure p. The entropy of L∗, denoted H(L∗), is defined as

H(L∗) = −
∑
L∈L

p(L∗ = L) log2 p(L∗ = L)

and has units in bits. Intuitively, if the entropy of L∗ is high, then we have
greater uncertainty about which concept will be chosen. A property P ⊆ L can
be viewed as a random variable with values yes and no, depending on whether
or not the property holds for a randomly chosen concept. Then the conditional
entropy of L∗ given that P = yes is defined as

H(L∗|P = yes) = −
∑
L∈L

p(L∗ = L|P = yes) log2 p(L∗ = L|P = yes).

The information gain from observing that the property P holds, which we
denote I(L∗|P = yes), is then defined as H(L∗) −H(L∗|P = yes). The infor-
mation gain gives us a measurement in bits of how much our uncertainty about
the identity of L∗ decreases when we know that property P holds. We can then
compare the informativeness of properties by how much information we gain by
observing the property.

For example, let L = {{n} | 1 ≤ n ≤ 52} where we assume each concept
{n} in L corresponds to a particular playing card. Assuming p is the uniform
distribution on L, we have that

H(L∗) = −
∑
L∈L

1
52

log2

1
52

= log2 52 ≈ 5.7 bits

Since there are 26 red cards and 13 hearts in a deck, it is straight forward to
calculate that

H(L∗|red = yes) = log2 26 ≈ 4.7 bits

and
H(L∗|heart = yes) = log2 13 ≈ 3.7 bits.

So observing that a card is red gives us an information gain of one bit, and
observing that a card is a heart gives us a gain of two bits. Therefore, observing
that a card is a heart is more informative than only observing that it is red,
which is consistent with our information ordering of properties.

In fact, the additivity of a probability measure guarantees that for any prob-
ability measure on L such that every concept has non-zero probability, if P1 ⊂ P2

are properties, then H(L∗|P1 = yes) > H(L∗|P2 = yes). This implies that if
P1 is more informative than P2 according to our information ordering, then ac-
cording to Shannon’s theory the information gain of observing P1 to hold will
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be greater than the gain from observing P2 to hold, regardless of the probability
distribution on L (assuming every concept has non-zero probability).

Now, assuming the uniform distribution on a deck of playing cards, the
information gain of observing a card is red is the same as observing that it is
black, whereas red and black are incomparable under our information ordering.
However, if we use a “stacked” deck, where black cards are drawn with greater
frequency, then the information gain of red becomes strictly larger than that
of black. In general, if P1 and P2 are incomparable under our information
ordering, then there must be L1 ∈ P1 \ P2 and L2 ∈ P2 \ P1 (where X \ Y
is the set of elements in X and not in Y ). We can then define two different
probability measures p1 and p2 on L where in the first case L1 occurs with very
high probability and in the second case L2 occurs with very high probability.
If p1 and p2 are chosen carefully, then Shannon’s theory will say that P1 has
strictly less information gain than P2 with respect to p1, whereas the opposite
holds for p2. Thus, the information gain of P1 and P2 will be incomparable
under different probability measures.

Therefore, our information ordering is not only consistent with Shannon’s
theory, but it is arguably the best characterization of information content that
one can do without assuming further structure, like probability measures, on
the concept space.

1.3.3 Topological space

We have defined “observable property” and have ordered properties by their in-
formativeness. Our next goal is to better understand the structure of observable
properties and their relationship to topology.

Let X be a set of objects and let O(X) be the set of observable properties
of objects in X . It is clear that both X and ∅, the empty set, are in O(X).
In the first case, since every object is in X , we can immediately declare that
the property X holds. In the second case, we can immediately declare that the
property does not hold.

Now, if P1 and P2 are observable properties, then we can observe their
intersection P1 ∩ P2 by simply first observing P1 and then observing P2. This
argument can be extended to show that the intersection of any finite collection
of observable properties is also observable. We cannot, however, argue that
the intersection of an infinite collection of observable properties is necessarily
observable. This is because there is no way in general to bound the amount of
time it takes to observe a property, so it may not be possible to observe all of
the properties in an infinite collection within a finite amount of time.

However, arbitrary unions of observable properties are observable. If we are
given a collection U ⊆ O(X), then to observe

⋃
U = {x ∈ X | ∃P ∈ U : x ∈ P},

we only need to observe that any single property P ∈ U holds.
The above observations imply that the set of observable properties of X

determines a topology on X .

Definition 1.3.1 A topological space is a pair 〈X,O(X)〉, where X is a set
and O(X) is a set of subsets of X such that the following hold:

1. ∅, X ∈ O(X);

2. If U0, U1, . . . , Un ∈ O(X), then U0 ∩ U1 ∩ · · · ∩ Un ∈ O(X);
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3. If U ⊆ O(X) then
⋃
U ∈ O(X).

O(X) is called a topology on X, and the elements of O(X) are called open sets.
A subset A ⊆ X is a closed set if and only if A = X \ U for some U ∈ O(X).
A subset of X is a clopen set if and only if it is both open and closed. 
�

We will often simply say that X is a topological space when O(X) can be
omitted without causing any confusion.

It follows that the observable properties of a set correspond to open sets. If it
can be observed when a property does not hold, then the property corresponds
to a closed set. If it can both be observed when a property holds and it can also
be observed when it does not hold, then the property corresponds to a clopen
set.

As an example, we shall introduce a topology on ωω that is consistent with
what we consider to be the observable properties of infinite sequences of natural
numbers. We let ω<ω denote the set of all finite sequences of natural numbers,
and for σ ∈ ω<ω and ξ ∈ ωω, we write σ ≺ ξ to mean that σ is a finite initial
segment of ξ.

Now, for σ ∈ ω<ω, consider the property

↑σ = {ξ ∈ ωω |σ ≺ ξ}

corresponding to all infinite sequences that extend σ. We imagine that infinite
sequences are presented to us one element at a time. We can observe that a
sequence ξ extends σ by just waiting long enough until we have seen the initial
finite segment of ξ that has the same length as σ and then comparing the two
finite sequences. Therefore, ↑σ should be considered an observable property of
ωω.

Next assume that P ⊆ ωω is observable. If we are presented with some
ξ ∈ ωω and observe that ξ has property P , then since only a finite amount of
time has passed, we could only have seen some finite initial segment σ of ξ when
we declared that P holds. Therefore, since we never make a mistake when we
say that an observable property holds, it follows that every other ξ′ ∈ ωω that
extends σ must also have property P . This means that ↑ σ ⊆ P . Now if for
every ξ ∈ P we let σξ be the finite initial segment of ξ that we have seen when
we declare P to hold for ξ, then we can conclude that P =

⋃
ξ∈P ↑σξ.

Thus, ↑σ is observable for every σ ∈ ω<ω and every observable property is
equal to a union of observable properties of the form ↑σ. The topology on ωω

that is generated by taking the closure under finite intersection and arbitrary
unions of sets of the form ↑ σ for σ ∈ ω<ω is called the Baire topology on ωω.
Throughout this thesis, we will always view ωω as a topological space with the
Baire topology.

Since we have formally defined representations 〈R, ρ〉 so that R ⊆ ωω, ev-
ery representation naturally inherits a topology from ωω, called the subspace
topology.

Definition 1.3.2 Let Y be a topological space and X ⊆ Y . The subspace
topology on X is defined so that U ⊆ X is open if and only if U = X ∩ V for
some open set V ⊆ Y . 
�

Throughout this thesis, for any representation 〈R, ρ〉, we will always view
R as being a topological space with the subspace topology inherited from ωω.
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Therefore, the set of texts T (L) and informants I(L) (properly encoded as
subsets of ωω) are also topological spaces. It is easy to see that the topology
on a representation R is generated by sets of the form R ∩ (↑ σ) just like the
Baire topology. If it is clear from context that we are dealing with a particular
representation R, then we will just write ↑σ instead of R∩ (↑σ).

Now that we have interpreted representations as topological spaces, it is
straight forward to interpret a concept space L with a representation 〈R, ρ〉
as a topological space. Recall that we have defined a property P ⊆ L to be
observable if and only if we can declare within a finite amount of time that P
holds given any representation of a concept in P , and if we will not declare P
to hold if we are given a representation of a concept that is not in P . This
means that P ⊆ L is observable if and only if ρ−1(P ) = {ξ ∈ R | ρ(ξ) ∈ P} is
an observable property of R.

Definition 1.3.3 Let X be a topological space, Y a set, and f :X → Y a sur-
jective function. The quotient topology on Y with respect to f is defined so that
U ⊆ Y is open if and only if f−1(U) is open in X. 
�

For any concept space L with a representation 〈R, ρ〉, we can then naturally
view L as a topological space with the quotient topology determined by 〈R, ρ〉.
The quotient topology then gives a natural characterization of the properties
of L that we consider to be observable with respect to the representation. It is
important to note that the topology on L depends on the reprsentation 〈R, ρ〉.

The topology gives us additional structure that we can use to analyze the
properties of a represented concept space. This additional structure essentially
comes for free, depending only on our intuitive notion of which properties of
infinite sequences are observable in a finite amount of time.

1.3.4 Continuous functions

Consider a function f :X → Y between two sets X and Y of objects, and
assume we have some way of physically implementing the function so that given
an object x ∈ X , we can in some sense “compute” the value f(x) ∈ Y . Now,
if P is an observable property of Y , then we can observe the property f−1(P )
of X by simply computing f and observing that P holds for the result. This
motivates the following definition.

Definition 1.3.4 A function f :X → Y between topological spaces is continuous
if and only if f−1(U) ∈ O(X) for every U ∈ O(Y ). 
�

Recall that we have defined a learner to be any function ψ:R → Hω that is
continuous. Since both R and Hω are viewed as subspaces of ωω, the intuitive
notion of continuity that we used when defining learners is easily seen to be
equivalent to the formal definition we have just given. For example, it is clear
that “the nth hypothesis equals H” is an observable property of Hω, so the
subset of R of all representations for which ψ outputs H as the nth hypothesis
must also be observable.

Continuity can be thought of as a necessary requirement for the learner to be
“physically feasible” in the sense of G. Plotkin [42]. Whether or not continuity
is sufficient to guarantee that a learner can be implemented by a physical system
will depend on many factors, so to keep our discussion as general as possible we
will only require learners to be continuous.
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1.4 Notation

Throughout this thesis, it will be important to distinguish between a set X
being a subset of a set Y and being a proper subset of Y . We will therefore
write X ⊆ Y to denote that X is a subset of Y , and X ⊂ Y to denote that
X ⊆ Y and X �= Y .

We will write f :⊆ X → Y to mean that f is a partial function from the
set X to the set Y . The domain of a partial function f (i.e., the set {x ∈
X | f(x) is defined}) will be denoted dom(f). The range of a (partial or total)
function f (i.e., the set {y ∈ Y | ∃x ∈ X : f(x) = y}) will be denoted range(f).

Other notations will be introduced as they become needed, and can be found
in the index.
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Chapter 2

Algebraic Properties of
Concept Spaces

In this chapter we will introduce algebraic structure to a concept space and in-
vestigate the relationship between algebraic properties of the concept space and
identification in the limit. In particular, we associate an algebraic closure oper-
ator to each concept space, which embeds the concept space into an algebraic
lattice. Properties of the algebraic closure operator and the algebraic lattice
provide sufficient criteria for guaranteeing that a concept space is identifiable in
the limit, and are also useful for characterizing the difficulty of identifying the
concept space in the limit.

Intuitively, if we observe that some unknown concept contains the set of
elements F , then the closure of F , C(F ), is the largest set of elements that we
can guarantee also belongs to the unknown concept. For example, if a concept
space only contains the two concepts {0, 1, 2} and {1, 2, 3}, and we observe that
the unknown concept contains 3, then we can be sure that the concept also
contains 1 and 2, so C({3}) = {1, 2, 3}. On the other hand, if we only observe
that the concept contains 1, then we can only conclude that it also contains 2,
so C({1}) = {1, 2}. Since C({3}) ⊃ C({1}), we can think of observing 3 to be
more informative than observing 1. In fact, observing 1 or 2 is not informative
at all, because we know from the beginning that every concept contains 1 and
2 (in other words, C(∅) = {1, 2}). In this example, C produces the four closed
sets {1, 2}, {0, 1, 2}, {1, 2, 3}, and ω, which form a lattice when ordered by set
inclusion. Here, ω is added as a top element in order to form a lattice, and in
this example ω can intuitively be understood as a “state of contradiction.” For
example, C({0, 3}) = ω because no concept contains both 0 and 3.

ω

{0, 1, 2} {1, 2, 3}

{1, 2}

We will show in this chapter under which circumstances the closure operator

23



24 CHAPTER 2. ALGEBRAIC PROPERTIES OF CONCEPT SPACES

can be used as a learning algorithm by simply outputting as a hypothesis the
closure of the elements seen. This type of learning strategy can be imagined
as the learner climbing up the lattice of partial states of knowledge until it
eventually converges to the correct concept. The “height” of this lattice can
sometimes be measured using transfinite ordinals, and provides a measure of
the difficulty of identifying the concept space in the limit.

In the next section we introduce algebraic closure operators and embed con-
cept spaces into algebraic closure systems. In Section 2.2 we use transfinite
ordinals to measure the complexity of identifying concept spaces in the limit,
and give characterizations of the complexity in terms of order-theoretical prop-
erties of the concept spaces. In Section 2.3 we apply the results in this chapter to
give upper and lower bounds on the complexity of identifying unbouned unions
of restricted pattern languages in the limit. Most results from this chapter have
been presented in [13] and [14].

2.1 Algebraic closure operators

2.1.1 Preliminaries

In this subsection we define algebraic closure operators and briefly discuss their
properties. Everything presented here is well known, and we only include a
couple of proofs to help the reader become more familiar with the concepts
involved.

Closure operators and closure systems

Given a set X , we denote the power set of X by P(X).

Definition 2.1.1 Let U be a set, and let C:P(U) → P(U) be a mapping on the
powerset of U . C is called an algebraic closure operator on U if the following
conditions hold for all subsets X and Y of U :

1. X ⊆ C(X) (extensive)

2. C(X) = C(C(X)) (idempotent)

3. X ⊆ Y implies C(X) ⊆ C(Y ) (monotone)

4. C(X) =
⋃
{C(F ) |F is a finite subset of X} (finitary)

An operator that only fulfills the first three conditions above is simply called
a closure operator. A closed set or a fixed point of C is a set X such that
X = C(X). A finitely generated closed set is a set X such that X = C(F ) for
some finite subset F of U . 
�

The set of all fixed points of an algebraic closure operator is called an algebraic
closure system. Algebraic closure systems naturally occur in many areas of
abstract algebra (see [11]). The set of all subgroups of a group G and the set of
all ideals of a ring R are two well known examples of algebraic closure systems.
Algebraic closure operators also play an important role in abstract algebraic
logic [10], where they are used to model the “logical consequence” of a set of
formulas. It is also easily seen that P(ω), the power set of the natural numbers,
is an algebraic closure system on ω.
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Lattice structure of closure systems

Definition 2.1.2 A partially ordered set, or poset, is a pair 〈P,≤〉 consisting
of a set P and a binary relation ≤ on P that is reflexive (x ≤ x), transitive
(x ≤ y and y ≤ z implies x ≤ z), and anti-symmetric (x ≤ y and y ≤ x implies
x = y). 
�

If 〈P,≤〉 is a poset and S ⊆ P , then p ∈ P is the supremum of S if and only
if s ≤ p for all s ∈ S (i.e., p is an upper bound of S), and if q ∈ P is any other
upper bound of S then p ≤ q (i.e., p is the least upper bound of S). Dually, we
can define the infimum, or greatest lower bound of S. The supremum (infimum)
of S, if it exists, is denoted

∨
S (
∧
S).

Definition 2.1.3 A poset 〈L,≤〉 is a complete lattice if and only if every subset
S of L has both a supremum (

∨
S) and an infimum (

∧
S) in L. 
�

An algebraic closure system C forms a complete lattice (ordered by subset
inclusion) where:

∨
i∈I

C(Xi) = C

(⋃
i∈I

Xi

)
and

∧
i∈I

C(Xi) =
⋂
i∈I

C(Xi).

Given a poset P , a non-empty subset D of P is called a directed set if for all
x, y ∈ D, there exists z ∈ D such that x ≤ z and y ≤ z.

Definition 2.1.4 Let L be a lattice and let x be an element of L. We say that
x is compact if and only if for every directed set D ⊆ L such that x ≤

∨
D,

there exists an element d ∈ D such that x ≤ d. 
�
ω

2

1

0
The above diagram shows all ordinals up to and including ω. The ordinals 0,

1, 2, . . . are compact, but ω is not compact. Compact elements are sometimes
called finite or finitary elements. The compact elements of an algebraic closure
system are precisely the finitely generated closed sets. To show that every
compact element X ∈ C is finitely generated, just note that D = {C(F ) |F ⊆
X is finite} is directed with X ⊆

∨
D, so we must have X ⊆ C(F ) for some

finite F ⊆ X , which of course implies that X = C(F ). The converse can be
shown by using the following proposition, which is important in its own right.

Proposition 2.1.5 If C is an algebraic closure system and D ⊆ C is directed,
then

∨
D =

⋃
D. In particular, the union of any directed subset of C is an

element of C.
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Proof: By definition,
∨
D = C(

⋃
D), so

⋃
D ⊆

∨
D follows because C is

extensive. To show that
∨
D ⊆

⋃
D, let x be any element of

∨
D. Since C is

finitary, there must be finite F ⊆
⋃
D such that x ∈ C(F ). Since F is finite,

there must be a finite sequence D0, D1, . . . , Dn of closed sets in D such that
F ⊆ D0 ∪ D1 ∪ · · · ∪Dn. Recursively using the fact that D is directed, there
exists some D ∈ D such that Di ⊆ D for 0 ≤ i ≤ n. Therefore, F ⊆ D,
so x ∈ C(F ) ⊆ C(D) = D. Since D ∈ D, it follows that x ∈

⋃
D, hence∨

D ⊆
⋃
D. 
�

Now if X ∈ C is such that X = C(F ) for some finite F ⊆ X , and X ⊆
∨
D

for some directed D ⊆ L, then since
∨
D =

⋃
D we must have that F ⊆

⋃
D.

Using the fact that F is finite and D is directed, there must be D ∈ D that
contains F , so the monotonicity of C implies that X = C(F ) ⊆ C(D) = D.
Thus, X ⊆ D, and since D was arbitrary, X is compact.

2.1.2 Embedding concept spaces into closure systems

We now introduce an algebraic closure operator on ω with respect to a given
concept space L.

Definition 2.1.6 Let L be a concept space. For any subset S of ω, let

CL(S) =
⋃

{
⋂

{L ∈ L |F ⊆ L} |F is a finite subset of S}.

Define A(L) to be the set of fixed points of CL(·). 
�

In the above definition, we follow the convention that
⋂
∅ = ω. It is clear

from the definition that CL(L) = L for all L ∈ L, so L ⊆ A(L). The algebraic
closure system A(L) is special because it is the smallest algebraic closure system
on ω that contains L.

Example 2.1.7 Let Ln = {m ∈ ω |m ≤ n} and L = {Ln |n ∈ ω}. Then
CL(F ) = Lmax(F ) for any non-empty finite F ⊆ ω, CL(∅) = L0, and CL(S) = ω
for any infinite S ⊆ ω. Therefore, A(L) = L ∪ {ω}. 
�

Theorem 2.1.8 If C is an algebraic closure system on ω such that L ⊆ C, then
A(L) ⊆ C. In particular, A(A(L)) = A(L).

Proof: Assume C:P(ω) → P(ω) is the algebraic closure operator that generates
C. Since L ⊆ C by assumption, we must have that C(L) = L for all L ∈ L.
We want to show that any X ⊆ ω satisfying CL(X) = X also satisfies C(X) =
X , which would imply that A(L) ⊆ C. So assume, for a contradiction, that
CL(X) = X but C(X) �= X , which, because C is extensive, implies that X is a
proper subset of C(X). Let x be any element in C(X) \X . Since C is finitary,
there must be a finite F ⊆ X such that x ∈ C(F ). But since x �∈ X , x �∈ CL(F )
because CL(F ) ⊆ CL(X) = X . By definition of CL, this means that x is not in⋂
{L ∈ L |F ⊆ L}. If no L ∈ L contained F , then {L ∈ L |F ⊆ L} would be

the empty set and so x would be in ω =
⋂
∅, a contradiction. So there must be

at least some L ∈ L containing F , and since x is not in
⋂
{L ∈ L |F ⊆ L}, there

must be some L ∈ L that contains F but does not contain x. But then F ⊆ L
and x ∈ C(F ) and x �∈ L, so C(F ) �⊆ L = C(L), contradicting the monotonicity
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of C. Therefore, we must conclude that C(X) = X , which completes the proof
that A(L) ⊆ C.

Now, since A(L) is clearly an algebraic closure system containing A(L),
it follows from what we have just proved that A(A(L)) ⊆ A(L). Therefore,
A(A(L)) = A(L). 
�

Intuitively, given a set S ⊆ ω, CL(S) is the largest subset of ω that we can
be sure is included in each concept of L that contains S, given that we can only
inspect finite subsets of S at a given time. Thus, given two finite subsets F
and G of some unknown concept L ∈ L, we can think of F as containing “more
information” about L than G if CL(G) ⊂ CL(F ).

2.1.3 Compact elements and characteristic sets

We next show an application in the identification in the limit from positive
data model. If T ∈ T (L) is a text for some concept in L, then for each i ∈ ω,
Xi = CL({n ∈ ω | ∃j ≤ i : T (j) = n}) is the largest subset of ω that we can
guarantee to be a subset of L by only inspecting the first i elements of the text
T . We also have that {Xi}i∈ω is an ascending sequence of closed sets in A(L)
such that L =

⋃
i∈ω Xi. Now, if L is compact in A(L), then since {Xi}i∈ω is a

directed family of subsets of L, there must be i ∈ ω such that L ⊆ Xi. Since
{Xi}i∈ω is an ascending sequence of subsets of L, it follows that L = Xi, and
in fact L = Xj for all j ≥ i.

Figure 2.1: Example of taking the closure of elements appearing in a text for a
compact concept L ∈ L.

Based on the above observation, we can easily prove the following lemma.

Lemma 2.1.9 If every L ∈ L is compact in A(L) and 〈H, h〉 is a hypothesis
space for L, then there is a continuous function f : T (L) → Hω such that for
any T ∈ T :

1. For all i ∈ ω, f(T )(i) �= f(T )(i+ 1) implies h(f(T )(i)) ⊂ h(f(T )(i+ 1)),

2. There exists i ∈ ω such that h(f(T )(j)) = τL(T ) for all j ≥ i.
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Proof: For each L ∈ L choose some HL ∈ H such that h(HL) = L. For each
T ∈ T (L), let {Xi}i∈ω be the ascending chain of closed sets in A(L) defined as
Xi = CL({n ∈ ω | ∃j ≤ i : T (j) = n}). Since τL(T ) =

⋃
i∈ω Xi, and τL(T ) ∈ L

is compact, it follows that there is i ∈ ω such that Xj = τL(T ) for all i ≥ j.
Define i0 = min({i ∈ ω |Xi ∈ L}) and in+1 = min({i ∈ ω | i > in and Xi ∈ L}).
Then i0, i1, i2, . . . is an infinite sequence such that Xin ∈ L and Xin ⊆ Xin+1 for
all n ∈ ω, and there exists m ∈ ω such that Xin = τL(T ) for all n ≥ m. Finally,
for n ∈ ω define f(T )(n) = HL, where L = Xin .

It is immediate from the construction of f that properties (1) and (2) hold,
and f is continuous because every finite initial segment of the output of f
depends only on a finite initial segment of the input. 
�

Clearly, f in the above proof identifies L in the limit, so we obtain the
following.

Theorem 2.1.10 If every L ∈ L is compact in A(L), then L is identifiable in
the limit from positive data. 
�

The notion of a compact element is closely related to the following well
known structural property of concept spaces.

Definition 2.1.11 (Angluin [4], Kobayashi [32]) Let L be a concept in L.
A characteristic set for L is a finite set F such that F ⊆ L and for all L′ ∈ L,
if F ⊆ L′ then L ⊆ L′. 
�

It trivially follows that if F is a characteristic set for L ∈ L, then F is also
a finite tell-tale for L.

Theorem 2.1.12 For any concept space L and concept L ∈ L, the following
are equivalent:

1. L is compact in A(L),

2. There exists a finite subset F of L such that CL(F ) = L,

3. L has a characteristic set.

Proof: The equivalence of compactness and being finitely generated has already
been shown, so it suffices to show that (2) and (3) are equivalent.

If F ⊆ L is finite and CL(F ) = L, then for any L′ ∈ L containing F ,
L = CL(F ) ⊆ CL(L′) = L′ follows from the monotonicity of CL. Therefore, F
is a characteristic set for L.

For the converse, if F is a characteristic set of L, then every L′ ∈ L containing
F contains L, hence L ⊆

⋂
{L′ ∈ L |F ⊆ L′} = CL(F ). Since L = CL(L) and

F ⊆ L, it follows that L = CL(F ). 
�

Corollary 2.1.13 (Angluin [4], Kobayashi [32]) If every concept L ∈ L
has a characteristic set, then L is identifiable in the limit from positive data. 
�
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2.1.4 Noetherian closure systems and finite unions

An algebraic closure system is Noetherian if and only if it does not contain
an infinite strictly ascending chain of closed sets. This means that if C is a
Noetherian algebraic closure system and X0 ⊆ X1 ⊆ X2 ⊆ · · · is an infinite
chain of closed sets in C, then there must be some i such that Xi = Xj for
all j ≥ i. The Noetherian propety is of fundamental importance in algebraic
geometry [12], and in this section we show that it also plays an important
role in learning theory. In particular, the Noetherian property plays a role in
identifying “unions” of concept spaces.

Definition 2.1.14 (Wright [61], Motoki et al.[37]) A concept space L has
infinite elasticity if and only if there exists an infinite sequence of concepts
L1, L2, L3, . . . in L and elements x0, x1, x2, . . . such that {x0, . . . , xn−1} ⊆ Ln

but xn �∈ Ln. L has finite elasticity if and only if it does not have infinite
elasticity. 
�

Finite elasticity was introduced by Wright [61] because it is preserved under
“unions” of concept spaces (we use quotations and the symbol ∪̃ to distinguish
from the set theoretical definition of union):

Theorem 2.1.15 (Wright [61]) If K and L have finite elasticity, then their
“union” K ∪̃ L = {K ∪ L |K ∈ K and L ∈ L} has finite elasticity. 
�

The following theorem shows that finite elasticity and the Noetherian prop-
erty are closely related.

Theorem 2.1.16 The following are equivalent for any concept space L.

1. L has finite elasticity.

2. A(L) has finite elasticity.

3. A(L) is Noetherian.

4. Every element in A(L) is compact.

5. A(L) is identifiable in the limit from positive data.

�

Proof: (1 ⇒ 2) : Assume an infinitely increasing chain of closed sets X0 ⊂
X1 ⊂ · · · exists in A(L). Let x0 be any element of X0, and for each i ≥ 0 choose
xi ∈ Xi+1 \ Xi. By the definition of CL and the assumption that each Xi is
closed, xi �∈

⋂
{L ∈ L |Fi ⊆ L} for Fi = {x0, . . . , xi−1} ⊆ Xi. However, there is

a finite G ⊆ Xi+1 such that xi ∈
⋂
{L ∈ L |G ⊆ L}, and we can choose G large

enough that Fi ∪ {xi} ⊆ G. This implies that there must be some Li ∈ L such
that Fi ⊆ Li but G �⊆ Li, hence in particular xi �∈ Li. Thus, {x0, . . . , xi−1} ⊆ Li

and xi �∈ Li, and since i was arbitrary, this shows that L has infinite elasticity,
a contradiction.

(2 ⇒ 3) : Assume X1 ⊂ X2 ⊂ X3 ⊂ · · · is an infinite strictly ascending chain
of closed sets in A(L). Let x0 be any element of X1, and for each i ≥ 0
choose xi ∈ Xi+1 \Xi. Then the elements x0, x1, x2, . . . and sets X1, X2, X3, . . .
demonstrate that A(L) has infinite elasticity, a contradiction.
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(3 ⇒ 1) : Assume that the languages L1, L2, L3, . . . and elements x0, x1, x2, . . .
show the infinite elasticity of L. From the definition of infinite elasticity,
{x0, . . . , xn−1} ⊆ CL({x0, . . . , xn−1}) ⊆ Ln, but xn �∈ Ln so CL({x0, . . . , xn−1})
⊂ CL({x0, . . . , xn}). Since n was arbitrary, CL({x0, . . . , xi}) (i ≥ 0) is an infi-
nite strictly ascending chain, contadicting that A(L) is Noetherian.

(3 ⇔ 4) : This equivalence holds for all algebraic closure systems and is well
known (see [11]), but we will give the proof for completeness. First assume
A(L) is Noetherian and let X ∈ A(L) be given. Let F0 ⊆ F1 ⊆ · · · be
an increasing sequence of finite subsets of ω such that X =

⋃
i∈ω Fi. Then

CL(F0) ⊆ CL(F1) ⊆ · · · is an increasing sequence of closed sets in A(L) such
that X =

⋃
i∈ω CL(Fi). Since A(L) is Noetherian, there must be i ∈ ω such

that CL(Fi) = CL(Fj) for all j ≥ i, which implies that X = CL(Fi), thus X is
finitely generated, hence X is compact.

For the converse, if every element of A(L) is compact and X0 ⊆ X1 ⊆ · · · is
an increasing sequence of closed sets, then {Xi}i∈ω is directed so X =

⋃
i∈ω Xi

is an element of A(L) by Proposition 2.1.5. Since X is compact by assumption,
there is i ∈ ω such that X ⊆ Xi, which implies that X = Xj for all j ≥ i.
Therefore, A(L) is Noetherian.

(4 ⇒ 5) : This follows from Theorem 2.1.10 because A(A(L)) = A(L).

(5 ⇒ 4) : Assume X ∈ A(L) is not compact. For any finite F ⊆ X , CL(F ) ⊂ X
because X is not finitely generated. Therefore, X does not have a finite tell-tale,
so by Theorem 1.2.2 A(L) is not identifiable in the limit from positive data. 
�

As corollary, we obtain a characterization of the algebraic closure systems
that are identifiable in the limit from positive data.

Corollary 2.1.17 If C is an algebraic closure system, then C is identifiable in
the limit from positive data if and only if C is Noetherian.

Proof: Simply note that A(C) = C by Theorem 2.1.8. 
�

The above corollary generalizes a result by Stephan and Ventsov [57] showing
that the class of all ideals of a countable ring is identifiable in the limit from
positive data if and only if the ring is Noetherian. In addition, we obtain the
following corollaries, which are already well known. In particular, we get a
sufficient criterion for guaranteeing that the “union” of two concept spaces is
identifiable from positive data.

Corollary 2.1.18 (Kobayashi [32]) If L has finite elasticity then every L ∈
L has a characteristic set. 
�

Corollary 2.1.19 (Wright [61]) If L has finite elasticity then L is identifiable
in the limit from positive data. 
�

Corollary 2.1.20 (Wright [61]) If K and L have finite elasticity, then K ∪̃ L
is identifiable in the limit from positive data. 
�
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2.1.5 Well-partial-orders and unbounded unions

In this subsection we investigate well-partial-orderings, which is even stronger
than the Noetherian property just discussed. We saw that the Noetherian prop-
erty plays a role in identifying “unions” of concepts, and we will see in this
subsection that well-partial-orders are useful in guaranteeing that unbounded
unions of concepts are identifiable.

The notion of “unions” of concept spaces was expanded to unbounded unions
by Shinohara and Arimura [54]. Given a concept space L, define the space
of unbounded unions L<ω to be the set of all finite unions of concepts of L.
Formally, L<ω is defined as:

L<ω = {
⋃
i∈I

Li |Li ∈ L, I is a non-empty finite subset of ω}.

Shinohara and Arimura gave a sufficient criterion on L to guarantee that L<ω is
identifiable in the limit from positive data. We will reprove their result below,
but we will use rather different methods.

Let 〈P,≤P 〉 be a partial order. An anti-chain of P is a subset A ⊆ P of
elements that are mutually incomparable with respect to ≤P . That is, for all
x, y ∈ A such that x �= y, neither x ≤P y nor y ≤P x holds.

Lemma 2.1.21 Let ≤P and �P be two partial orders on P such that for x, y ∈
P , x ≤P y implies that x �P y. If there are no infinite anti-chains in P with
respect to ≤P , then there are no infinite anti-chains in P with respect to �P .

Proof: Obviously, if x and y are incomparable with respect to �P then they
are incomparable with respect to ≤P , so any infinite anti-chain with respect to
�P is an infinite anti-chain with respect to ≤P . 
�

A partial order 〈P,≤P 〉 is a well-partial-order if and only if P contains no
infinite strictly descending chains and no infinite anti-chains with respect to ≤P .
A finite or infinite sequence x0, x1, . . . of elements of P is a bad sequence if for
all i and j such that i < j, xi �≤P xj . Note that P is well-partially-ordered
if and only if it does not contain any infinite bad sequences. We will define
Bad(〈P,≤P 〉) to be the set of all finite bad sequences of P .

Given a partial order 〈P,≤P 〉, let P ∗ be the set of all finite ordered sequences
of elements of P . We will write s〈x〉 to represent the concatenation of an element
x ∈ P to the end of a sequence s ∈ P ∗. The Higman embedding, �H , is a
partial ordering on P ∗ defined such that for s, t ∈ P ∗, s �H t if and only if
s = 〈x0, . . . , xn〉 and t = 〈y0, . . . , ym〉 and there exists j0 < · · · < jn ≤ m such
that x0 ≤P yj0 , . . . , xn ≤P yjn . The subsequence relation, �S , on P ∗ is defined
similarly, with the stronger requirement that s �S t if and only if there exists
j0 < · · · < jn ≤ m such that x0 = yj0 , . . . , xn = yjn . Note that �S is equivalent
to �H if P is ordered by equality (i.e., x ≤P y ⇐⇒ x = y for all x, y ∈ P ).

Lemma 2.1.22 (Higman [23]. See also [19]) For any well-partial-ordering
≤P on P , the Higman embedding �H is a well-partial-ordering on P ∗. 
�

We next show that by placing some assumptions on a concept space L, we can
show that if 〈L,⊇〉 (i.e., L ordered by reverse subset inclusion) is a well-partial-
order, then 〈A(L),⊇〉 is also a well-partial order. This will have applications
when we discuss the identifiability of unbounded unions of concepts later.
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Definition 2.1.23 (Angluin [3]) A concept space L has finite thickness if and
only if ∅ �∈ L and each x ∈ ω is contained in at most a finite number of concepts
in L. 
�

Finite thickness was introduced by Angluin, and is well known to be a prop-
erty held by pattern languages [3]. It is easy to see that if L has finite thickness
then L has finite elasticity, but the converse does not hold in general.

Lemma 2.1.24 If L is a concept space with finite elasticity, then 〈L,⊇〉 is a
well-partial-order if and only if L does not contain any infinite anti-chains.

Proof: If L contains an infinite anti-chain, then it is not a well-partial-order by
definition. For the converse, if we assume that L does not contain any infinite
anti-chains, then it only remains to show that 〈L,⊇〉 does not have any infinite
strictly decreasing chains. Now, a decreasing chain in 〈L,⊇〉 is just a chain of
concepts increasing with respect to subset inclusion. Since L ⊆ A(L) and A(L)
is Noetherian by the assumption that L has finite elasticity, L does not have
any infinite strictly ascending chains with respect to ⊆. Therefore, 〈L,⊇〉 is a
well-partial-order. 
�

Theorem 2.1.25 If L is a concept space with finite thickness, then 〈L,⊇〉 is a
well-partial-order if and only if 〈A(L),⊇〉 is a well-partial-order.

Proof: It is immediate that if 〈L,⊇〉 is not a well-partial-order, then neither is
〈A(L),⊇〉. For the converse, from the previous lemma it suffices to show that
A(L) does not contain any infinite anti-chains. Since CL(∅) is a subset of every
other closed set in A(L), it cannot be in any infinite anti-chain. Therefore, we
only need to show that A(L) \ {CL(∅)} contains no infinite anti-chains.

Since L has finite thickness, it has finite elasticity, so for every Xi ∈ A(L) \
{CL(∅)} there is a non-empty finite set Fi ⊆ ω such that Xi = CL(Fi). From
the definition of finite thickness, any non-empty set of elements is contained in
at most a finite number of concepts in L. Therefore, every Xi ∈ A(L)\{CL(∅)}
can be written as Xi = Li

0 ∩ · · · ∩ Li
ni

(ni ≥ 0), where Li
j (0 ≤ j ≤ ni) is the

(possibly empty) finite sequence of all concepts containing Fi.
Define f : (A(L) \ {CL(∅)}) → L∗ so that f(Xi) = 〈Li

0, . . . , L
i
ni
〉. We order

L∗ by the Higman embedding �H based on the ordering ⊇ on L. Since 〈L,⊇〉
is a well-partial-order by assumption, Lemma 2.1.22 guarantees that 〈L∗,�H〉
is a well-partial-order, and therefore contains no infinite anti-chains.

We now show that f(Xi) �H f(Xj) implies that Xi ⊇ Xj . Assume that
f(Xi) �H f(Xj), then there exists k0 < · · · < kni ≤ nj such that Li

0 ⊇
Lj

k0
, . . . , Li

ni
⊇ Lj

kni
. This implies that Li

0 ∩ · · · ∩ Li
ni

⊇ Lj
k0

∩ · · · ∩ Lj
kni

. Since

Lj
k0

∩ · · · ∩Lj
kni

⊇ Lj
0 ∩ · · · ∩Lj

nj
, it follows that Xi ⊇ Xj . From Lemma 2.1.21,

it follows that there are no infinite anti-chains in 〈A(L),⊇〉. 
�
We can now give an alternative proof of the result by Shinohara and Arimura

[54] showing that if L has finite thickness and no infinite anti-chains, then L<ω

is identifiable in the limit from positive data.

Theorem 2.1.26 If L is a concept space with finite thickness and 〈L,⊇〉 is a
well-partial-order, then L<ω has finite-elasticity. In particular, L<ω is identifi-
able in the limit from positive data.
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Proof: Assume for a contradiction that there are concepts U1, U2, U3, . . . in
L<ω and elements x0, x1, x2, . . . such that {x0, . . . , xn−1} ⊆ Un but xn �∈ Un.
If m < n and xn ∈ CL({xm}), then every concept in L containing xm contains
xn, but since xm ∈ Un there must be L ∈ L such that xm ∈ L ⊆ Un, hence
xn ∈ L ⊆ Un, a contradiction. Thus, for every m < n, CL({xm}) �⊇ CL({xn}),
contradicting the fact that 〈A(L),⊇〉 contains no infinite bad sequences. 
�

It was left open by Shinohara and Arimura [54] as to whether or not a
similar statement could be made for finite elasticity. However, the next propo-
sition shows that “finite thickness” cannot be weakened to “finite elasticity” in
Theorem 2.1.25 and Theorem 2.1.26.

Proposition 2.1.27 There exists a concept space L with finite elasticity such
that

1. L contains no infinite anti-chains with respect to set inclusion,

2. A(L) contains an infinite anti-chain,

3. L<ω is not inferable from positive data.

Proof: Define

SINGLE = {{i} | i ∈ ω} and COINIT = {{k ∈ ω | k ≥ j} | j ∈ ω}.

Consider the concept space L = SINGLE ∪̃ COINIT . L has finite elastic-
ity because both SINGLE and COINIT have finite elasticity. It will be
convenient to use ordered pairs of natural numbers to represent L as the set
{〈i, j〉L | i < j}, where 〈i, j〉L is defined to be {i} ∪ {k ∈ ω | k ≥ j} (note that if
i ≥ j, then 〈i, j〉L = 〈j, j + 1〉L, which is why we can restrict our attention to
only the cases where i < j). Then it is easily shown that 〈i, j〉L ⊇ 〈i′, j′〉L ⇐⇒
i′ ≥ j or (i′ = i and j′ ≥ j).

(1). Assume that L contains an infinite anti-chain {〈ik, jk〉L}k≥0. Then
since 〈i0, j0〉L �⊇ 〈ik, jk〉L for all k > 0, it follows that ik < j0 for all k > 0.
Since there are only finitely many natural numbers less than j0, there must be
some i < j0 such that ik = i for infinitely many k > 0. Thus, there is an
infinite subsequence {〈i, jf(k)〉L}k≥0 of {〈ik, jk〉L}k≥0 which is also an infinite
anti-chain (here we are using the strictly monotonic function f :ω → ω to specify
the indices of the subsequence). For any k ≥ 0, since 〈i, jf(k)〉L �⊇ 〈i, jf(k+1)〉L,
it must hold that jf(k+1) < jf(k), which contradicts the well-orderedness of the
natural numbers. Therefore, L does not contain any infinite anti-chains.

(2). For any i ∈ ω, note that CL({i}) = {i}, because {i} =
⋂

j>i〈i, j〉L.
Therefore, {{i} | i ∈ ω} is an infinite anti-chain in A(L).

(3). Note that ω = 〈0, 1〉L is in L<ω. Let F = {i1, i2, . . . , in} be any finite
subset of ω, and let j = max(F ) + 2, where max(F ) denotes the largest natural
number in F . Then L = 〈i1, j〉L ∪ 〈i2, j〉L ∪ · · · ∪ 〈in, j〉L is in L<ω and contains
F , and since it does not contain max(F ) + 1 it is a proper subset of ω. Thus, ω
has no finite tell-tale and so L<ω is not inferable from positive data. 
�
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2.2 Order-types and mind-change complexity

In this section, we analyze the mind-change complexity of concept spaces. Mind-
change complexity was proposed by Freivalds and Smith [18] as a method of
characterizing the complexity of identification in the limit using ordinals. After
reviewing the definition of ordinals and mind-change complexity, we will give
some characterizations of the mind-change complexity of some concept spaces
based on the order-type of a partial order.

2.2.1 Ordinals

For the purpose of defining ordinals, we will assume that we are working within
Zermelo-Fraenkel set theory with the axiom of choice. We will use [33] as a
reference on ordinals.

A partial order 〈P,≤〉 is well-ordered if and only if it is totally ordered (for
every x, y ∈ P , either x ≤ y or y ≤ x) and well-founded (every non-empty
subset of P has a least element with respect to ≤).

A strict well-order is a pair 〈P,<〉 consisting of a set P and a relation <
on P , such that < is irreflexive (¬x < x), transitive (x < y and y < z implies
x < z), total (for every x, y ∈ P , either x = y or x < y or y < x), and well-
founded (for every non-empty subset S of P , there is x ∈ P such that x < y for
all y ∈ S such that y �= x).

Note that a strict well-ordering 〈P,<〉 can be turned into a well-order 〈P,≤〉
by defining x ≤ y if and only if x = y or x < y. Similarly, a well-order 〈P,≤〉 is
turned into a strict well-order 〈P,<〉 by defining x < y if and only if x ≤ y and
x �= y.

A bijective function f :P → Q between partially-ordered sets 〈P,≤P 〉 and
〈Q,≤Q〉 is an order-isomorphism if and only if x ≤P y ⇐⇒ f(x) ≤Q f(y)
for all x, y ∈ P . In such a case we say that 〈P,≤P 〉 and 〈Q,≤Q〉 are order-
isomorphic and write 〈P,≤P 〉 ∼= 〈Q,≤Q〉. A similar definition can be given to
strict well-orders.

Definition 2.2.1 A set X is an ordinal if and only if X is strictly well-ordered
by ∈ and every element of X is a subset of X. 
�

As an example, 0 = ∅, 1 = {0}, 2 = {0, 1}, . . . and ω = {0, 1, 2, . . .}, are
all ordinals. On the other hand, {{∅}} is not an ordinal because ∅ �∈ {{∅}}
thus {∅} �⊆ {{∅}}. If X is an ordinal and is non-empty, then there is a ∈-
least element Y ∈ X which must also then satisfy Y ⊆ X . Thus, if there is
Z ∈ Y , then Z ∈ X , contradicting the claim that Y is the ∈-least element of
X . Therefore, Y = ∅.

Proposition 2.2.2 (see Kunen [33])

1. If X is an ordinal and Y ∈ X, then Y is an ordinal and
Y = {Z ∈ X |Z ∈ Y },

2. If X and Y are ordinals and X ∼= Y , then X = Y ,

3. If X and Y are ordinals then exactly one of the following hold: X = Y ,
X ∈ Y , or Y ∈ X,
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4. If X, Y , and Z are ordinals, X ∈ Y and Y ∈ Z, then X ∈ Z. 
�

We will usually use α, β, γ and λ as variables ranging over ordinals, and write
α ≤ β to denote α = β or α ∈ β. From the above proposition, it follows that
for any ordinal α, 〈α,≤〉 is the well-ordered set of all ordinals less than α.

Proposition 2.2.3 (see Kunen [33]) If 〈P,≤P 〉 is a well-ordered set, then
there exists a unique ordinal α such that 〈P,≤P 〉 ∼= 〈α,≤〉. 
�

The ordinal α from the above proposition will be denoted Ord(〈P,≤P 〉), and
is called the order-type of the well-order 〈P,≤P 〉.

If S is a set of ordinals, then
⋃
S is an ordinal and is the supremum of

all ordinals in S. We will usually write
∨
S instead of

⋃
S to emphasize the

order-theoretic aspsect of the ordinal. If S is a non-empty set of ordinals, then⋂
S is an ordinal and is the infimum of all ordinals in S (denoted

∧
S).

If α is an ordinal, then α ∪ {α} is also an ordinal, called the successor of α,
and is denoted α+ 1. An ordinal α is a successor ordinal if and only if there is
an ordinal β such that α = β+ 1. An ordinal that is not the empty set and not
a successor ordinal is called a limit ordinal.

A partial order 〈P,≤P 〉 is well-founded if and only if 〈P,≤P 〉 contains no
infinitely descending chains. We can assign an ordinal to every well-founded
order 〈P,≤P 〉, which we will also call the order type of 〈P,≤P 〉 and denote
Ord(〈P,≤P 〉). For x ∈ P , define

ordP (x) =
∨

{ordP (y) + 1 | y ∈ P and y < x}.

In particular, if there is no y ∈ P less than x, then ordP (x) = 0. Now we define
the order type of 〈P,≤P 〉 to be

Ord(〈P,≤P 〉) =
∨

{ordP (x) + 1 |x ∈ P}.

It is easy to see that this definition is consistent with our earlier one in the case
that 〈P,≤P 〉 is a well-order.

Given ordinals α and β, we use transfinite recursion to define the following
operations on ordinals (see [33], [29]).

1. The sum α+ β:

(a) α+ 0 = α,

(b) α+ 1 = the successor of α,

(c) α+ (β + 1) = (α+ β) + 1,

(d) α+ λ =
∨

β<λ α+ β for limit ordinal λ.

2. The product α · β (or αβ):

(a) α · 0 = 0,

(b) α · (β + 1) = α · β + α,

(c) α · λ =
∨

β<λ(α · β) for limit ordinal λ.

3. The exponential αβ :
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(a) α0 = 1,

(b) αβ+1 = αβ · α,

(c) αλ =
∨

β<λ α
β for limit ordinal λ..

Associativity holds in general: α+(β+γ) = (α+β)+γ and α·(β ·γ) = (α·β)·γ,
and multiplication is left-distributive: α·(β+γ) = α·β+α·γ. However, addition
and multiplication are not commutative. For example, 1 + ω = ω �= ω + 1 and
2 · ω = ω �= ω · 2. Furthermore, (1 + 1) · ω = ω �= 1 · ω + 1 · ω shows that
distributivity for multiplication on the right fails. However, the definitions agree
with the usual definition of addition and multiplication when α, β < ω.

Example 2.2.4 (see Kunen [33]) Let α and β be ordinals. Define P = α ×
{0}∪β×{1} and for 〈ξ, i〉, 〈η, j〉 ∈ P , define 〈ξ, i〉 ≤P 〈η, j〉 if and only if i < j or
(i = j and ξ ≤ η). Then 〈P,≤P 〉 is a well-order and Ord(〈P,≤P 〉) = α+ β. 
�

Example 2.2.5 (see Kunen [33]) Let α and β be ordinals. Define P = β×α
and for 〈ξ, η〉, 〈ξ′, η′〉 ∈ P , define 〈ξ, η〉 ≤P 〈ξ′, η′〉 if and only if ξ < ξ′ or (ξ = ξ′

and η ≤ η′). Then 〈P,≤P 〉 is a well-order and Ord(〈P,≤P 〉) = α · β. 
�

We have already seen that each natural number and ω are all ordinals.
Clearly, ω is the least infinite ordinal (infinite in the sense that ω is a set with
infinite cardinality). Another important ordinal is ε0 which is defined as the
least ordinal α such that α = ωα. From the definition of exponentiation, we can
see that this implies that ε0 is the supremum of the sequence ω, ωω, ωωω

, . . ..
Finally, we let ω1 denote the least uncountable ordinal, which implies that

ω1 is the set of all countable ordinals. Since the countable union of countable
sets is countable, the supremum of any countable sequence of countable ordinals
is a countable ordinal. Thus, in particular, ε0 is countable. In this thesis, we
will usually only work with ordinals that are countable.

2.2.2 Mind-change complexity

Mind-change complexity was proposed by Freivalds and Smith [18] as a method
of characterizing the complexity of identification in the limit using ordinals. Ba-
sically, mind-change complexity measures the number of times that a learner
must change hypotheses before converging to a correct hypothesis. Intuitively,
a learner starts with an ordinal α, and every time the learner changes its hy-
pothesis it must output a smaller ordinal. Since every ordinal is well-founded,
this limits the number of times the learner can change hypotheses.

Consider the problem of identifying COINIT = {{k ∈ ω | k ≥ j} | j ∈ ω}
from positive data. If the learner sees k in the text of some concept in COINIT ,
then since there are only k+1 concepts in COINIT that contain k, the learner
can put a bound on the number of times that it will change its hypothesis in
the future. In particular, the learner will never need to make more than ω
mind-changes to identify any concept in COINIT . However, it is clear that
for any n < ω, we can force the learner to change its hypothesis more than n
times. Therefore, it takes at least ω mind-changes to identify every concept in
COINIT . We therefore say that COINIT has mind-change complexity ω.

When identifying a concept in SINGLE = {{i} | i ∈ ω}, the learner can
simply wait until anything other than # appears in the text, and then the learner
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immediately knows which concept is being presented. Therefore, the learner
only needs to output a hypothesis once to succesfully identify any concept in
SINGLE , so we say that SINGLE has mind-change complexity of one.

We should note that some authors do not count the learner’s first outputted
hypothesis as a mind-change, so they would say that SINGLE has mind-change
complexity of zero. We will count the first hypothesis as a mind-change, because
it results in a more mathematically natural theory. The reader can think of the
learner’s first hypothesis as a mind-change from the empty hypothesis “do not
know at this time” to a more concrete hypothesis.

Given sets X and Y we define X×Y = {〈x, y〉 |x ∈ X and y ∈ Y }. If X and
Y are subsets of ω, then we can also assume that X×Y is appropriately encoded
as a subset of ω. We define the projections π1:X×Y → X and π2:X×Y → Y as
π1(〈x, y〉) = x and π2(〈x, y〉) = y. We will also define projections of sequences
πω

1 : (X × Y )ω → Xω and πω
2 : (X × Y )ω → Y ω as πω

1 (ξ)(i) = π1(ξ(i)) and
πω

2 (ξ)(i) = π2(ξ(i)) for each ξ ∈ (X × Y )ω. Intuitively, given a sequence ξ of
pairs of elements of X and Y , πω

1 (ξ) is the infinite sequence of elements of X
obtained by just ignoring the second element of each pair (and similarly for
πω

2 (ξ)).
We now give a formal definition of mind-change complexity. Although the

original definition is due to Freivalds and Smith [18], we present a modified
version that is suited for our interpretation of learners as continuous functions.

Definition 2.2.6 Let L be a concept space and 〈H, h〉 a hypothesis space for L,
and let α be a countable ordinal. We define a new hypothesis space 〈Hα, hα〉 for
L by

Hα = H× α = {〈H,β〉 |H ∈ H and β < α},
hα(〈H,β〉) = h(H).

Given a representation 〈R, ρ〉 of L and a learner (a continuous function) ψ:R →
Hω

α, we say that ψ identifies L in the limit with α mind-changes (with respect
to 〈R, ρ〉) if and only if for every R ∈ R:

1. πω
1 (ψ(R)) converges to a hypothesis for ρ(R),

2. πω
2 (ψ(R)) is non-increasing,

3. i < j and π1(ψ(R)(i)) �= π1(ψ(R)(j)) implies π2(ψ(R)(i)) > π2(ψ(R)(j)).

L is identifiable in the limit with α mind-changes (with respect to 〈R, ρ〉) if and
only if there is a learner that identifies L in the limit with α mind-changes (with
respect to 〈R, ρ〉). We say that L has mind-change complexity α (with respect
to 〈R, ρ〉) if and only if L is identifiable in the limit with α mind-changes (with
respect to 〈R, ρ〉) and there is no β < α such that L is identifiable in the limit
with β mind-changes (with respect to 〈R, ρ〉). 
�

By the definition of Hα, it is clear that the value of ψ’s mind-change counter
is always greater than 0 and strictly less than α. Assume that ψ:R → Hω

α is
a learner and R is a representation of some concept. For i ∈ ω, if ψ(R)(i) =
〈Hi, βi〉 then we can refer to Hi = π1(ψ(R)(i)) as ψ’s ith hypothesis, and
βi = π2(ψ(R)(i)) as the value of ψ’s mind-change counter at time i. Then the
first criterion on ψ in the above definition means that ψ’s sequence of hypotheses
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H0, H1, . . . converges to a correct hypothesis for ρ(R). The second criterion
simply states that ψ’s mind-change counter never increases (i.e., β0 ≥ β1 ≥ · · ·).
The third criterion states that if ψ changes its hypothesis between time i and
time j, then ψ’s mind-change counter strictly decreases.

Note that the function πω
1 :Hω

α → Hω is continuous, so if ψ:R → Hω
α iden-

tifies L with α mind-changes, then πω
1 ◦ ψ:R → Hω identifies L in the limit

according to our original definition (without mind-changes). It is also clear
that if α < β then Hω

α ⊆ Hω
β , so if L is identifiable with α mind-changes it is

identifiable with β mind-changes.

2.2.3 Characterizations

In this subsection we will give characterizations of the mind-change complexity
of identifying concept spaces with finite elasticity from positive data. In the
next chapter, we will give a more general topological characterization due to
Luo and Schulte [34], but the characterization we give here is often easier to use
in practice when finite-elasticity can be assumed.

Theorem 2.2.7 Assume every concept in L is compact in A(L) and 〈L,⊇〉 is
well-founded. Then the mind-change complexity of identifying L in the limit
from positive data is Ord(〈L,⊇〉).

Proof: To simplify notation, let α = Ord(〈L,⊇〉). Also, note that the defini-
tion of ordP when applied to the poset 〈L,⊇〉 yields the definition ordL(L) =∨
{ordL(L′) + 1 |L′ ∈ L and L′ ⊃ L} for L ∈ L.
We will first show that if β < α then L is not identifiable with β mind-

changes. Assume for a contradiction that ψ: T (L) → Hω
β identifies L. We show

by transfinite induction that if T is a text for L ∈ L and ordL(L) = γ, then
the sequence πω

2 (ψ(T )) contains no ordinals strictly less than γ. This would
contradict the claim that ψ identifies L, because by definition of Ord(〈L,⊇〉)
there must be a concept L ∈ L such that ordL(L) ≥ β, but ψ’s mind-change
counter must always be strictly less than β.

First, it is trivial if ordL(L) = 0 then ψ’s mind-change counter never falls
below 0. So assume for all γ′ < γ that πω

2 (ψ(T ′)) never falls below γ′ for all
texts T ′ for all concepts L′ with ordL(L′) = γ′, and we will show the same holds
for γ. Assume for a contradiction that ordL(L) = γ and T is a text for L such
that π2(ψ(T )(i)) = γ′ < γ for some i ∈ ω. Since πω

1 (ψ(T )) must converge to a
hypothesis for L, we can assume without loss of generality that i is chosen large
enough that H = π1(ψ(T )(i)) is a hypothesis for L. Since ψ is continuous, there
must be some finite sequence σ ≺ T such that ψ(T )[i + 1] ≺ ψ(T ′) whenever
σ ≺ T ′ ∈ T (L). Now, since ordL(L) = γ and γ′ < γ, there must be L′ ∈ L
such that L′ ⊃ L and ordL(L′) ≥ γ′. But then every element in σ is an
element of L′, so there must be a text T ′ for L′ extending σ. This implies that
ψ(T ′)(i) = 〈H, γ′〉, where H is a hypothesis for L. Since πω

1 (ψ(T ′)) converges
to a hypothesis for L′, there must be j > i such that ψ(T ′) = 〈H ′, γ′′〉 where H ′

is some hypothesis for L′, thus H �= H ′ hence γ′′ < γ′. But then πω
2 (ψ(T ′)) has

fallen below ordL(L′), contradicting the induction hypothesis. This completes
the proof that L is not identifiable with β < α mind-changes.

Next we prove that L is identifiable with α mind-changes. Let f : T (L) → Hω

be a continuous function as in Lemma 2.1.9. Define ψ: T (L) → Hω
α so that
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ψ(T )(i) = 〈f(T )(i), ordL(h(f(T )(i)))〉 for all i ∈ ω. Since ordL(L) < α for all
L ∈ L, ψ is well defined and easily seen to be continuous. Furthermore, by
our choice of f , πω

1 (ψ(T )) converges to a hypothesis for τL(T ), and f(T )(i) �=
f(T )(i + 1) implies h(f(T )(i)) ⊂ h(f(T )(i + 1)) hence ordL(h(f(T )(i))) >
ordL(h(f(T )(i+ 1))) for all i ∈ ω. Therefore, ψ identifies L in the limit with α
mind-changes. 
�

Corollary 2.2.8 Assume L has finite elasticity. Then the mind-change com-
plexity of identifying L in the limit from positive data is Ord(〈L,⊇〉).

Proof: Since L has finite elasticity, Theorem 2.1.16 guarantees that every con-
cept in L is compact and that 〈L,⊇〉 is well-founded. 
�

Corollary 2.2.9 Assume L has finite thickness. Then the mind-change com-
plexity of identifying L in the limit from positive data is at most ω.

Proof: Since L has finite thickness, for any L ∈ L there are at most finitely
many L′ ∈ L containing L. Therefore, it can be shown by induction that
ordL(L) < ω for each L ∈ L, hence Ord(〈L,⊇〉) ≤ ω. 
�

The following example shows that requiring each L ∈ L to have a character-
istic set is required for Theorem 2.2.7 to hold.

Example 2.2.10 Let L = {ω} ∪ {ω \ {n} |n ∈ ω}. Since ω \ {m} and ω \ {n}
are incomparable whenever n �= m, it is clear that 〈L,⊇〉) is well-founded. In
fact, ordL(ω \ {n}) = 0 and ordL(ω) = 1, thus Ord(〈L,⊇〉) = 2. However, if
F ⊆ ω is finite, then there is some n ∈ ω \ F , hence F ⊆ ω \ {n}. Therefore, ω
has no finite tell-tale, so L is not identifiable in the limit from positive data. 
�

Theorem 2.1.26 showed that if L has finite thickness and 〈L,⊇〉 is a well-
partial-order, then L<ω has finite elasticity. We can therefore use Corollary 2.2.8
to determine the mind-change complexity of L<ω. However, in practice it is
often difficult to compute Ord(〈L<ω ,⊇〉) exactly. We will conclude this section
by giving upper and lower bounds on Ord(〈L<ω ,⊇〉) which are sometimes easier
to compute. But first we must introduce some more basic facts about well-
partial-orders.

Lemma 2.2.11 If 〈P,≤P 〉 and 〈Q,≤Q〉 are well-founded and f :⊆ P → Q is a
surjective partial function such that for all p ∈ dom(f) and q ∈ Q:

q ≤Q f(p) =⇒ (∃p′ ∈ dom(f))[ p′ ≤P p & f(p′) = q ],

then Ord(〈P,≤P 〉) ≥ Ord(〈Q,≤Q〉).

Proof: We show by induction that ordP (p) ≥ ordQ(f(p)) for all p ∈ dom(f),
and the lemma follows because f is a surjection. Assume p ∈ dom(f) and the
claim holds for all p′ ∈ dom(f) with ordP (p′) < ordP (p). If q ∈ Q and q < f(p),
then there is p′ ≤P p such that f(p′) = q. Clearly, p′ < p, so ordP (p′) < ordP (p).
By induction hypothesis, ordP (p′) ≥ ordQ(q), hence ordP (p) > ordQ(q) for all
q < f(p). It follows that ordP (p) ≥ ordQ(f(p)). 
�
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Corollary 2.2.12 If 〈P,≤P 〉 and 〈Q,≤Q〉 are well-founded and f :P → Q is
an injective function that is monotonic (i.e., p ≤P p′ =⇒ f(p) ≤Q f(p′) for all
p, p′ ∈ P ) then Ord(〈P,≤P 〉) ≤ Ord(〈Q,≤Q〉).

Proof: Define g:⊆ Q → P by dom(g) = range(f) and g(q) = p ⇐⇒ q =
f(p), which is well-defined because f is injective. It is immediate that g is a
surjection. If p ≤P g(q), then f(p) ≤Q f(g(q)) = q by the monotonicity of f
and definition of g. Since f(p) ≤Q q and g(f(p)) = p, Lemma 2.2.11 implies
Ord(〈P,≤P 〉) ≤ Ord(〈Q,≤Q〉). 
�

Recall that Bad(〈P,≤P 〉) is the set of all finite bad sequences of elements
of P . We will partially order s, t ∈ Bad(〈P,≤P 〉) by s � t if and only if s is
an initial prefix of t. The following proposition is well known (for example, see
[22]).

Proposition 2.2.13 〈Bad(〈P,≤P 〉),�〉 is well-founded if and only if 〈P,≤P 〉
is a well-partial order.

Proof: If 〈Bad(〈P,≤P 〉),�〉 is not well-founded, then there is a sequence s0 ≺
s1 ≺ s2 ≺ · · · of bad sequences of elements of P . We can assume without loss of
generality that each si �= ε (the empty sequence). For each i ∈ ω, si is a finite
non-empty sequence, so let xi be the last element of si. If i < j, then si ≺ sj , so
xi occurs before xj in sj. Since sj is a bad sequence, xi �≤P xj holds. Therefore,
x0, x1, x2, . . . is an infinite bad sequence, so 〈P,≤P 〉 is not a well-partial-order.

For the converse, if x0, x1, x2, . . . is an infinite bad sequence of elements of
P , then 〈x0〉 ≺ 〈x0, x1〉 ≺ 〈x0, x1, x2〉 ≺ · · · is an infinite “descending” chain in
〈Bad(〈P,≤P 〉),�〉. 
�

We will write Bad�=ε(〈P,≤P 〉) for the subset of Bad�=ε(〈P,≤P 〉) of non-
empty sequences. We now define OrdB(〈P,≤P 〉) = 〈Bad�=ε(〈P,≤P 〉),�〉 for any
well-partial-order 〈P,≤P 〉. Thus, abbreviating ord(s) for ordBad �=ε(〈P,≤P 〉)(s),
for each s ∈ Bad�=ε(〈P,≤P 〉) we have:

ord(s) =
∨

{ord(t) + 1 | s ≺ t ∈ Bad�=ε(〈P,≤P 〉)},

and
OrdB(〈P,≤P 〉) =

∨
{ord(s) + 1 | s ∈ Bad�=ε(〈P,≤P 〉)}.

Since the empty sequence ε is a strict subsequence of every s ∈ Bad�=ε(〈P,≤P 〉),
we could alternatively define OrdB(〈P,≤P 〉) = ord(ε), where ord(ε) is given the
obvious meaning.

The next theorem shows that OrdB(〈L,⊇〉) is an upper bound on the mind-
change complexity of identifying L<ω in the limit from positive data.

Theorem 2.2.14 If L has finite thickness and 〈L,⊇〉 is a well-partial-order,
then Ord(〈L<ω ,⊇〉) ≤ OrdB(〈L,⊇〉).

Proof: Define f :Bad�=ε(〈L,⊇〉) → L<ω so that f(s) = L0 ∪ · · · ∪ Ln for each
s = 〈L0, . . . , Ln〉 ∈ Bad�=ε(〈L,⊇〉). Clearly, f is a surjection because every
U ∈ L<ω can be written as a union L0 ∪ · · · ∪ Ln with Li �⊇ Lj for i < j.

Assume s = 〈L0, . . . , Ln〉 ∈ Bad�=ε(〈L,⊇〉), U ∈ L<ω, and f(s) ⊆ U . If
f(s) �= U , then there is x0 ∈ U \ f(s) and some L′

0 ∈ L such that x0 ∈ L′
0 ⊆ U .
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Since x0 �∈ f(s), L′
0 �⊆ Li for 0 ≤ i ≤ n. Thus, t0 = 〈L0, . . . , Ln, L

′
0〉 ∈

Bad�=ε(〈L,⊇〉) and s ≺ t0. If f(tn) �= U , then we can find xn+1 ∈ U \ f(tn)
and L′

n+1 ⊆ U containing xn+1 to construct a bad sequence tn+1 � tn. Since
Bad�=ε(〈L,⊇〉) is well-founded, we can only repeat this process finitely many
times until we have obtained a bad sequence t � s satisfying f(t) = U .

It follows from Lemma 2.2.11 that Ord(〈L<ω ,⊇〉) ≤ OrdB(〈L,⊇〉). 
�

Given a concept space L, we can define a preorder (i.e., a reflexive, transitive
relation) on ω by x �L y ⇐⇒ x ∈ CL({y}) for all x, y ∈ ω. Note that this is
equivalent to defining x �L y ⇐⇒ CL({x}) ⊆ CL({y}). Define x ≡L y if and
only if x �L y and y �L x. We will let ω/ ≡L denote the set of equivalence
classes of ≡L, and view �L as a partial order on ω/ ≡L. We can think of ω/ ≡L
as the subset of A(L) of all closed sets generated by a singleton, in which case
�L is like the “restriction” of the subset relation on A(L) to ω/ ≡L. It follows
from Theorem 2.1.25 that if L has finite thickness and 〈L,⊇〉 is a well-partial-
order, then 〈ω/ ≡L,�L〉 is a well-partial-order. This gives us another method
of computing an upper bound on the mind-change complexity of L<ω.

Theorem 2.2.15 If L has finite thickness and 〈L,⊇〉 is a well-partial-order,
then Ord(〈L<ω ,⊇〉) ≤ OrdB(〈ω/ ≡L,�L〉).

Proof: Define

f(〈x0, . . . , xn〉) = CL({x0}) ∪ · · · ∪ CL({xn})

for each 〈x0, . . . , xn〉 ∈ Bad�=ε(〈ω/ ≡L,�L〉).
First we show that for each U ∈ L<ω, there is s ∈ Bad�=ε(〈ω/ ≡L,�L〉) such

that f(s) = U . Let U ∈ L<ω be given, choose any x0 ∈ U and define s0 = 〈x0〉.
Working recursively, if f(sn) �= U , then choose any xn+1 ∈ U \ f(sn). Since
xn+1 �∈ CL({xi}) for 0 ≤ i ≤ n, sn+1 =def sn〈xn+1〉 ∈ Bad�=ε(〈ω/ ≡L,�L〉).
Clearly CL({xn+1}) ⊆ U , so f(sn+1) ⊆ U . Since Bad�=ε(〈ω/ ≡L,�L〉) is well-
founded, this process terminates after a finite number of steps resulting in a bad
sequence s satisfying f(s) = U .

Assume s = 〈L0, . . . , Ln〉 ∈ Bad�=ε(〈L,⊇〉), U ∈ L<ω, and f(s) ⊆ U . If
f(s) �= U , then we can choose any x0 ∈ U \f(s) and s〈x0〉 will be a bad sequence
with f(s〈x0〉) ⊆ U . Repeating the argument in the previous paragraph, we
obtain a bad sequence t � s such that f(t) = U .

By restricting the domain of f to dom(f) = {s ∈ Bad�=ε(〈L,⊇〉) | f(s) ∈
L<ω}, we see that f :⊆ Bad�=ε(〈L,⊇〉) → L<ω satisfies the requirements of
Lemma 2.2.11, hence Ord(〈L<ω ,⊇〉) ≤ OrdB(〈ω/ ≡L,�L〉). 
�

Next we give a method for computing a lower bound for the mind-change
complexity of L<ω.

Theorem 2.2.16 Assume L has finite thickness and 〈L,⊇〉 is a well-partial-
order. If f :α→ L is such that for every finite sequence α > β0 > · · · > βn > γ,
f(γ) �⊆

⋃
0≤i≤n f(βi), then α ≤ Ord(〈L<ω ,⊇〉).

Proof: Assume for a contradiction there is β0 < α such that ordL<ω (f(β0)) <
β0. Let L0 = f(β0), and note that ordL<ω (L0) < β0. Working recursively, for
n ≥ 0 we can assume that ordL<ω (Ln) < βn. Now let βn+1 = ordL<ω (Ln) and
Ln+1 = f(βn+1) ∪ Ln. Since α > β0 > · · · > βn > βn+1, f(βn+1) �⊆ Ln =
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⋃
0≤i≤n f(βi), hence Ln+1 ⊃ Ln. Therefore, ordL<ω (Ln+1) < βn+1. Repeating

this proccess results in an infinite sequence α > β0 > β1 > · · · of strictly
descending ordinals, a contradiction. Thus, ordL<ω (f(β)) ≥ β for all β < α. It
follows that α ≤ Ord(〈L<ω ,⊇〉). 
�

To conclude this section, we give a simple example of how to apply the above
theorems. We first give a proposition that is useful for computing upper bounds
on OrdB(〈P,≤P 〉). We will omit the easy proof (see Simpson [55], Hasegawa
[22]).

Proposition 2.2.17 Let α be an ordinal and 〈P,≤P 〉 a partial-order. If there is
a function f :Bad(〈P,≤P 〉) → α+1 such that f(s) > f(s〈x〉) for every s, s〈x〉 ∈
Bad(〈P,≤P 〉), then 〈P,≤P 〉 is a well-partial-order and OrdB(〈P,≤P 〉) ≤ α. 
�

The function f in the above proposition is called a reification. We will con-
struct a reification in the following example (a similar reification was constructed
in [55]).

Example 2.2.18 Let L〈x,y〉 = {〈x′, y′〉 ∈ ω × ω |x ≤ x′ and y ≤ y′}, and
L = {L〈x,y〉 | 〈x′, y′〉 ∈ ω × ω}. Clearly, L〈x,y〉 = CL({〈x, y〉}), and L〈x,y〉 ⊇
L〈x′,y′〉 ⇐⇒ 〈x′, y′〉 ∈ CL({〈x, y〉}) ⇐⇒ 〈x′, y′〉 �L 〈x, y〉. It is immediate
that L has finite thickness, because for any 〈x, y〉, there are only finitely many
〈x′, y′〉 such that x′ < x and y′ < y. It will follow from the results below on the
upper bound of OrdB(〈L,⊇〉) that 〈L,⊇〉 is a well-partial-order.

We first show how to apply Theorem 2.2.16 to give a lower bound on
Ord(〈L<ω ,⊇〉). Consider the ordinal ω2 = ω ·ω. Every ordinal strictly less than
ω2 can be written as ω ·x+y with x, y < ω, and ω ·x+y ≤ ω ·x′+y′ if and only if
x < x′ or (x = x′ and y ≤ y′) (see Example 2.2.5). Define a function f :ω2 → L
so that f(ω ·x+y) = L〈x,y〉. Now, if ω2 > ω ·x0+y0 > · · · > ω ·xn+yn > ω ·x+y,
then for each i ≤ n, either x < xi or (x = xi and y < yi), so 〈x, y〉 �∈ L〈xi,yi〉.
Therefore, L〈x,y〉 �⊆

⋃
0≤i≤n L〈xi,yi〉. Thus, f :ω2 → L satisfies the requirements

of Theorem 2.2.16, so ω2 ≤ Ord(〈L<ω ,⊇〉).
Next we give an upper bound on Ord(〈L<ω ,⊇〉) by constructing a reification

g:Bad(〈L,⊇〉) → ω2 + 1. First, let g(ε) = ω2, where ε is the empty sequence.
For every non-empty bad sequence s, we will assign finite sequences As and

Bs of ordinals as follows. For every single element sequence 〈L〈x,y〉〉, define As

to be the sequence 〈ω, ω, · · · , ω〉 of length x (thus, if x = 0 then As is the empty
sequence), and define Bs similarly but of length y. Next, assume s is non-empty,
and s〈L〈x,y〉〉 is a bad sequence. If L〈x′,y′〉 is the first element of s, then since
L〈x′,y′〉 �⊇ L〈x,y〉, either x < x′ or y < y′. If x < x′, then define As〈L〈x,y〉〉 to be
the sequence of length x′ such that As〈L〈x,y〉〉(x) = y and As〈L〈x,y〉〉(i) = As(i)
for i �= x, and define Bs〈L〈x,y〉〉 = Bs. If x ≥ x′, then y < y′ so define Bs〈L〈x,y〉〉 to
be the sequence of length y′ such that Bs〈L〈x,y〉〉(y) = x and Bs〈L〈x,y〉〉(i) = Bs(i)
for i �= y, and define As〈L〈x,y〉〉 = As. So, for example:

A〈L〈3,2〉〉 = 〈ω, ω, ω〉
B〈L〈3,2〉〉 = 〈ω, ω〉

A〈L〈3,2〉,L〈2,4〉〉 = 〈ω, ω, 4〉
B〈L〈3,2〉,L〈2,4〉〉 = 〈ω, ω〉

A〈L〈3,2〉,L〈2,4〉,L〈5,1〉〉 = 〈ω, ω, 4〉
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B〈L〈3,2〉,L〈2,4〉,L〈5,1〉〉 = 〈ω, 5〉
A〈L〈3,2〉,L〈2,4〉,L〈5,1〉,L〈2,1〉〉 = 〈ω, ω, 1〉
B〈L〈3,2〉,L〈2,4〉,L〈5,1〉,L〈2,1〉〉 = 〈ω, 5〉

It is clear that for every non-empty s, either As〈L〈x,y〉〉 �= As and Bs〈L〈x,y〉〉 = Bs,
or else As〈L〈x,y〉〉 = As and Bs〈L〈x,y〉〉 �= Bs. In the first case, if As〈L〈x,y〉〉 �= As,
then they are only different in the (x+1)th element. By definition, As〈L〈x,y〉〉(x)
equals y. Let y′ = As(x). If y′ �= ω, then by construction of As, L〈x,y′〉 must
occur in s. Since s〈L〈x,y〉〉 is a bad sequence, L〈x,y′〉 �⊇ L〈x,y〉, so it must be
the case that y < y′. Thus, As〈L〈x,y〉〉(x) < As(x) and As〈L〈x,y〉〉(i) = As(i) for
all i �= x. We can similarly show that Bs〈L〈x,y〉〉(y) < Bs(y) and Bs〈L〈x,y〉〉(i) =
Bs(i) for all i �= y whenever Bs〈L〈x,y〉〉 �= Bs.

For each non-empty sequence s, let Ss be the finite sequence of ordinals
formed by sorting the concatenation of As and Bs into descending order. For
example, if As = 〈3, ω, 6〉 and Bs = 〈ω, 8, ω, 2〉, then Ss = 〈ω, ω, ω, 8, 6, 3, 2〉.
We define g(s) = 0 if Ss is empty, and otherwise define g(s) = Ss(0) + Ss(1) +
· · · + Ss(n− 1) where n > 0 is the length of Ss. For example:

g(〈L〈3,2〉〉) = ω + ω + ω + ω + ω

g(〈L〈3,2〉, L〈2,4〉〉) = ω + ω + ω + ω + 4
g(〈L〈3,2〉, L〈2,4〉, L〈5,1〉〉) = ω + ω + ω + 5 + 4

g(〈L〈3,2〉, L〈2,4〉, L〈5,1〉, L〈2,1〉〉) = ω + ω + ω + 5 + 1

Since As〈L〈x,y〉〉(i) ≤ As(i) and Bs〈L〈x,y〉〉(i) ≤ Bs(i) for all coordinates i, and
at least one coordinate is strictly smaller, it is easy to see that our construction
guarantees that g(s) > g(s〈L〈x,y〉〉).

Thus, g satisfies Proposition 2.2.17, so OrdB(〈L,⊇〉) ≤ ω2. By Theorem
2.2.14, it follows that Ord(〈L<ω ,⊇〉) ≤ ω2. It follows that the the mind-change
complexity of identifying L<ω from positive data is ω2. 
�

2.3 Mind-change complexity of L(RPl)<ω

In this section, we apply the results of the previous sections to compute upper
and lower bounds for the mind-change complexity of identifying unbounded
unions of restricted pattern languages from positive data. The mind-change
complexity of identifying n unions of pattern languages was shown by Jain and
Sharma [26] to be equal to ωn. Furthermore, Stephan and Ventsov [57] have
shown that the mind-change complexity of identifying ideals over the polynomial
ring with rational coefficients and n variables is ωn. Here we show that the mind-
change complexity of identifying unbounded unions of a restricted set of pattern
languages is of the form ωωn

+m, with m,n < ω. This is the first time to the
author’s knowledge that a natural class of languages has been shown to have
mind-change complexity greater than ωω.

2.3.1 Pattern languages

Given an alphabet Σ, we use Σ<l, Σ≤l, Σ=l, Σ∗, to denote the set of all strings
of Σ of length less than l, less than or equal to l, exactly equal to l, or of finite
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length, respectively. Σ+ is the subset of Σ∗ of non-empty strings.
Pattern languages were originally introduced into inductive inference by An-

gluin [3] and later became a rich field of research. Let Σ be a finite alphabet
and let V = x0, x1, . . . be a countably infinite set of symbols disjoint from Σ. A
finite string of elements of Σ is called a constant segment and elements of V are
called variables. A pattern is a non-empty finite string over Σ ∪ V . A pattern
p is said to be regular if every variable xi appearing in p occurs only once. Let
RP be the set of regular patterns, and let RPl be the set of regular patterns
which contain constant segments of length no longer than l.

The language of a pattern p, denoted L(p), is the subset of Σ∗ that can
be obtained by substituting a non-empty constant segment si ∈ Σ+ for each
occurrence of the variable xi in p for all i ≥ 0. For example, if Σ = {a, b} and
p = ax1b, then L(p) is the subset of Σ∗ of strings beginning with “a”, ending
with “b”, and of length greater than or equal to three. For a set of patterns P ,
we define L(P ) = {L(p) | p ∈ P}. We can assume that pattern languages are
properly encoded as sets of natural numbers, so L(P ) can be interpreted as a
concept space.

The next two theorems will be useful for showing the mind-change complex-
ity of L(RPl)<ω , the class of unbounded unions of languages of regular patterns
with constant segment length bound l.

Theorem 2.3.1 (Shinohara & Arimura [54]) For any l ≥ 1, L(RPl) has
finite thickness and contains no infinite anti-chains with respect to set inclusion.

Theorem 2.3.2 (Shinohara & Arimura [54]) For any l ≥ 1, L(RPl)<ω is
inferable from positive data.

2.3.2 Lower bound for L(RPl)<ω

We first give a lower bound on the mind-change complexity of identifying
L(RPl)<ω from positive data. For the following lemma, recall that given a
set A, A∗ is the set of finite strings of elements of A, and �S is the subsequence
relation.

Lemma 2.3.3 (Simpson [55]) Let A be a finite set containing exactly k el-
ements. Then there exists a function g : ωωk−1 → A∗ with the property that
α �≤ β implies g(α) ��S g(β).

Let Σ be a finite alphabet containing at least two elements. We fix an
element c ∈ Σ and let Σ−c = Σ − {c}. We will abbreviate (Σ−c)=l, the set of
strings of elements of Σ−c with length l, as Σ=l

−c. We define x(RP=l
−c)y to be the

subset of RPl of patterns that begin and end with a variable, do not contain
any occurrences of the constant element c, and only have constant segments
of length exactly equal to l. Note that although no p ∈ x(RP=l

−c)y contains
the element c, L(p) is defined over Σ, so c may occur in some elements of the
language L(p).

Next we define P : (Σ=l
−c)

∗ → x(RP=l
−c)y so that

P (〈w1, . . . , wn〉) = x1w1 · · ·xnwnxn+1.

Let �′
S be the subsequence relation on (Σ=l−c)∗. The following lemma is related

to a theorem proved by Mukouchi [39].
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Lemma 2.3.4 Let σ, τ1, . . . , τn ∈ (Σ=l
−c)

∗ for n ≥ 1. If for all i (1 ≤ i ≤ n),
τi ��′

S σ, then L(P (σ)) �⊆
⋃

1≤i≤n L(P (τi)).

Proof: Let σ = 〈w1, . . . , wm〉, and let s = cw1c · · · cwmc. Obviously s ∈
L(P (σ)). Assume s ∈

⋃
1≤i≤n L(P (τi)), then for some j, s ∈ L(P (τj)). Assume

τj = 〈u1, . . . , um′〉, so P (τj) = x1u1 · · ·xm′um′xm′+1. Each constant segment ui′

(1 ≤ i′ ≤ m′) in P (τj) must map to a segment in s, but since ui′ does not contain
c, ui′ must appear within some wki′ (1 ≤ ki′ ≤ m). Since |ui′ | = |wki′ | = l,
it follows that ui′ = wki′ . Furthermore, the ordering of the mapping must be
preserved, so ki′ < ki′+1 for i′ < m′. But this shows that τj �′

S σ, which
contradicts the hypothesis. 
�

We now give a lower bound for the mind-change complexity of L(RPl)<ω.

Theorem 2.3.5 L(RPl)<ω is not identifiable from positive data with mind-

change bound less than ωω(|Σ|−1)l−1
for l ≥ 1 and for finite Σ containing at least

two elements.

Proof: Since |Σ=l
−c| = |Σ−c|l = (|Σ| − 1)l, we can use Lemma 2.3.3 to define a

mapping g : ωω(|Σ|−1)l−1 → (Σ=l
−c)

∗ with the property that α > β implies g(α) ��′
S

g(β). We now define f : ωω(|Σ|−1)l−1 → L(x(RP=l
−c)y) to be f(α) = L(P (g(α))).

It follows from Lemma 2.3.4 that if ωω(|Σ|−1)l−1
> α0 > · · · > αn > β for finite

n, then f(β) �⊆
⋃

0≤i≤n f(αi).

It follows from Theorem 2.2.16 that ωω(|Σ|−1)l−1 ≤ Ord(〈L(RPl)<ω ,⊇〉).
Therefore, by Corollary 2.2.8, L(RPl)<ω is not inferable from positive data

with mind-change bound less than ωω(|Σ|−1)l−1
. 
�

2.3.3 Upper bound for L(RPl)<ω

We next give an upper bound on the mind-change complexity of identifying
L(RPl)<ω from positive data.

Lemma 2.3.6 (Simpson [55], Hasegawa [22]) Let A be a finite set contain-
ing exactly k elements. Then there exists a function f : Bad(〈A∗,�S〉) →
ωωk−1

+ 1 with the property that f(s〈a〉) < f(s) for all s, s〈a〉 ∈ Bad(〈A∗,�S〉).

Let CRPl
be the algebraic closure operator on L(RPl) as in Definition 2.1.6,

and let A(L(RPl)) be the set of all fixed points of CRPl
. Thus, in particular,

CRPl
(F ) =

⋂
{L ∈ L(RPl) |F ⊆ L} for any finite subset F of Σ∗. Theorem

2.3.1 implies that 〈L(RPl),⊇〉 is a well-partial order, and since L(RPl) has
finite thickness, 〈A(L(RPl)),⊇〉 is also a well-partial-order by Theorem 2.1.25.

Let Σ be a finite alphabet containing at least two elements, and let # be a
new symbol not in Σ. Define Σ=l

# to be the set of elements of Σ=l with the symbol
# appended to the beginning or end. Define a mapping h : Σ>l → (Σ=l

# )∗ such
that for s = a1 · · · an (n > l),

h(s) = 〈#a1 · · ·al, a2 · · ·al+1#, . . . ,#an−l+1 · · · an〉,

where # appears on the left side of the initial and final segments, and # appears
on the right of all other segments.
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Lemma 2.3.7 For any s, t ∈ Σ∗, if |s| ≤ l and s = t, or if h(s) �S h(t), then
t ∈ CRPl

({s}).

Proof: The case where s = t is obvious, so assume s = a1 · · · an, t = b1 · · · bn′ ,
and that h(s) is a subsequence of h(t). It follows that there is a strict monotonic
function f : {1, . . . , n− l+1} → {1, . . . , n′} such that for all i (1 ≤ i ≤ n− l+1),
ai · · · ai+l−1 = bf(i) · · · bf(i)+l−1. We now define f ′ : {1, . . . , n} → {1, . . . , n′}
so that f ′(i) = f(i) when i ≤ n − l + 1 and f ′(i) = n′ − n + i otherwise. By
definition f ′ is strict monotonic, implying that f ′(j)− f ′(i) ≥ j− i for all j ≥ i,
where j and i are in the domain of f ′. Also, note that the placement of the
# symbols guarantee that first and last l elements of s and t are the same.
Therefore, for all i (1 ≤ i ≤ n) and all k (1 ≤ k ≤ l), if i + k − 1 ≤ n then
ai · · · ai+k−1 = bf ′(i) · · · bf ′(i)+k−1.

Let p = w1x1 · · ·wmxmwm+1 be a pattern in RPl such that s ∈ L(p),
where the xi’s are variables and the wi’s are in Σ≤l. For each non-empty wi

(1 ≤ i ≤ m+ 1) in p, wi is mapped to a segment in s, so let ki be the position
in s where the first element of wi is mapped. If wi is empty for i ≤ m then let
ki be the position of the first element of s that xi matches. We can ignore the
case that wm+1 is empty. Note that ki+1 ≥ ki + |wi| + 1 for i ≤ m, since xi

must be mapped to at least one element of s.
For i ≤ m + 1 and non-empty wi, it is clear that wi = aki · · · aki+|wi|−1 =

bf ′(ki) · · · bf ′(ki)+|wi|−1, so each wi matches a segment of t in the proper order.
The strict monotonicity of f ′ guarantees that there is at least as much space
between f ′(ki) and f ′(ki+1) as there is between ki and ki+1, so there is enough
room for each xi to match at least one element of t. If wi is empty then xi would
match a segment of t starting at f ′(ki), otherwise xi would start matching at
f ′(ki)+ |wi|. In either case, xi would match the segment of t up to the position
f ′(ki+1) − 1, or to the end of the string if wm+1 is empty. Also, the first and
last l elements of s and t are associated by f ′, so w1 and wm+1 match to the
head and tail segments of t. Therefore, we can see that t ∈ L(p). Since p was
arbitrary, we can conclude that t ∈ CRPl

({s}). 
�

Theorem 2.3.8 L(RPl)<ω is identifiable from positive data with mind-change

bound ωω2|Σ|l−1
+ |Σ≤l| for any l ≥ 1 and finite Σ containing at least two ele-

ments.

Proof: Define a preorder �RPl
on elements of Σ+ by s �RPl

t ⇐⇒ t ∈
CRPl

({s}). Since every L ∈ L(RPl) is a subset of Σ+, by Theorem 2.2.15 it

suffices to show that OrdB(〈Σ+/ ≡RPl
,�RPl

〉) ≤ ωω2|Σ|l−1
+ |Σ≤l|.

Since Σ=l
# contains 2|Σ|l elements, Lemma 2.3.6 implies that there is a func-

tion f : Bad(〈(Σ=l
# )∗,�S〉) → ωω2|Σ|l−1

+ 1 such that f(s〈a〉) < f(s) for all
s, s〈a〉 ∈ Bad(〈A∗,�S〉).

We define a function g : Bad(〈Σ+/ ≡RPl
,�RPl

〉) → ωω2|Σ|l−1
+ |Σ≤l|+1 such

that g(s〈x〉) < g(s) for all s, s〈x〉 ∈ Bad(〈Σ+/ ≡RPl
,�RPl

〉). It will then follow

from Proposition 2.2.17 that OrdB(〈Σ+/ ≡RPl
,�RPl

〉) ≤ ωω2|Σ|l−1
+ |Σ≤l|.

Define g(ε) = ωω2|Σ|l−1
+ |Σ≤l|. Assume that g(s) has been defined and

s〈x〉 ∈ Bad(〈Σ+/ ≡RPl
,�RPl

〉). Let t be the subsequence of s〈x〉 of exactly the
elements with length greater than l, and let r be the number of elements in s〈x〉
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with length less than or equal to l. Note that r < |Σ≤l|, because ε ∈ Σ≤l but
ε �∈ Σ+. Let h be the function from Lemma 2.3.7. Define ht = ε if t is empty,
and otherwise define ht = 〈h(t(0)), h(t(1)), . . . , h(t(n − 1))〉 where n > 0 is the
length of t. If t is non-empty, then since t is a bad sequence, t(i) ��RPl

t(j)
hence t(j) �∈ CRPl

({t(i)}) for all i < j, thus ht(i) ��S ht(j) by Lemma 2.3.7.
Therefore, ht in Bad(〈(Σ=l

# )∗,�S〉). We define g(s〈x〉) = f(t) + (|Σ≤l| − r).

Note that either t is non-empty or else r > 0, so either f(t) < ωω2|Σ|l−1
or else

(|Σ≤l| − r) < |Σ≤l|, thus g(s〈x〉) < ωω2|Σ|l−1
+ |Σ≤l|.

Finally, we show that g(s〈x〉) < g(s) for every bad sequence s〈x〉. Let t be
the subsequence of elements in s that are longer than l, and r the number of
elements in s that have length less than or equal to l. Define t′, r′ similarly, but
with respect to s〈x〉. Then t is a prefix of t′ and r ≥ r′. Furthermore, it must
be the case that either t′ is strictly longer that t, or else r′ is strictly larger than
r. Therefore, by the properties of f and the definition of g, g(s〈x〉) ≤ g(s). 
�

The following algorithm identifies L(RPl)<ω from positive data with mind-

change bound ωω2|Σ|l−1
+ |Σ≤l|. The function h: Σ>l → (Σ=l

# )∗ in line 12
is the function from Lemma 2.3.7, and the function f :Bad(〈(Σ=l

# )∗,�S〉) →
ωω2|Σ|l−1

+ 1 in line 13 is the function f in the proof of Theorem 2.3.8.

Algorithm 1 Algorithm to identify L(RPl)<ω from positive data with mind-

change bound ωω2|Σ|l−1
+ |Σ≤l|. Hypothesis H corresponds to the language

L(H) =
⋃

w∈H CRPl
(w).

1: H := ∅; // initialize as empty set
2: BadSeq := ε; // initialize as empty sequence

3: counterA := ωω2|Σ|l−1
+ 1;

4: counterB := |Σ≤l| − 1;
5: counter := counterA + counterB;
6: loop
7: s := Input(); // receive next element in the presentation
8: if (∀w ∈ H)[s �∈ CRPl

(w)] then
9: if |s| ≤ l then

10: counterB := counterB − 1;
11: else
12: BadSeq := BadSeq〈h(s)〉; // append h(s) to the end of BadSeq
13: counterA := f(BadSeq);
14: end if
15: H := H ∪ {s};
16: counter := counterA + counterB;
17: Output(〈H, counter〉); // output new hypothesis and counter value
18: end if
19: end loop

Note that the lower bound shown by Theorem 2.3.5 only involved a subset of
L(RPl)<ω, so we expect that this bound can be raised somewhat. Furthermore,
the reification in Theorem 2.3.8 does not take advantage of all of the properties
of pattern languages, so there is still much room for improvement.
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Chapter 3

Topological Properties of
Concept Spaces

In this chapter we will interpret concept spaces as a topological space and com-
pare topological and other structural properties of concept spaces. We will see
later that this topological approach is related to the algebraic closure operator
approach via the Scott-topology. Most of the results in this chapter are with
respect to identification in the limit from positive data, but the basic concepts
introduced are important when we generalize identification in the limit to more
abstract forms of information presentation in the following chapter.

From the topological perspective, each concept in a concept space is viewed
as a point in an abstract space. The relationship between points (concepts) in
this space is determined by the topology, or family of open sets, on the space.
The open sets can be interpreted as the “observable” properties of the concepts
as we discussed in the introduction.

One philosophical advantage of viewing a concept space as a topological
space is that the formal definition of a concept is no longer relevant. To define a
concept to be a set of natural numbers is rather artificial, and places unnecessary
restrictions on which objects can be viewed as concepts, or at least creates the
extra burden of determining how to encode a set of concepts as sets of natural
numbers. Since a learner can only access a stream of information about a
particular concept, the precise mathematical definition of a concept is somewhat
arbitrary. Since the structure of a topological space is defined externally as sets
of points, by viewing a concept space as a topological space we can avoid giving
a precise definition of “concept” and therefore generalize the identification in
the limit paradigm to more abstract mathematical objects.

However, the internal structure of a concept (as a set of natural numbers)
certainly provides important information about the structure of the concept
space, so it is imporant to clarify which properties of concept spaces can be
viewed from a completely topological perspective and which properties cannot.
In this chapter we will show that several important properties of concept spaces,
in particular the property of being identifiable in the limit from positive data,
are topological. On the other hand, we will also show that some well known
properties, like finite elasticity, are not topological. These results are important
for understanding which structural properties we can retain if we were to take
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a completely topological interpretation of the identification in the limit model.
Another important result in this chapter is that we give completely topologi-

cal characterizations of reductions between concept spaces. A reduction between
concept spaces essentially reduces one learning problem into a different learn-
ing problem. Luo and Schulte [34] observed that strong reductions determine a
continuous injective function between concept spaces. We extend this observa-
tion to prove the converse, that every injective continuous function determines
a strong reduction. In addition, we also characterize weak reductions in terms
of lower semicontinuous multivalued functions.

We will discuss basic topological properties of concept spaces in the next
section. In Section 3.2 we investigate which structural properties of concept
spaces are topological. In Section 3.3 we give topological characterizations of
reductions between concept spaces. Most results from this chapter have been
presented in [15].

3.1 The Positive information topology

In this section, we investigate a topology on concept spaces that is relevant to
identification in the limit from positive data.

Given a concept space L and any subset S of ω, we define

↑LS = {L ∈ L |S ⊆ L} and ↓LS = {L ∈ L |L ⊆ S}.

Definition 3.1.1 (Luo and Schulte [34]) Let L be a concept space. A subset
of L is called a Π-basic open set if and only if it is equal to ↑LF for some finite
subset F of ω. An arbitrary union (including the empty union) of Π-basic open
sets is called a Π-open set. Π-closed sets and Π-clopen sets are defined as usual.
The resulting topology is called the positive information topology (Π-topology)
on the concept space L. A mapping between concept spaces that is continuous
with respect to the Π-topologies is said to be Π-continuous. 
�

Figure 3.1: The solid lines show Π-open subsets of the concept space L =
{Li}i≤ω. The dotted circle consisting only of {Lω} is a subset of L that is not
Π-open.
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The Π-topology was introduced to the learning community by Luo and
Schulte [34] to characterize mind-complexity. The Π-topology is closely related
to the Scott-topology on partially ordered sets (posets), which is important in
domain theory (see [20]). A subset U of a poset 〈P,≤〉 is Scott-open if and only
if the following two conditions hold:

1. U is an upper set, i.e. q ∈ U and q ≤ p implies p ∈ U ;

2. For every directed D ⊆ P with
∨
D defined,

∨
D ∈ U implies D ∩U �= ∅.

The Scott-topology has a particularly simple form for algebraic closure systems.
In this case, the Scott-topology on an algebraic closure system C is the smallest
topology on C containing all sets of the form ↑X = {Y ∈ C |X ⊆ Y } for X
a compact element of C. Based on this observation, it is easy to see that the
Scott-topology and Π-topology on A(L) coincide for every concept space L.

If Y is a topological space, and X is a subset of Y , the subspace topology on
X inherited from Y is defined in such a way that U ⊆ X is open if and only if
there is open V ⊆ Y such that U = V ∩X .

The following proposition, which easily follows from the definitions, gives an
alternative characterization of the Π-topology in terms of the Scott-topology.

Proposition 3.1.2 The Π-topology on L coincides with the subspace topology
inherited from A(L) with the Scott-topology.

In this chapter we will usually assume the Π-topology on a concept space L,
unless specifically stated otherwise.

3.1.1 Countably based T0-spaces

Two topological spaces X and Y are homeomorphic if and only if there is a con-
tinuous bijection f :X → Y such that the inverse f−1:Y → X is also continuous.
In such a case, f is called a homeomorphism from X to Y .

A natural question to ask is which topological spaces are homeomorphic to
concept spaces with the Π-topology. To answer this question, we first need some
definitions.

Definition 3.1.3 A topological space X satisfies the T0 separation axiom (or
X is a T0-space) if and only if for every pair of distinct elements x, y ∈ X, there
is an open subset of X that contains exactly one of x and y. 
�

Clearly every concept space with the Π-topology is a T0-space.

Definition 3.1.4 A set B of open subsets of a topological space X is a basis
for the topology on X if and only if every open subset of X is equal to the union
of a subset of B. A topological space is countably based if and only if it has a
countable basis. 
�

For example, the Π-basic open subsets of a concept space form a countable
basis for the Π-topology. Thus, every concept space with the Π-topology is a
countably based T0-space. We next show that the converse of this holds up to
homeomorphism.
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Proposition 3.1.5 Every countably based T0-space is homeomorphic to some
concept space with the Π-topology.

Proof: The basic idea of the proof is well known (for example, see the proof of
Lemma II-3.4 (ii) in [20]). Let X be a countably based T0-space and let {Bi}i∈I

be a countable base for X , where I ⊆ ω. For x ∈ X , define η(x) = {i ∈ I |x ∈
Bi}. Define P (X) = {η(x) |x ∈ X}. It is clear that P (X) is a concept space,
so it only remains to show that η:X → P (X) is a homeomorphism (i.e., η is a
continuous bijection and η−1 is also continuous).

We first show that η is a bijection. If x, y ∈ X are such that x �= y then
the T0 property guarantees that there is an open set U that contains either x
or y, but not both (without loss of generality, assume x ∈ U and y �∈ U). Since
{Bi}i∈I is a basis for X , it follows that there is some i ∈ I such that x ∈ Bi ⊆ U .
Hence, i ∈ η(x) but i �∈ η(y), so η(x) �= η(y). Therefore, η is injective, and since
it is surjective by definition, η is a bijection.

To show that a function is continuous, it suffices to show that the preimage
of every basic open set is open. Thus, to prove that η is continuous, it suffices
to show that η−1(↑P (X)F ) is open in X for any finite set F of natural numbers.
If F �⊆ I then ↑P (X)F is empty, hence η−1(↑P (X)F ) is empty, which is open by
definition. Otherwise, it is easily seen that η−1(↑P (X) F ) =

⋂
i∈F Bi which is

the intersection of a finite number of open sets and therefore open.
Finally, η−1 is continuous because for each i ∈ I, η(Bi)= ↑P (X) {i} which is

clearly Π-open in P (X). 
�
Since every concept space is a countably based T0-space, Proposition 3.1.5

implies that the category of concept spaces and Π-continuous maps is equivalent
to the category of countably based T0-spaces and continuous maps (see Mac Lane
[35] for more on category theory). A simple consequence of this observation is
that the category of concept spaces and Π-continuous maps is not cartesian
closed, because of the well known fact that the category of countably based T0-
spaces is not cartesian closed (see [20] for characterizations of the topological
spaces which are exponentiable).

3.1.2 Π-continuous and Scott-continuous functions

As we noted earlier, the Π-topology on A(L) is precisely the Scott-topology
on A(L) when viewed as a lattice. It follows that a function f :A(K) → A(L)
is Π-continuous if and only if it is Scott-continuous (see [20]) if and only if
f(
∨
D) =

∨
f(D) for every directed subset D of A(K).

We have already seen how the Π-topology on L is related to the Scott-
topology on A(L), and next we show how Π-continuous functions between con-
cepts spaces are related to Scott-continuous functions.

Definition 3.1.6 Let K and L be concept spaces, and let f :K → L be a Π-
continuous function. We define A(f):A(K) → A(L) so that

A(f)(X) =
⋃

{
⋂

{f(K) |F ⊆ K ∈ K} |F is a finite subset of X}

for each X ∈ A(K). 
�

To see that A(f) actually is a function into A(L) (i.e., A(f)(X) ∈ A(L)
for each X ∈ A(K)), first note that

⋂
{f(K) |F ⊆ K ∈ K} is in A(L) because



3.1. THE POSITIVE INFORMATION TOPOLOGY 53

closure systems are closed under arbitrary intersections. Now, if F,G are finite
and F ⊆ G, then

{f(K) |F ⊆ K ∈ K} ⊇ {f(K) |G ⊆ K ∈ K}

hence ⋂
{f(K) |F ⊆ K ∈ K} ⊆

⋂
{f(K) |G ⊆ K ∈ K}.

Therefore,

{
⋂

{f(K) |F ⊆ K ∈ K} |F is a finite subset of X}

is a directed family of elements of A(L), so their union is an element of A(L)
by Proposition 2.1.5.

The following theorem relates Π-continuous functions and Scott-continuous
functions. The theorem can be proven as a special case of Proposition II-3.9 in
[20], but we give a full proof for completeness.

Theorem 3.1.7 For every Π-continuous f :K → L, A(f):A(K) → A(L) is
Scott-continuous and A(f)(L) = f(L) for all L ∈ L. Furthermore, A(f) is the
supremum (ordered pointwise, i.e., g ≤ h ⇐⇒ g(X) ⊆ h(X) for all X) of all
such Scott-continuous extensions of f .

Proof: We first show that A(f)(K) = f(K) for all K ∈ K. From the definition
of A(f), x ∈ A(f)(K) if and only if x ∈

⋂
{f(K ′) |F ⊆ K ′ ∈ K} for some finite

subset F of K, and therefore A(f)(K) ⊆ f(K). To show that A(f)(K) ⊇ f(K),
note that for any y ∈ f(K), ↑L {y} is Π-open in L hence f−1(↑L {y}) is Π-open
in K because f is Π-continuous. Since K ∈ f−1(↑L {y}), there must be some
finite F ⊆ K such that K ∈↑K F ⊆ f−1(↑L {y}). Then for every K ′ ∈↑K F ,
y ∈ f(K ′), hence y ∈

⋂
{f(K ′) |F ⊆ K ′ ∈ K}. Therefore y ∈ A(f)(K).

Next we show that A(f) is Scott-continuous. Let D be a directed subset of
A(K), then

A(f)(
∨

d∈D

d) =
⋃

{
⋂

{f(K) |F ⊆ K ∈ K} |F is a finite subset of
∨

d∈D

d}

=
⋃

{
⋂

{f(K) |F ⊆ K ∈ K} |F ⊆ d is finite and d ∈ D}

=
⋃

d∈D

⋃
{
⋂

{f(K) |F ⊆ K ∈ K} |F ⊆ d is finite}

=
⋃

d∈D

A(f)(d) =
∨

d∈D

A(f)(d),

where the second equation holds because CL(F ) is compact in A(K), and the
last equation holds because A(K) is an algebraic lattice. Therefore A(f) is
Scott-continuous.

Finally, we show that A(f) is the supremum of all Scott-continuous exten-
sions of f . Assume g:A(K) → A(L) is Scott-continuous, and g(X) �⊆ A(f)(X)
for some X ∈ A(K). Let D = {d ∈ A(K) | d is compact and d ⊆ X}. Then
clearly D is directed and X =

∨
D, so g(X) =

∨
d∈D g(d) because g is Scott-

continuous, and
∨

d∈D g(d) =
⋃

d∈D g(d) by Proposition 2.1.5. Applying the
same argument to A(f), it follows that g(X) =

⋃
d∈D g(d) �⊆

⋃
d∈D A(f)(d) =
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A(f)(X), hence there is compact d ∈ D such that g(d) �⊆ A(f)(d). There-
fore, it suffices to show that if g is a Scott-continuous extension of f , then
g(X) ⊆ A(f)(X) for every compact X ∈ A(K).

Let X be compact in A(K) and assume some Scott-continuous function
g:A(K) → A(L) exists such that g(X) �⊆ A(f)(X). Note that A(f)(X) =⋂
{f(K) |F ⊆ K ∈ K} for some finite F such that X = CK(F ). If x ∈ g(X) \

A(f)(X), then there is some K ∈ K such that F ⊆ X ⊆ K and x �∈ f(K).
Since g is Scott-continuous, g(X) ⊆ g(K) hence x ∈ g(K). But this shows that
g(K) �= f(K). Thus, if g is a Scott-continuous extension of f , then g(X) ⊆
A(f)(X) for every compact X ∈ A(K). 
�

We can think of A(f):A(K) → A(L) as a mapping from partial information
about some K ∈ K to partial information about f(K) ∈ L. The fact that it
is the supremum of all continuous extensions means that it is the “best” such
mapping of partial information.

Finally, we mention that despite our notation, A is not a functor because
although it preserves identities it does not preserve composition. Here we
give a simple example where A(g) ◦ A(f) �= A(g ◦ f). We will denote sub-
sets of {0, 1, 2, 3, 4} by writing X with a subscript listing the elements it con-
tains (e.g., X024 = {0, 2, 4}). Let J = {X01, X02}, K = {X01, X02, X03}, and
L = {X014, X024, X03}. Define f :J → K and g:K → L so that f(X01) = X01,
f(X02) = X02, g(X01) = X014, g(X02) = X024, and g(X03) = X03. Then
(A(g) ◦ A(f))(X0) = X0, but A(g ◦ f)(X0) = X04.

3.1.3 Texts and the Π-topology

In this subsection, we explore the relationship between the Π-topology and texts
for concepts.

Given a finite sequence σ of elements of ω ∪ {#}, we define content(σ) =
{n ∈ ω | ∃i : σ(i) = n}. Recall that given a text T , T (n) is the (n+1)th element
of T , and T [n] is the initial segment of T of length n.

Given a text T for some L ∈ L, we can let D = {X0, X1, X2, . . .} represent
the ascending chain of the closed sets produced by applying CL to the set of nat-
ural numbers appearing in each initial finite segment of T . Since L =

∨
i∈ω Xi =∨

D and D is directed, in fact a chain, f(L) = A(f)(
∨
D) =

∨
A(f)(D). Thus,

we can produce a text for f(L) by enumerating in parallel the elements of each
A(f)(Xi), while we can obtain each Xi by seeing more and more of T . We
summarize this observation in the following proposition.

Proposition 3.1.8 Let f :K → L be a Π-continuous function. Then there ex-
ists a continuous function g: T (K) → T (L) such that f ◦ τK = τL ◦ g.

T (K)
g � T (L)

K

τK

� f � L

τL

�
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Proof: For T ∈ T (K), let Xn = CK(content(T [n])). Define g: T (K) → T (L)
as follows:

g(T )(n) =
{

min(A(f)(Xn) \ Fn) if A(f)(Xn) \ Fn �= ∅
# otherwise

where Fn = content(g(T )[n]).
Let K = τK(T ). Then K =

∨
n∈ω Xn, so using the fact that A(f) is a

Scott-continuous extension of f , we have

f(K) = A(f)(
∨

n∈ω

Xn) =
∨
n∈ω

A(f)(Xn) =
⋃
n∈ω

A(f)(Xn),

where the last equation follows from Proposition 2.1.5. Therefore, if g(T )(n) �=
#, then g(T )(n) ∈ A(f)(Xn) ⊆ f(K).

If x ∈ f(K), then there is some m such that x ∈ A(f)(Xn) for all n ≥ m.
So if x �∈ Fm, then x ∈ A(f)(Xn) \ Fm. There are at most x elements less than
x in f(K) \ Fm that g(T ) will enumerate, so eventually x will be the minimal
element of A(f)(Xn) \ Fn for some n ≥ m, hence x occurs in g(T ).

It follows that g(T ) is a text for f(K). Therefore, f ◦ τK = τL ◦ g. It is clear
that g is continuous. 
�

A function f :X → Y between topological spaces is open if and only if f(U)
is open in Y for every open U ⊆ Y . The next theorem shows how the Π-topology
is determined by the space of texts.

Theorem 3.1.9 The function τL: T (L) → L is an open continuous surjective
function with respect to the Π-topology on L. Thus, the Π-topology on L is the
quotient topology on L with respect to τL.

Proof: To see that τL is open, note that τL(↑σ) =↑L content(σ) for any finite
sequence σ. If U ⊆ T (L) is open and non-empty, then U =

⋃
i∈ω ↑ σi for some

family {σi}i∈ω of finite sequences, hence τL(U) = τL(
⋃

i∈ω ↑σ) =
⋃

i∈ω τL(↑σ)
is a Π-open subset of L.

To see that τL is contiuous, it suffices to check that τ−1
L (↑L F ) is open in

T (L) for every finite F ⊆ ω. Since F ⊆ τL(T ) if and only if there is finite
σ ≺ T such that F ⊆ content(σ), τ−1

L (↑LF ) =
⋃
{↑σ |F ⊆ content(σ)}, which

is clearly open in T (L).
Now, if U ⊆ L is Π-open, then τ−1

L (U) is open in T (L) because τL is con-
tinuous. If U ⊆ L and τ−1

L (U) is open, then τL(τ−1
L (U)) = U is Π-open in L

because τL is open. Therefore, U ⊆ L is Π-open if and only if τ−1
L (U) is open in

T (L), so the Π-topology on L is the quotient topology with respect to τL. 
�

Corollary 3.1.10 A function f :K → L between concept spaces is Π-continuous
if and only if there is a continuous function g: T (K) → T (L) such that f ◦ τK =
τL ◦ g.

Proof: We have already shown the “only if” part. So let f :K → L be any
function and assume g: T (K) → T (L) is a continuous function satisfying f◦τK =
τL ◦ g. Let U be any Π-open subset of L. Then τ−1

K (f−1(U)) = g−1(τ−1
L (U))

is an open subset of T (K) because g and τL are continuous. Thus, f−1(U) =
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τK(τ−1
K (f−1(U))) is Π-open in K because τK is an open function. Therefore, f

is Π-continuous. 
�

A topological space is zero-dimensional if and only if it has a basis of clopen
sets. If a space is zero-dimensional and countably based, then it can easily be
shown that the space has a countable basis of clopen sets.

The next theorem shows that the space of texts forms an admissible repre-
sentation of L with respect to the Π-topology. Admissible representations are
important in the field of computable analysis (see Weihrauch [59] and Schröder
[48]), and will play a major role in Chapter 4.

Theorem 3.1.11 Let Z be a zero-dimensional countably based T0-space, and
f :Z → L a continuous function. Then there exists a continuous function g:Z →
T (L) such that f = τL ◦ g.

Z
g � T (L)

L

τL

�

f
�

Proof: Let {Bi}i∈ω be a sequence of clopen sets forming a basis for Z. Given
x ∈ Z, define the sequence {Bx

j }j∈ω so that for each j ∈ ω, Bx
j = Bj if x ∈ Bj ,

and Bx
j = Z \ Bj if x �∈ Bj . Note that Bx

j is open for all j ∈ ω because Bj is
clopen. Let {Fi}i∈ω be an enumeration of all finite subsets of natural numbers
in such a way that every subset occurs infinitely often in the sequence. Let S
be the set of all non-empty finite sequences of natural numbers. Given a finite
set F of natural numbers, we denote by seq(F ) the lexicographically smallest
sequence that contains exactly the elements of F if F is non-empty, and define
seq(F ) = # if F is the empty set.

We first define a function p:Z × ω → S ∪ {#}. For x ∈ Z and i ∈ ω, define

p(x, i) =
{
seq(Fi) if f(

⋂
j≤i B

x
j ) ⊆↑LFi;

# otherwise.

We define g(x) = p(x, 0) ! p(x, 1) ! p(x, 2) ! · · ·, where ! denotes concatenation
of sequences.

Choose x ∈ Z and let i ∈ ω be such that Fi ⊆ f(x). Since f is continuous,
f−1(↑LFi) is an open subset of Z, and since {Bi}i∈ω forms a basis for Z there
is some m ∈ ω such that x ∈ Bm = Bx

m ⊆ f−1(↑L Fi). Since the set Fi occurs
infinitely many times in our enumeration of the finite subsets of natural numbers,
there exists n ≥ m such that Fn = Fi and it follows that p(x, n) = seq(Fi).
Furthermore, for each i, if p(x, i) = seq(Fi), then Fi ⊆ f(x) by our definition of
p. Thus, it is easily seen that g(x) is a text for f(x), and therefore f = τL ◦ g.

Finally, we show that g is continuous. Let σ be a finite sequence of elements
of (ω ∪ {#}). If g−1(↑ σ) is empty then it is open by definition. Otherwise,
let x ∈ g−1(↑ σ) be given. Choose n large enough that σ is an initial prefix
of p(x, 0) ! p(x, 1) ! · · · ! p(x, n). Then U =

⋂n
i=0B

x
i is an open subset of Z

containing x. Furthermore, given y ∈ U , we must have By
i = Bx

i for 0 ≤ i ≤ n,
which implies p(y, i) = p(x, i) for 0 ≤ i ≤ n. Thus, y ∈ g−1(↑ σ), and since y
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was arbitrary it follows that U ⊆ g−1(↑σ). Therefore, g−1(↑σ) is equal to the
union of open sets hence g is continuous. 
�

3.1.4 Products

Our construction of products is related to Dana Scott’s construction of products
of information systems [51].

Definition 3.1.12 Let I ⊆ ω and let Li be a concept space for each i ∈ I.
Define ∏

i∈I

Li = {〈Li〉i∈I |Li ∈ Li},

where 〈Li〉i∈I = {〈x, i〉 | i ∈ I and x ∈ Li}. For each j ∈ I, define πj :
∏

i∈I Li →
Lj so that πj(〈Li〉i∈I) = Lj. 
�

If I only contains finitely many elements, for example I = {1, 2, . . . , n}, then
we write

∏
i∈I Li as L1 × L2 × · · · × Ln and 〈Li〉i∈I as 〈L1, L2, . . . , Ln〉.

Products can be used to model multiple learning problems in parallel. For
example, we can combine the problems of identifying J and K into the single
problem of identifying J ×K.

Lemma 3.1.13 For each j ∈ I, πj :
∏

i∈I Li → Lj is a Π-continuous open
function.

Proof: For any finite F ⊆ ω, π−1
j (↑Lj F ) = {〈Li〉i∈I |F ⊆ Lj}, hence

π−1
j (↑Lj F ) =

⋂
x∈F

{〈Li〉i∈I | 〈x, j〉 ∈ 〈Li〉i∈I}

is a Π-open subset of
∏

i∈I Li, so πj is Π-continuous. Furthermore,

πj(↑(
∏

i∈I Li)F ) =
⋂

〈x,j〉∈F

↑Lj {x},

so πj is an open function. 
�
The next theorem shows that our definition of products of concept spaces is

the correct definition, from the perspective of category theory [35].

Theorem 3.1.14 Given any concept space J and Π-continuous fj:J → Lj for
each j ∈ I, there exists a unique Π-continuous function 〈fi〉i∈I :J →

∏
i∈I Li

such that πj ◦ 〈fi〉i∈I = fj for each j ∈ I.

Proof: Clearly, 〈fi〉i∈I is uniquely determined to be 〈fi〉i∈I(J) = 〈fi(J)〉i∈I for
each J ∈ J .

For any non-empty finite subset F of ω, we can partition F into finitely
many sets Fi0 , Fi1 , . . . , Fin so that F =

⋃n
k=0{〈x, ik〉 |x ∈ Fik

}. Thus,

(〈fi〉i∈I)−1(↑(
∏

i∈I Li)F ) = f−1
i0

(Fi0) ∩ f−1
i1

(Fi1) ∩ · · · ∩ f−1
in

(Fin)

is Π-open in J because each fj is Π-continuous. 
�
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Definition 3.1.15 Given Π-continuous function fi:Ji → Ki for i ∈ I, define∏
i∈I

fi:
∏
i∈I

Ji →
∏
i∈I

Ki

by (
∏

i∈I fi)(〈Ji〉i∈I) = 〈fi(Ji)〉i∈I . 
�

If I = {1, 2, . . . , n} is finite, then we write
∏

i∈I fi as f1 × f2 × · · · × fn.

Lemma 3.1.16 If fi:Ji → Ki is Π-continuous for each i ∈ I, then∏
i∈I

fi:
∏
i∈I

Ji →
∏
i∈I

Ki

is Π-continuous. 
�

3.1.5 (Some) Exponents

Next we define a concept space of all Π-continuous functions from J to K,
which we denote by KJ . Since the category of concept spaces and Π-continuous
maps is not cartesian closed, we can not expect KJ to always be an exponential
object [35]. However, we will give a sufficient condition below for KJ to be an
exponential object. Just like products, the constructions in this subsection are
also closely related to Dana Scott’s information systems [51].

Let FIN be the collection of all finite subsets of ω. For any concept space
J , define

FINJ = {F ∈ FIN |F �= ∅ & (↑J F ) �= ∅}

if J does not contain the empty concept, and

FINJ = {F ∈ FIN | (↑J F ) �= ∅}

otherwise. Let [·, ·]:FIN × FIN → ω be a bijection.

Definition 3.1.17 For any Π-continuous function f :J → K, define

�f� = { [F,G] |F ∈ FINJ & G ∈ FIN & G ⊆ A(f)(CJ (F ))}.

We define KJ = {�f� | f :J → K is Π-continuous }. 
�

Intuitively, the concept �f� encodes the function f in terms of numbers
[F,G] which indicate that if F is a subset of the input then G is a subset of the
output.

For simplicity, we will assume that J does not contain the empty concept
in the following proofs. All results can easily be shown to hold in their current
form if minor modifications are made to the proofs to handle the special case.

Definition 3.1.18 Define εKJ :KJ×J → K so that for any 〈�f�, J〉 ∈ KJ×J ,

εKJ (〈�f�, J〉) =
⋃

{G | [F,G] ∈ �f� and F ⊆ J}.

We will often abbreviate εKJ to ε when there will be no confusion. 
�
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Lemma 3.1.19 ε:KJ ×J → K is Π-continuous and ε(〈�f�, J〉) = f(J) for all
Π-continuous f :J → K and J ∈ K.

Proof: To see that ε(〈�f�, J〉) = f(J) for all Π-continuous f :J → K and
J ∈ K, first note that ε(〈�f�, J〉) ⊆ f(J) because A(f) is monotonic and
A(f)(J) = f(J). Let G be any finite subset of f(J), and let {Fi}i∈I be the
collection of all non-empty finite subsets of J (where I is some index set).
Then f(J) = A(f)(J) = A(f)(

∨
i∈I CJ (Fi)) =

∨
i∈I A(f)(CJ (Fi)). Since

CK(G) ⊆
∨

i∈I A(f)(CJ (Fi)) is compact and {A(f)(CJ (Fi))}i∈I is directed,
there must be i ∈ I such that CK(G) ⊆ A(f)(CJ (Fi)). This implies that
[Fi, G] ∈ �f�, and so G ⊆ ε(〈�f�, J〉). Therefore, ε(〈�f�, J〉) = f(J).

We next show that ε is Π-continuous. Let G ⊆ ω be finite, and let 〈�f�, J〉 ∈
ε−1(↑KG). Then there must be a finite sequence { [Fi, Gi] }1≤i≤n in �f� such
that G ⊆

⋃n
i=1Gi and

⋃n
i=1 Fi ⊆ J . Let F =

⋃n
i=1 Fi. Since A(f) is monotonic,

Gi ⊆ A(f)(CJ (F )) for 1 ≤ i ≤ n, which implies that G ⊆ A(f)(CJ (F )).
Therefore, [F,G] ∈ �f�. Then clearly for every 〈�f ′�, J ′〉 ∈ KJ × J such that
�f ′� contains [F,G] and J ′ contains F , G ⊆ ε(〈�f ′�, J ′〉). Thus,

〈�f�, J〉 ∈↑KJ×J 〈{ [F,G] }, F 〉 ⊆ ε−1(↑KG),

which implies that ε is Π-continuous. 
�
Combining the above lemma with Corollary 3.1.10, if we are given a text for

some �f� ∈ KJ and a text for some J ∈ J , then we can generate a text for
f(J) ∈ K.

Lemma 3.1.20 For any Π-continuous function f :L × J → K, the function
fL:J → K, defined as fL(J) = f(〈L, J〉) for all J ∈ J , is Π-continuous.

Proof: Let U be a Π-open subset of K, and let J ∈ f−1
L (U). Since f is Π-

continuous, f−1(U) is Π-open, and since 〈L, J〉 ∈ f−1(U), there is a finite set
〈F,G〉 ⊆ ω such that 〈L, J〉 ∈↑L×J 〈F,G〉 ⊆ f−1(U). Therefore, J ∈↑J G ⊆
f−1

L (U), and it follows that fL is Π-continuous. 
�

Definition 3.1.21 For any Π-continuous f :L × J → K, define λf :L → KJ

so that λf(L) = �fL� for each L ∈ L. 
�

The next proposition follows immediately from the definition and Lemma
3.1.20.

Proposition 3.1.22 For any Π-continuous function f :L × J → K, λf :L →
KJ is the unique function from L to KJ that satisfies f(〈L, J〉) = ε(〈λf(L), J〉)
for all 〈L, J〉 ∈ L × J .

KJ KJ × J ε � K

L

λf

�

L× J

λf × 1J

�

f

�


�
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Definition 3.1.23 KJ is the exponential object of J and K if and only if for
any concept space L and any Π-continuous function f :L×J → K, λf :L → KJ

is Π-continuous. 
�

In general, λf is not Π-continuous, but we give a sufficient condition for
it being continuous below. Intuitively, the problem is that �fL� sometimes
contains more information about fL than can be extracted from a text for
L ∈ L.

Definition 3.1.24 Let X be a topological space. A subset K of X is topologi-
cally compact if and only if for every family {Ui}i∈I of open subsets of X such
that K ⊆

⋃
i∈I Ui, there is some finite F ⊆ I such that K ⊆

⋃
i∈F Ui. 
�

Theorem 3.1.25 Let J be a concept space such that ↑J F is topologically com-
pact for every non-empty finite F ⊆ ω. Then for any concept space L and any
Π-continuous function f :L× J → K, λf :L → KJ is Π-continuous.

Proof: Let S = { [Fi, Gi] }1≤i≤n be a finite set representing pairs of finite
subsets of ω. It suffices to show that λf−1(↑KJ S) is a Π-open subset of L. We
assume that Fi �= ∅ and ↑J Fi is non-empty for 1 ≤ i ≤ n, since otherwise ↑KJ S
would be emtpy and the claim would follow trivially. Then L ∈ λf−1(↑KJ S) if
and only if Gi ⊆ A(fL)(CJ (Fi)) if and only if Gi ⊆ f(〈L, J〉) for all J ∈↑J Fi

(for all 1 ≤ i ≤ n).
Choose any L ∈ λf−1(↑KJ S). Since f is Π-continuous, Ui = f−1(↑KGi) is

Π-open for each 1 ≤ i ≤ n. For each J ∈↑J Fi, let HJ
i and F J

i be finite subsets
of ω such that 〈L, J〉 ∈↑L×J 〈HJ

i , F
J
i 〉 ⊆ Ui. Such finite sets clearly exists by

our assumption on L. Since ↑J Fi ⊆
⋃

J∈J ↑J F J
i , from our assumption on

J there is some finite Xi ⊆ J such that ↑J Fi ⊆
⋃

J∈Xi
↑J F J

i . Therefore,
Hi =

⋃
{HJ

i | J ∈ Xi} and H =
⋃n

i=1Hi are finite subsets of ω.
Let L′ ∈↑L H . For any i (1 ≤ i ≤ n) and every J ′ ∈↑J Fi, there is some

J ∈ Xi such that F J
i ⊆ J ′. Therefore, 〈L′, J ′〉 ∈↑L×J 〈HJ

i , F
J
i 〉 ⊆ Ui, which

means that Gi ⊆ f(〈L′, J ′〉). Therefore, L ∈↑LH ⊆ λf−1(↑KJ S), and it follows
that λf is Π-continuous. 
�

If J contains the empty concept, then ↑J ∅ would trivially be topologically
compact, so the above theorem still holds in its current form. Also note that the
property in the premise of Theorem 3.1.25 is not topologically invariant (i.e.,
there may be homeomorphic spaces where one has the property and the other
does not).

We will be careful to mention KJ only when it actually is an exponential
object. In the next section, we will show that the property of M-finite thickness
is useful in proving that KJ is an exponential object.

Finally, we mention that our definition of KJ is certainly not the best one
possible, in the sense that there are concept spaces that have exponential objects
but must be constructed in a different way. Our choice of the definition of KJ

is that it is relatively intuitive and yet still useful in many situations.

3.1.6 The informant topology

Although we will be primarily concerned with the Π-topology on concept spaces,
in this subsection we will briefly introduce a topology that is more suitable for
identification from positive and negative data.
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Definition 3.1.26 The informant topology or positive and negative informa-
tion topology on L is generated by sets of the form

{↑LF |F ⊆ ω is finite } ∪ {L\ ↑LF |F ⊆ ω is finite },

where F ⊆ ω is finite. 
�

It is clear from the above definition that the informant topology on a con-
cept space is countably based, zero-dimensional, and satisfies the T0 separation
axiom. The converse is true up to homeomorphism.

Proposition 3.1.27 Every zero-dimensional countably based T0-space is home-
omorphic to some concept space with the informant topology.

Proof: Let X be a zero-dimensional countably based T0-space and let {Bi}i∈ω

be a countable basis for X consisting of clopen sets. For x ∈ X , define ζ(x) =
{〈i, 1〉 |x ∈ Bi} ∪ {〈i, 0〉 |x �∈ Bi}, where 〈·, ·〉:ω × {0, 1} → ω is a bijection.
Define LX = {ζ(x) |x ∈ X}. Then LX is a concept space, and ζ:X → LX is
easily seen to be a homeomorphism with respect to the informant topology on
LX . 
�

Note that if F ⊂ ω is finite, then LX\ ↑LX F =↑LX F if we define F =
{〈i, 1−j〉 | 〈i, j〉 ∈ F}, which means that the Π-topology and informant topology
agree on LX . So the above proof shows that every zero-dimensional space
is homeomorphic to a concept space in which the Π-topology and informant
topology agree.

Theorem 3.1.28 〈ιL, I(L)〉 is an admissible representation of L with the in-
formant topology.

Proof: Define ζ(L) = {〈i, 1〉 | i ∈ L} ∪ {〈i, 0〉 | i �∈ L} for L ∈ L, and let
Z = {ζ(L) |L ∈ L}. Then ζ:L → Z is a homeomorphism from L (with the
informant topology) to Z (with the Π-topology), and informants for L are the
same as texts for Z. The admissibility of 〈τZ , T (Z)〉 can then be used to prove
the admissibility of 〈ιL, I(L)〉. 
�

As will be shown in Chapter 4, the above theorem implies that the informant
topology on L is the quotient topology with respect to ιL. Furthermore, a
function f :K → L is continuous with respect to the informant topologies on K
and L if and only if there is a continuous function g: I(K) → I(L) such that
f ◦ ιK = ιL ◦ g.

3.2 Topologically invariant properties

Since every concept space with the informant topology is homeomorphic to a
zero-dimensional concept space with the Π-topology, we obtain more general
results by investigating the Π-topology. However, we must be careful when we
exchange results between the two paradigms.

For example, a necessary and sufficient criterion for a concept space to be
identifiable in the limit from positive data is that every concept has a finite
tell-tale. However, this criterion is certainly not true if we replace “positive
data” by “positive and negative data”, because it is well known that every
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countable concept space is identifiable in the limit from positive and negative
data. However, we will show in this section that the notion of a finite tell-tale is
related to a purely topological property known as the TD separation axiom. We
can then show that there is a uniform criterion for identifiability in the limit: a
concept space is identifiable in the limit from positive data (from positive and
negative data) if and only if it is a TD-space with respect to the Π-topology (the
informant topology). A more interesting result is the following: a concept space
is identifiable in the limit with a mind-change bound from positive data (from
positive and negative data) if and only if it is a scattered space with respect to
the Π-topology (the informant topology).

It will become clear from the results of Chapter 4 that the “TD” and “scat-
tered” criteria apply not only to identification from texts or informants, but for
any paradigm in which the representation 〈R, ρ〉 of a concept space is admissible
with respect to some countably based topology on the concept space. Therefore,
by formulating criteria for identifiability in topological terms, we obtain results
that apply to all paradigms that have “admissible” information presentations.

In this section, we will investigate topological properties of concept spaces
that are relevant to the identification in the limit paradigm. By topological
property, we mean a property that is topologically invariant, i.e., those properties
P such that if P holds for a topological space X , then P also holds for all
spaces homeomorphic to X . For comparison, we will also give some examples
of well known properties that are not topologically invariant. Three invariant
properties and one non-invariant property that we will investigate are shown in
the figure.

Figure 3.2: The relationship between three topologically invariant properties of
concept spaces and one non-topological property.

We will always assume the Π-topology on concept spaces in this section.
We will actually be investigating two different forms of topological invariance:
purely topological properties and those invariant with respect to concept spaces
with the Π-topology. For example, finite tell-tales are not a purely topological
property, because the definition does not even make sense for most topological
spaces. However, we will see that if a concept space with the Π-topology has
finite tell-tales for all concepts, then any other homeomorphic concept space
with the Π-topology will also have finite tell-tales for all concepts. Therefore,
the notion of a finite tell-tale is invariant with respect to concept spaces with
the Π-topology. On the other hand, the TD separation axiom is a purely topo-
logical property that makes sense for any topological space, and in the case of
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a concept space with the Π-topology, the TD separation axiom is equivalent to
every concept having a finite tell-tale.

3.2.1 Scattered spaces

Scattered concept spaces are defined topologically, and therefore the property
is easily seen to be a pure topologically invariant property. The notion was
introduced to the learning community by Luo and Schulte [34] as a means of
characterizing mind-change complexity (see Section 2.2.2).

Definition 3.2.1 A concept L ∈ X ⊆ L is an isolated point of X if and only
if there is a Π-open subset U of L such that X ∩ U = {L}. If L ∈ X ⊆ L and
L is not an isolated point of X, then L is an accumulation point of X. 
�

Definition 3.2.2 (see [29, 34]) Let L be a concept space. For each ordinal α,
the α-th derived set of L, denoted L(α), is defined inductively as follows:

1. L(0) is defined to be L.

2. L(α+1) is defined to be the set of all accumulation points of L(α).

3. If α is a limit ordinal, then L(α) is defined to be
⋂

β<α L(β).

The accumulation order of a concept L ∈ L, denoted accL(L), is defined as the
maximal ordinal α such that L ∈ L(α) (if the maximum exists). The accumu-
lation order of a concept space L, denoted acc(L), is the least ordinal α such
that L(α) = L(α+1). If acc(L) = α and L(α) is empty, then L is said to be
scattered. 
�

Since all concept spaces are countably-based, it can be shown that acc(L) is
defined for every concept space L and is always strictly less than ω1, the least
uncountable ordinal (see Theorem I.6.9 in [29]). It can also be seen that L(α) is
a Π-closed subset of L for all α.

Assume L ∈ L and α = accL(L). By definition, L is an isolated point in
L(α), so there is finite F ⊆ ω such that L(α) ∩ (↑L(α) F ) = {L}. Since L(α) is
the subset of L of concepts with accumulation order greater than or equal to α,
it follows that L is the only concept in L that contains F and has accumulation
order α. In particular, any concept containing L must have accumulation order
strictly less than L, hence 〈L,⊇〉 is well-founded if L is scattered.

If L is a scattered concept space, then by mapping L ∈ L to a finite subset F
of L such that no other concept containing F has accumulation order accL(L),
then we obtain an injection from L to finite subets of ω. Hence, every scattered
concept space contains at most a countable number of concepts.

Luo and Schulte showed a nice connection between scattered spaces and
mind-change complexity. We will give a simple proof below.

Proposition 3.2.3 (Luo and Schulte [34]) A concept space L is learnable
with a mind-change bound if and only if L is scattered. If L is scattered, then
the mind-change complexity of L equals acc(L). 
�

The following property is important for weak-reductions, which we will in-
vestigate later.
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Definition 3.2.4 (Jain et al. [24]) A concept space L is quasi-dense if L is
non-empty and for any finite F ⊆ ω, either there exists no concept in L con-
taining F or else there exist infinitely many distinct concepts in L containing
F . 
�

Although the notion of a quasi-dense subspace is not a purely topological
property, the following theorem shows that it is invariant among concept spaces
with the Π-topology.

Theorem 3.2.5 The following are equivalent for any concept space L.

1. L is a scattered concept space.

2. L is identifiable from positive data with a mind-change bound.

3. L does not contain a quasi-dense subspace.

4. There exists a concept space K with finite elasticity and an injective Π-
continuous function f :L → K.

Proof: The equivalence of 1 and 2 is the main result of [34]. To show that 1
implies 3, assume S is a quasi-dense subspace of L. Since any Π-open subset
of L that intersects S intersects an infinite subset of S, it can be shown using
transfinite induction that S ⊆ L(α) for all α, and therefore L is not scattered.
To see that 3 implies 1, note that if L is not scattered then there is a subset
L(α) = L(α+1) of L (for some ordinal α) which is infinite (since non-empty finite
T0-spaces necessarily contain isolated points) and easily seen to be quasi-dense.

That 4 implies 1 is also due to Luo and Schulte [34], since they showed that
every concept space with finite elasticity is scattered. The rest follows from
Theorem 3.3.4 and Proposition 3.3.7.

To show 2 implies 4, assume that L is learnable with mind-change bound α.
Let ι be an indexing of L (i.e. ι:L → ω is an injective function). For L ∈ L,
define Kι(L) = {ι(L′) |L = L′ or accL(L) < accL(L′)}, and let K = {Kι(L) |L ∈
L}. K has finite elasticity, because a proof that K has infinite elasticity could
be used to construct an infinitely decreasing sequence of ordinals. Finally, the
function f :L → K such that f(L) = Kι(L) is clearly an injection and can be
shown to be Π-continuous in the usual way. 
�

The above theorem can be used to give a simple proof of the latter half of
Proposition 3.2.3. First assume L is scattered and let α = accL(L) and let
〈H, h〉 be a hypothesis space for L. First note that the K in the proof above
satisfies acc(L) = Ord(〈K,⊇〉), because Kι(L) ⊂ Kι(L′) iff accL(L) > accL(L′).
Also note that f :L → K is a bijection. Therefore, 〈H, f ◦ h〉 is a hypothesis
space for K. Since K has finite elasticity, Corollary 2.2.8 implies that there is
continuous ψ: T (K) → Hω

α that identifies K from positive data with α mind-
changes. Since f :L → K is Π-continuous, there is continuous g: T (L) → T (K)
such that f◦τL = τK◦g. Now, if T ∈ T (L) is a text for L ∈ L, then g(T ) is a text
for f(L), so ψ(g(T )) converges to some hypothesis H ∈ H for f(L). This means
that H satisfies f(h(H)) = f(L), and since f is injective, h(H) = L. Therefore,
ψ ◦ g: T (L) → Hω

α identifies L from positive data with α mind-changes.
The other half of Proposition 3.2.3 is shown as follows. Assume ψ: T (L) →

Hω
α identifies L from positive data with α mind-changes. Then for each β < α,

Uβ = {ξ ∈ Hω
α | ∃n : ξ(n) = 〈H, γ〉 and γ ≤ β}
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is an open subset of Hω
α, hence Vβ = τL(ψ−1(Uβ)) is a Π-open subset of L

because ψ is continuous and τL is an open function. We show by induction that
if L ∈ Vβ , then accL(L) ≤ β, which implies that L is scattered. Assume that
the hypothesis holds for all γ < β, and we prove it for β. Assume that there is
L ∈ Vβ , and let T be a text for L such that ψ(T ) ∈ Uβ . If ψ(T ) is also in Uγ

for some γ < β, then by the induction hypothesis accL(L) ≤ γ < β and we are
done. So assume that ψ(T ) �∈ Uγ for every γ < β.

Since ψ identifies L with α mind-changes, it follows that there is n0 ∈ ω
such that ψ(T )(n) = 〈H,β〉 for all n ≥ n0, where H is a hypothesis for L.
Therefore, there is an initial finite segment σ of T such that ψ(T ′)(n0) = 〈H,β〉
for all T ′ ∈ T (L) extending σ. Thus, if T ′ extends σ and τL(T ′) �= L, then
there must be n > n0 such that ψ(T ′)(n) = 〈H ′, γ〉 and H ′ �= H is a hypothesis
for L′, hence γ < β. Therefore, τL(T ′) ∈ Vγ for some γ < β, so by the
induction hypothesis accL(τL(T ′)) = γ < β, hence τL(T ′) �∈ L(β) by definition.
It follows that τL(↑ σ) is a Π-open set containing L and no other concepts in
L(β). Therefore, L �∈ L(β+1), so accL(L) ≤ β.

3.2.2 Alexandrov spaces

Alexandrov spaces are topological spaces that are useful because of their close
relationship to partial orders (see [28]). The definition is purely topological.

Definition 3.2.6 An Alexandrov concept space is a concept space where, for
each concept L, there exists a smallest open set containing L. 
�

Note that if U is the smallest open set containing L ∈ L, then U must be
equal to ↑LL.

The next definition was given as a sufficient criterion for a concept space to
be identifiable from positive data.

Definition 3.2.7 (Sato and Umayahara [47]) A concept L ∈ L has an in-
finite cross sequence if and only if there exists an infinite sequence L0, L1, . . . of
concepts in L such that

1. S0(�= ∅), S1, . . . is strictly monotone-increasing, and

2.
⋃

i∈ω Si = L,

where Si =
⋂∞

j=i(Lj ∩ L) for i ≥ 0. We say that L has finite cross property if
and only if no concept in L has an infinite cross sequence. 
�

The following theorem shows that the topologically invariant property of
being an Alexandrov space is equivalent to each concept having a characteristic
set and also equivalent to the finite cross property. It also makes it clear that
every Alexandrov concept space is countable, because any mapping that sends a
concept to a characteristic set for the concept would necessarily be one-to-one.

Theorem 3.2.8 The following are equivalent for any concept space L.

1. L is an Alexandrov concept space.

2. Every L in L has a characteristic set.
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3. L has finite cross property.

4. Every L in L is compact in A(L).

Proof: If L is Alexandrov and L ∈ L then ↑L L is Π-open, hence it must be
equal to ↑LF for some F ⊆ L (since Π-open sets are defined in terms of unions of
Π-basic open sets), which means that F is a characteristic set for L. Therefore,
1 implies 2. The implication from 2 to 1 is similar. The definition of CL(·)
makes it clear that for any finite F ⊆ L, CL(F ) = L iff F is a characteristic set
for L, hence the equivalence of 2 and 4.

The equivalence of 2 and 3 is mentioned in [46], but we include the proof
for completeness. Assume L has no characteristic set. We construct in stages
an infinite sequence of concepts L0, L1, . . . in L, and an infinite sequence of
natural numbers x0, x1, . . . such that L =

⋃∞
i=0{xi} and {x0, x1, . . . , xj} ⊆ Lj

and xj+1 �∈ Lj for all j ∈ ω.

Stage 0. Let x0 be any element of L.

Stage n+1. Since {x0, x1, . . . , xn} is not a characteristic set of L, there is some
Ln ∈ L such that {x0, x1, . . . , xn} ⊆ Ln but L �⊆ Ln. Let xn+1 be any
element of L \ Ln. Go to the next stage.

It is easy to verify that L0, L1, . . . is an infinite cross-sequence for L.
For the converse, assume L has a characteristic set and an infinite cross

sequence. Since
⋃

i∈ω Si = L, there will be some i such that Si contains a
characteristic set of L. Therefore, for all j ≥ i it follows that Lj ∩ L = L,
since Si ⊆ Lj implies L ⊆ Lj. But this contradicts S1, S2, . . . being strictly
monotone-increasing. 
�

The topological properties of an Alexandrov concept space are determined
by the subset relation among its concepts. Π-continuous mappings to and from
Alexandrov concept spaces are particularly easy to work with because of the
following two lemmas (we leave the easy proofs to the reader).

Lemma 3.2.9 For any Alexandrov concept space L and any concept space K,
a map f :L → K is Π-continuous if and only if it is monotonic with respect to
set inclusion. 
�

Note, however, that all Π-continuous functions are monotonic. The above
lemma shows that monotonicity is sufficient for Alexandrov concept spaces.

Lemma 3.2.10 Assume that L is an Alexandrov concept space, and let f :K →
L be a Π-continuous map from any concept space K to L. Then for every K ∈ K
there is a finite F ⊆ K such that A(f)(CK(F )) = f(K). 
�

Note that there exist non-scattered Alexandrov spaces, such as FIN (the
set of all finite subsets of ω), and also non-Alexandrov scattered spaces, such
as L = {Lω} ∪ {Li | i ≥ 0}, where Li = {〈i, 1〉} ∪ {〈j, 0〉 | j ≤ i} for i ≥ 0, and
Lω = {〈j, 0〉 | j ≥ 0}.
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3.2.3 Scattered Alexandrov spaces

We next investigate concept spaces that are both scattered and Alexandrov.
It is clear that every concept space with finite elasticity is both scattered and
Alexandrov, but we will see in Section 3.2.5 that there are scattered Alexandrov
spaces that do not have finite elasticity.

The closure of a subset X of a topological space is the intersection of all
closed sets containing X .

Definition 3.2.11 An irreducible closed set is a non-empty closed set that is
not equal to the union of any two proper closed subsets. A sober space is a
topological space in which every irreducible closed set is the closure of a unique
point. 
�

Sobriety is an important topological property because it guarantees that a
topological space can be recovered (up to homeomorphism) just by information
about the lattice of its open sets (see [28]).

Note that the closure of a concept L ∈ L with respect to the Π-topology is
the set ↓LL.

Theorem 3.2.12 Every scattered concept space is sober.

Proof: Let X ⊆ L be an irreducible Π-closed set, and let Y ⊆ X be the
maximal elements of X , i.e., the subset of X of concepts that are not a subset
of any other concept in X . Every concept in X is a subset of some concept
in Y , since otherwise X would contain an infinite strictly increasing chain of
concepts, contradicting L being scattered. Let α = min{accL(L) |L ∈ Y }, and
let Lα ∈ Y be such that accL(Lα) = α. Since L is scattered, there is a Π-open
subset U of L that contains Lα and does not contain any other concepts with
accumulation order greater than or equal to α. Therefore, U ∩ Y = {Lα}, and
it follows that X is the union of the two Π-closed sets ↓LLα and (L \ U) ∩X .
The latter Π-closed set does not contain Lα, so the irreducibility of X shows
that it must be equal to ↓LLα. 
�

Lemma 3.2.13 If L is a sober concept space and D ⊆ L is directed with respect
to subset inclusion, then

⋃
L∈D L is in L.

Proof: Let X be the topological closure of D. Assume that X is equal to the
union of two closed sets X1 and X2. Assume for a contradiction that L1 and
L2 are concepts in D such that L1 ∈ X1 \ X2 and L2 ∈ X2 \ X1. Since D is
directed, there exists L ∈ L that contains both L1 and L2. Assume without loss
of generality that L ∈ X1. Then L2 ∈ X1 because all closed sets are lower sets,
but this contradicts the assumption L2 ∈ X2 \ X1. Therefore, either D ⊆ X1

or D ⊆ X2, and it follows that X = X1 or X = X2. Thus, X is an irreducible
closed set, so X =↓LL∗ for some L∗ ∈ L. If L∗ �=

⋃
L∈D L, then there is some

finite subset F ⊆ L∗ such that D∩ ↑LF = ∅. But then X ′ = (L\ ↑LF ) ∩X is
a proper closed subset of X containing all of D, which contradicts X being the
closure of D. Therefore, L∗ =

⋃
L∈D L. 
�

Theorem 3.2.14 For any concept space L, the following are equivalent:
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1. L is scattered and Alexandrov,

2. L is sober and Alexandrov.

Proof: The implication from 1 to 2 follows from Theorem 3.2.12.
Next we show that 2 implies 1. Assume that L is a sober Alexandrov concept

space, and let α be the accumulation order of L. Assume, for a contradiction,
that there is some L ∈ L(α). By virtue of being Alexandrov, ↑L L is a Π-open
subset of L, but since L is not an isolated point of L(α) there must be some
L′ ∈ L(α) such that L′ �= L and L′ ∈↑LL, i.e., L′ is a strict superset of L. Since
L was arbitrary, this shows that there is an infinite strictly increasing chainD of
concepts in L(α) ⊆ L. By Lemma 3.2.13, L∗ =

⋃
L∈D L is in L. However, since

D is a chain, any finite subset of L∗ must be a finite subset of some L ∈ D, so
L∗ does not have a characteristic set, which contradicts the assumption that L
is Alexandrov. Therefore, L(α) must be empty, which means L is scattered. 
�

It is not true that every sober concept space that is identifiable in the limit
from positive data is scattered. For example, let Q be a concept space that is
homeomorphic to the rationals as a subspace of the reals with the Euclidean
topology. Q is sober because it is Hausdorff, and clearly Q is not scattered,
but we will see in the following subsection that every concept in Q must have a
finite tell-tale.

Finally, we point out that the accumulation order of a scattered Alexandrov
concept space is completely determined by the ordering of the concepts by the
superset relation.

Theorem 3.2.15 If L is scattered and Alexandrov, then acc(L) = Ord(〈L,⊇〉).

Proof: First note that 〈L,⊇〉 is well-founded for all scattered concept spaces,
and then compare Theorem 2.2.7 and Proposition 3.2.3. 
�

3.2.4 Countable TD-spaces

Next we investigate topological properties that characterize identifiability in the
limit from positive data.

Definition 3.2.16 A subset S of topological space X is locally closed in X if
and only if there exists an open set U and a closed set A such that S = U ∩A.


�

The following is a separation axiom proposed by Aull and Thron [6] that is
strictly between the T0 and T1 axioms (see also [28]).

Definition 3.2.17 (Aull and Thron [6]) A TD-space is a topological space
X such that {x} is locally closed in X for every x ∈ X. 
�

Definition 3.2.18 Let L be a concept space containing a countably infinite
number of concepts. A distinct ω-indexing of L is an indexed family of con-
cepts {Li}i∈ω such that L = {Li | i ∈ ω} and for all i, j ∈ ω, Li = Lj if and
only if i = j. 
�
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The proof of the following lemma is based on the proof by Jain et al. [24]
that every learnable concept space can be strongly reduced to RINIT 0,1, which
is defined as all subsets of the rationals Q of the form {q ∈ Q | 0 ≤ q ≤ r} for
each rational r between 0 and 1 (inclusive).

Lemma 3.2.19 Let L be a countably infinite concept space such that every
concept in L has a finite tell-tale. Let {Li}i∈ω be any distinct ω-indexing of L.
Then there exists a family of finite sets {Fi}i∈ω and a partial ordering � on
{Fi}i∈ω extending ⊆ such that

1. (∀ i ∈ ω)[Fi ⊆ Li],

2. (∀ i, j ∈ ω)[Fi ⊆ Lj ⇒ Fi � Fj ],

3. (∀ i, j ∈ ω)[Fi = Fj ⇒ Li = Lj ],

Proof: First, we define a partial order � extending ⊆ on the set FIN of all
finite subsets of ω. For any X ⊆ ω, let min(X) denote the least element of X if
X is non-empty and ∞ otherwise. For F,G ∈ FIN , define

F � G ⇐⇒ min(G \ F ) ≤ min(F \G),

where we assume that ∞ ≤ ∞, n ≤ ∞, ∞ �≤ n for all n �= ∞. Then if F ⊆ G,
min(F \ G) = ∞, hence F � G, so � extends ⊆ and is reflexive. It is easily
seen that � is anti-symmetric, so it only remains to show that it is transitive.
Assume F,G,H ∈ FIN and F � G and G � H . Let us abbreviate

f = min{min(F \G),min(F \H)},
g = min{min(G \ F ),min(G \H)},
h = min{min(H \ F ),min(H \G)}.

We first show that h ≤ g ≤ f . If g = ∞, then trivially h ≤ g. Otherwise, if
g ∈ H then g must be in G\F thus g ∈ H \F , hence h ≤ g. The only remaining
possibility is that g ∈ G \H , so since F � H implies min(H \G) ≤ min(H \G),
we have h ≤ g. Thus, we have proven in all cases that h ≤ g. A similar argument
shows that g ≤ f .

Now, if h = ∞, then f = ∞, so min(F \ H) = ∞, thus F � H and we
are finished. Otherwise, it must be the case that h ∈ H \ F . This is because
if h ∈ F , then h = min(H \ G), thus h ∈ F \ G which implies f ≤ h. But
this would imply that h = g = f , but since g = h �= ∞, g ∈ G, contradicting
h = min(H \ G). Therefore, h = min(H \ F ) ≤ f ≤ min(F \ H), so F � H .
This completes the proof that � is a partial order.

For any x ∈ ω, let ↓ x = {y ∈ ω | y ≤ x}. Let x0 be the smallest natural
number such that L0∩ ↓ x0 is a finite tell-tale of L0, and define F0 = L0∩ ↓ x0.
For i > 0, let

F ′
i = {min(Li \ Lj) | j < i and Li �⊂ Lj},

F ′′
i =

⋃
{Fj | j < i and Fj ⊆ Li}.

Finally, let xi be the smallest natural number such that F ′
i ∪F ′′

i ⊆ Li∩ ↓ xi and
Li∩ ↓ xi is a finite tell-tale of Li. Define Fi = Li∩ ↓ xi.
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It follows immediately that Fi ⊆ Li for all i ∈ ω. We show that the finite
sets are all distinct. Assume without loss of generality that i > j and Fi = Fj .
Then since Fj ⊆ Li and Fj is a finite tell-tale of Lj , it follows that Li �⊂ Lj.
But then min(Li \ Lj) ∈ Fi = Fj , which contradicts Fj being a subset of Lj .

Assume Fi ⊆ Lj . If j < i then it must be the case that Li ⊂ Lj , so it follows
that Fj �⊆ Li and Li∩ ↓ xj ⊆ Fj , proving min(Fj −Fi) < min(Fi −Fj). If j > i
then Fi ⊂ Fj so min(Fj − Fi) < min(Fi − Fj). If follows that Fi � Fj . 
�

We next give a topological characterization of identifiability from positive
data.

Theorem 3.2.20 The following are equivalent for any concept space L.

1. L is countable and every L in L has a finite tell-tale.

2. L is identifiable in the limit from positive data.

3. L is a countable TD-space.

4. There exists an Alexandrov concept space K and an injective Π-continuous
function f :L → K.

Proof: The equivalence of 1 and 2 is due to Angluin [3].
That 1 implies 3 can easily be seen by noting that ↓LL is Π-closed for every

L ∈ L, and a finite tell-tale F of L would imply (↑LF ) ∩ (↓LL) = {L}.
To show that 3 implies 1, assume there are Π-open U and Π-closed V such

that U ∩ V = {L}. Then there is a finite F ⊆ L such that L ∈↑L F ⊆ U , and
since ↓LL ⊆ V , it is clear that (↑LF ) ∩ (↓L L) = {L}. Therefore, F is a finite
tell-tale of L.

Next we show that 1 implies 4. If L is finite then it is Alexandrov so the
result is trivial. So let {Li}i∈ω be a distinct ω-indexing of L and let {Fi}i∈ω be
a family of finite sets partially ordered by � as in Lemma 3.2.19. Define Ki =
{j ∈ ω |Fj � Fi} for each i ∈ ω. Let K = {Ki | i ∈ ω} and define f(Li) = Ki.
Since � is a partial order, it is immediate that {i} is a characteristic set for
Ki, so K is Alexandrov. The third criterion of Lemma 3.2.19 guarantees that
f is injective. To see that f is Π-continuous, note that the second criterion of
Lemma 3.2.19 guarantees that if Fi ⊆ Lj , then i ∈ f(Lj), hence f(Li) ⊆ f(Lj).
Thus, f−1(↑KF ) =

⋃
{↑LFi |F ⊆ f(Li)} is Π-open in L for each finite F ⊆ ω.

To see that 4 implies 1, let L ∈ L be given. By Lemma 3.2.10, there is a
finite F ⊆ L such that A(f)(CL(F )) = f(L). For any L′ ∈ L such that L′ ⊆ L
and F ⊆ L′, the monotonicity of A(f) implies that A(f)(CL(F )) ⊆ A(f)(L′) ⊆
A(f)(L). Thus f(L′) = f(L). Since f is injective, L = L′. 
�

Given a hypothesis space 〈H, h〉 for L and a Π-continuous injection f :L → K
to an Alexandrov concept space K, we can define a learner ψf for L in the
following way. Let ψf (T )(0) = 0. Assume ψf (T )(n) is defined and let

ψf (T )(n+ 1) =
{
HL if A(f)(CL(content(T [n+ 1]))) = f(L),
ψf (T )(n) otherwise;

where HL ∈ H is some pre-defined hypothesis such that h(HL) = L. From the
above theorem, it is easy to see that ψf learns L in the limit from positive data.
Although not all learners for L can be defined in this way, many “intuitive”
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learning strategies are of this form. For example, consider L = {Lω} ∪ {Li | i ≥
0}, where Li = {〈i, 1〉}∪{〈j, 0〉 | j ≤ i} for i ≥ 0, and Lω = {〈j, 0〉 | j ≥ 0}. Note
that this is the example we gave earlier of a scattered concept space that is not
Alexandrov. We can define a concept space K = {K⊥} ∪ {Ki | i ≥ 0}, where
K⊥ = {0} and Ki = {0, i+ 1}. Define the Π-continuous function f :L → K so
that f(Lω) = K⊥ and f(Li) = Ki for i ≥ 0. Intuitively, ψf chooses a hypothesis
for Lω until it sees evidence that confirms otherwise.

Figure 3.3: Example of a learning strategy for L based on a Π-continuous in-
jection f from L to an Alexandrov space K. Solid circles represent concepts in
the respective concept spaces, and the open circles on the left represent closed
sets in A(L) that are not in L. A(f) maps the open circles to K⊥ = f(Lω), so
ψf will output Lω as a hypothesis until it sees evidence to confirm otherwise.

Finally, we mention that the class of countable TD concept spaces properly
includes both the class of Alexandrov concept spaces and the class of scattered
concept spaces. An example of an identifiable concept space that is neither
Alexandrov nor scattered is COSINGLE = {ω \ {n} |n ∈ ω}. The “intuitive”
learning strategy for this space is given by a Π-continuous injection into the
ordinal ω (viewed as a concept space, i.e., for each n ∈ ω there is a concept
n̄ ∈ ω containing all natural numbers less than n) which maps ω \ {n} to n̄.

3.2.5 Examples of non-topological properties

In this subsection, we give examples of some well known structural properties
of concept spaces that are not topologically invariant.

Finite thickness and finite elasticity

Although Theorem 2.1.16 showed that finite elasticity can be characterized using
algebraic closure operators, it is not a topologically invariant property.

Proposition 3.2.21 Finite thickness and finite elasticity are not topologically
invariant properties.

Proof: Let SINGLE = {{n} |n ∈ ω} and let L = {Li | i ≥ 0} ∪ {Ji | i ≥ 0}
where:

L0 = {〈n, 0〉 |n ∈ ω} ∪ {〈0, 1〉}
Li = {〈n, 0〉 | 0 ≤ n ≤ 2i & n �= i} ∪ {〈i, 1〉} (for i > 0)
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J0 = {〈n, 1〉 |n ∈ ω} ∪ {〈0, 0〉}
Ji = {〈n, 1〉 | 0 ≤ n ≤ 2i & n �= i} ∪ {〈i, 0〉} (for i > 0)

Clearly, SINGLE has finite thickness. However, since L1 ∪ J1 ⊂ L2 ∪ J2 ⊂ · · ·
and L0∪J0 =

⋃
i≥1 Li∪Ji, it can be proven that L ∪̃ L is not identifiable in the

limit from positive data. Therefore, L does not have finite elasticity. But it can
easily be shown that L is homeomorphic to SINGLE , because L0 is the only
concept that contains the subset {〈0, 0〉, 〈0, 1〉, 〈1, 0〉}, J0 is the only one that
contains {〈0, 0〉, 〈0, 1〉, 〈1, 1〉} and all other concepts are finite and not contained
in any other concept. Hence, both L and SINGLE are countably infinite sets
with the discrete topology, thus homeomorphic. 
�

Note that the concept space L used in the counter example above is scattered
Alexandrov but does not have finite elasticity.

M-finite thickness

Given a concept space L and S ⊆ ω, L ∈ L is a minimal concept of S within L
if and only if S ⊆ L and there is no L′ ∈ L such that S ⊆ L′ ⊂ L.

Definition 3.2.22 (Sato and Moriyama [45]) Let L be a concept space.

1. L satisfies the MEF-condition if and only if for every non-empty finite
F ⊆ ω, and any L ⊆ L such that F ⊆ L, then there is L′ ∈ L such that
L′ is a minimal concept of F within L and L′ ⊆ L.

2. L satisfies the MFF-condition if and only if for every non-empty finite
F ⊆ ω, the cardinality of

{L ∈ L |L is a minimal concept of F within L}

is finite.

3. L has M-finite thickness if and only if L satisfies both the MEF-condition
and the MFF-condition. 
�

M-finite thickness was used by Mukouchi [40] in characterizing some varia-
tions of approximately identifing concepts in the limit. It was shown by Am-
bainis et al. [2] that if an indexed family of recursive sets has finite thickness
and M-finite thickness, then it is identifiable with a mind-change bound by a
computable learner.

For any concept space L and finite F ⊆ ω, CL(F ) is the unique minimal
concept of F within A(L), hence A(L) has M-finite thickness. This implies
that M-finite thickness is not sufficient for a concept space to be identifiable in
the limit from positive data (this fact is also mentioned in [40]). It is clear that
every concept space with finite thickness has M-finite thickness, but the concept
space L′ in the following proof shows that there are concept spaces with finite
elasticity that do not have M-finite thickness.

Proposition 3.2.23 The MEF-condition, MFF-condition, and M-finite thick-
ness are not topologically invariant properties.
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Proof: For i ≥ 0 define Ki = {x ∈ ω |x ≥ i}. Let

K = {Ki | i ≥ 0} and K′ = {Ki+1 ∪ {0} | i ≥ 0}.

Clearly, a function mapping Ki to Ki+1 ∪ {0} is a homeomorphism from K to
K′. For any non-empty finite F ⊆ ω, Kmin(F ) is the unique minimal concept
of F within K, hence K has M-finite thickness. However, there is no minimal
concept of {0} within K′, so K′ does not satisfy the MEF-condition.

Next, define

L = {{x} |x > 0} and L′ = {{x, 0} |x > 0}.

Then L and L′ are homeomorphic and L has M-finite thickness. However, L′

does not satisfy the MFF-condition because every concept in L′ is a minimal
concept of {0}. 
�

Although M-finite thickness is not topologically invariant, it does imply some
nice topological properties.

Lemma 3.2.24 If L has M-finite thickness, then ↑LF is topologically compact
for every non-empty finite F ⊆ ω.

Proof: Let F be a non-empty finite subset of ω. Assume ↑L F ⊆
⋃

i∈I Ui,
where {Ui}i∈I is a family of Π-open subsets of L. Let

Y = {L ∈ L |L is a minimal concept of F within L}.

Then by the M-finite thickness of L, Y is finite, and for any L′ ∈↑LF there is
L ∈ Y such that L ⊆ L′. Therefore, there is finite G ⊆ I such that for each
L ∈ Y there is some i ∈ G such that L ∈ Ui. It follows that ↑L F ⊆

⋃
i∈G Ui,

and so ↑LF is topologically compact. 
�
The converse does not hold. For example, every Π-open subset of

COSINGLE = {ω \ {n} |n ∈ ω}

is cofinite (i.e., its complement is finite), hence topologically compact. However,
it is clear that COSINGLE does not satisfy the MFF-condition.

It follows from Theorem 3.1.25 and Lemma 3.2.24 that if J has M-finite
thickness, then for any concept space K, KJ is an exponential object for J
and K. In particular, if J has finite thickness, or if J = A(L) for any concept
space L, then the exponential object for J with any other concept space can be
defined.

Pairs of finite tell-tales

The following is another structural property of concept spaces that is sufficient
to guarantee identifiability in the limit from positive data.

Definition 3.2.25 (Sato and Umayahara [47]) Let L be a concept space,
and let L ∈ L be a concept. A pair of finite tell-tales for L consists of a pair
〈U, V 〉 of finite (possibly empty) sets U ⊆ L and V ⊆ ω \ L such that

1. U is a finite tell-tale of L, and
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2. (∀L′ ∈ L)[U ⊆ L′ and V ⊆ ω \ L′ implies L ⊆ L′].

A concept space has the PFT-property if and only if every concept has a pair
of finite tell-tales. 
�

The first condition is implied by the second condition. Assume 〈U, V 〉 is a
pair of finite tell-tales for L ∈ L, and let L′ ∈ L be a strict subset of L. Since
V ⊆ ω \ L and L′ ⊂ L, it is clear that V ⊆ ω \ L′. Clearly, L �⊆ L′, and so it
follows that U �⊆ L′. Thus U is a finite tell-tale of L.

If 〈U, V 〉 is a pair of finite tell-tales for both L and L′ in L, then L = L′.
This implies that any concept space with the PFT-property contains at most a
countably infinite number of concepts.

Every Alexandrov concept space has the PFT-property, and every concept
space with the PFT-property is a countable TD-space. The counter example
in the following proof shows that the PFT-property is incomparable with the
property of being scattered.

Proposition 3.2.26 The PFT-property is not topologically invariant.

Proof: We define the following concept spaces:

1. L = {Lω} ∪ {Li | i ≥ 0},

2. L′ = {Lω} ∪ {Li ∪ {〈0, 2〉} | i ≥ 0},

where Li = {〈i, 1〉} ∪ {〈j, 0〉 | j ≤ i} for i ≥ 0, and Lω = {〈j, 0〉 | j ≥ 0}.
Clearly L and L′ are homeomorphic. L′ has the PFT-property because the

only infinite concept is Lω, which has 〈∅, {〈0, 2〉}〉 as a pair of finite tell-tales.
On the other hand, L does not have the PFT-property, because Lω has no pair
of finite tell-tales. For assume that 〈U, V 〉 is a pair of finite tell-tales for Lω.
Let i be large enough that j < i for all 〈j, 0〉 ∈ U and k < i for all 〈k, 1〉 ∈ V .
Then clearly U ⊆ Li and V ⊆ ω \ Li, but Lω �⊆ Li. 
�

3.3 Reductions between concept spaces

In this section, we analyze reductions between concept spaces. Reductions are
a way of reducing one learning problem into another learning problem. Reduc-
tions for identification in the limit of concept spaces was introduced by Jain and
Sharma [27], and further investigated by Jain et al. [24]. Here we give topolog-
ical characterizations of when concept spaces are reducible to one another.

The basic idea is that if we have a reduction from a concept space J to a
concept space K, then we can convert any text T for a concept in J to a text
T ′ for some concept in K, in a way that if we can identify τK(T ′) then we can
identify τJ (T ). This gives us a means of reducing the problem of learning J to
the problem of learning K.

3.3.1 Weak and strong reductions

The following is a variation of the definition given in [27] for reductions between
concept spaces, where enumeration operators are replaced by continuous func-
tions. It is easy to see that the definitions give equivalent notions of reducibility
when we allow non-computable enumeration operators.
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Given a hypothesis space 〈H, h〉 for a concept space L, we let

lim
H

:⊆ Hω → H

send a converging sequence of hypotheses to the hypothesis to which it con-
verges, and let it be undefined on non-converging sequences. It follows that a
continuous function ψ: T (L) → Hω identifies L in the limit from positive data
if and only if τL = h ◦ limH ◦ ψ.

Definition 3.3.1 Let J and K be concept spaces, and 〈HJ , hJ 〉 and 〈HK, hK〉
be hypothesis spaces for J and K, respectively. We let limHJ :Hω

J → HJ and
limHK :Hω

K → HK denote the respective limit functions. A weak reduction from
J to K (with respect to 〈HJ , hJ 〉 and 〈HK, hK〉) is a pair 〈Θ,Ψ〉 such that

1. Θ: T (J ) → T (K) and Ψ:⊆ Hω
K → Hω

J are Π-continuous functions, and

2. For any f : T (K) → Hω
K,

τK = hK ◦ limHK ◦ f ⇒ τJ = hJ ◦ limHJ ◦ Ψ ◦ f ◦ Θ.

T (K)
f � Hω

K

K
hK ◦ limHK�τK � ⇒

T (J )
Θ� T (K)

f� Hω
K

Ψ� Hω
J

J
hJ ◦ limHJ�τJ �

If, in addition, τJ (T ) = τJ (T ′) ⇒ τK ◦ Θ(T ) = τK ◦ Θ(T ′) for all T and T ′

in T (J ), then we say that 〈Θ,Ψ〉 is a strong reduction from J to K. 
�

Note that f : T (K) → Hω
K in the above definition varies over all functions,

and not just continuous ones. The definition above says that if 〈Θ,Ψ〉 is a weak
reduction from J to K and f learns K, then Ψ ◦ f ◦ Θ learns J . Thus, we can
reduce the problem of learning J to the problem of learning K. Below, we will
write J ≤W K if there exists a weak reduction from J to K, and write J ≤S K
if there exists a strong reduction.

Proposition 3.3.2 Let J and K be concept spaces. J ≤W K (with respect
to any choice of hypothesis spaces) if and only if there exists a Π-continuous
function Θ: T (J ) → T (K) and an equivalence relation ≡K on K such that

τJ (T ) = τJ (T ′) ⇐⇒ τK(Θ(T )) ≡K τK(Θ(T ′))

for every T, T ′ ∈ T (J ). Furthermore, J ≤S K if and only if there exists a Θ
and ≡K as above in which ≡K is the usual equality on K.

Proof: Assume that 〈Θ,Ψ〉 is a weak reduction from J to K. Define a relation
≡K on K such that K ≡K K ′ if and only if K = K ′ or else there are TK , TK′ ∈
T (J ) such that τJ (TK) = τJ (TK′) and τK(Θ(TK)) = K and τK(Θ(TK′)) = K ′.
It is easy to check that ≡K is an equivalence relation, and that τJ (T ) = τJ (T ′)
implies τK(Θ(T )) ≡K τK(Θ(T ′)) for all T, T ′ ∈ T (J ).

It remains to show that τK(Θ(T )) ≡K τK(Θ(T ′)) always implies τJ (T ) =
τJ (T ′). First note that τK(Θ(T )) = τK(Θ(T ′)) implies that τJ (T ) = τJ (T ′)
for all texts T and T ′ in T (J ). This is because we can define a (possibly non-
continuous) f : T (K) → Hω

K that, for each K ∈ K, sends every text in τ−1
K (K) to
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a unique element of (hK◦limHK)−1(K). Clearly f satisfies τK = hK◦limHK ◦f , so
it follows that τJ = hJ ◦ limHJ ◦Ψ◦f ◦Θ. Therefore, if τK(Θ(T )) = τK(Θ(T ′)),
then since f(Θ(T )) = f(Θ(T ′)), it follows that τJ (T ) = τJ (T ′).

Now, assume that K = τK(Θ(T )) ≡K τK(Θ(T ′)) = K ′. If K = K ′ then
τJ (T ) = τJ (T ′) follows from the argument in the previous paragraph. Other-
wise, by definition there are TK and TK′ in T (J ) such that τJ (TK) = τJ (TK′)
and τK(Θ(TK)) = K and τK(Θ(TK′)) = K ′. Therefore, τJ (T ) = τJ (TK) =
τJ (TK′) = τJ (T ′).

Thus, Θ and ≡K fulfill the claim of the proposition, and ≡K is the usual
equality on K if and only if 〈Θ,Ψ〉 is a strong reduction.

For the converse, assume that Θ and ≡K satisfy the conditions of the propo-
sition. For each J ∈ J , let HJ ∈ HJ be such that hJ (HJ) = J . We next
define a function φ:HK → HJ . For H ∈ HK, if there is T ∈ T (J ) such that
τJ (T ) = J and τK(Θ(T )) = hK(H), then define φ(H) = HJ . If there is no such
T ∈ T (J ), then define φ(H) to be any element of HJ . Define Ψ:Hω

K → Hω
J

so that Ψ(S)(n) = φ(S(n)) for each S ∈ Hω
K and n ∈ ω. Ψ is clearly Π-

continuous, and for every J ∈ J and T ∈ τ−1
J (J), if S ∈ Hω

K is such that
hK(limHK(S)) = τK(Θ(T )), then hJ (limHJ (Ψ(S))) = J . Therefore, 〈Θ,Ψ〉 is a
weak reduction from J to K, and it is a strong reduction if ≡K is the equality
on K. 
�

3.3.2 Multivalued functions

In order to characterize weak reducibility, the following notion of multivalued
functions is needed. Theorem 3.3.3 below is interesting independent of reduc-
tions.

A multivalued function from X to Y is a function f :X → P(Y ), where
P(Y ) denotes the powerset of Y . We write f :X ⇒ Y to denote a multivalued
function f from X to Y . For A ⊆ X and B ⊆ Y , define f(A) =

⋃
x∈A f(x) and

f−1(B) = {x ∈ X | f(x) ∩ B �= ∅}. A multivalued function f :X ⇒ Y is lower
semicontinuous if and only if f−1(U) is open inX for every open U ⊆ Y . We say
that f :X ⇒ Y is absolutely injective if and only if x �= y implies f(x)∩f(y) = ∅
for all x, y ∈ X .

Theorem 3.3.3 Let J be a countable TD space and f :J ⇒ K a lower semicon-
tinuous multivalued function. Then there is a continuous function g: T (J ) →
T (K) such that τK(g(T )) ∈ f(τJ (T )) for every T ∈ T (J ).

Proof: Since J and K are countable, we can assume there are well-orderings
≤J of J and ≤K of K with order type less than or equal to ω. Then it makes
sense to say “the ≤J -least J ∈ J such that...”, and for any J ∈ J , the set
{J ′ ∈ J | J ′ ≤J J} is finite (and similarly for K).

Using the fact that J is a TD-space and τJ is continuous, for each J ∈ J
we can choose open sets UJ , NJ ⊆ T (J ) such that τ−1

J ({J}) = UJ \NJ .
We now define g(T ) in stages for any given T ∈ T (J ). For stage n ≥ 0,

consider the following two cases depending on whether or not there is J ∈ J
such that

↑T [n] ⊆ UJ and ↑T [n] �⊆ NJ .

Case 1: No such J ∈ J exists. Then define g(T )(n) = #.
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Case 2: There is such a J ∈ J . Then let Jn ∈ J be the ≤J -least such J . Let

Fn = {x ∈ ω | ∃m < n: g(T )(m) = x},

and let Kn be the ≤K-least element of f(Jn)∩ ↑KFn (we will see that such
a Kn always exists). Now consider the following three subcases.

Subcase 2.A: Kn \ Fn = ∅. Then define g(T )(n) = #.

If Kn \ Fn �= ∅, then let m = min(Kn \ Fn) in the following subcases.

Subcase 2.B: τ−1
J (f−1(↑K (Fn ∪ {m}))) �⊇↑T [n]. Define g(T )(n) = #.

Subcase 2.C: τ−1
J (f−1(↑K (Fn ∪ {m}))) ⊇↑T [n]. Define g(T )(n) = m.

This completes the definition of g(T ).
We first confirm that the Kn in Case 2 always exists. Note that it suffices

to show that f(Jn)∩ ↑K Fn is non-empty, since every non-empty subset of K
contains a ≤K-least element by the definition of a well-ordering.

Claim: For all n ≥ 0 in which Case 2 applies,

1. τ−1
J (f−1(↑KFn)) ⊇↑T [n],

2. f(Jn)∩ ↑KFn is non-empty.

Proof: Let n0 be the least n such that Case 2 holds. Then clearly Fn0 = ∅, so
↑KFn0 = K. It follows that τ−1

J (f−1(↑KFn0)) = T (J ) ⊇↑T [n0] and f(Jn0)∩ ↑K
Fn is non-empty.

Next, assume Case 2 applies to stage ni and the claim holds. Let ni+1 > ni

be the next stage in which Case 2 holds. Clearly, ↑ T [ni+1] ⊆↑ T [ni] holds. If
Fni+1 = Fni , then τ−1

J (f−1(↑KFni+1)) = τ−1
J (f−1(↑KFni)) ⊇↑T [ni] ⊇↑T [ni+1].

If Fni+1 �= Fni , then Subcase 2.C must apply to stage ni, so Fni+1 = Fni ∪ {m}
where m satisfies τ−1

J (f−1(↑K (Fni ∪ {m}))) ⊇↑T [ni] ⊇↑T [ni+1].
For any J ∈ J , if ↑ T [ni+1] ⊆ UJ and ↑ T [ni+1] �⊆ NJ , there must be

T ′ ∈↑T [ni+1] such that T ′ ∈ UJ \NJ . Note that τJ (T ′) = J . Since τ−1
J (f−1(↑K

Fni+1)) ⊇↑ T [ni+1], T ′ ∈ τ−1
J (f−1(↑K Fni+1)), hence J = τJ (T ′) ∈ f−1(↑K

Fni+1), thus f(J)∩ ↑KFni+1 is non-empty. In particular, f(Jni+1)∩ ↑KFni+1 is
non-empty. (End of proof of Claim)

Now fix T ∈ T (J ) and assume that τJ (T ) = J . Then

U = UJ ∩
⋃

J′<J J

NJ′

is open in T (J ) because ≤J has order type less than or equal to ω. Clearly,
T ∈ U and T �∈ NJ , so since U is open there is n0 ≥ 0 such that ↑T [n] ⊆ U ⊆ UJ

and ↑T [n] �⊆ NJ for all n ≥ n0. Thus, Case 2 holds for all n ≥ n0, and clearly J
is the ≤J -least element of J satisfying the condition for Case 2, hence Jn = J
for all n ≥ n0. Let K be the ≤K-least element of K of f(J)∩ ↑K Fn0 . Then
clearly Fn ⊆ K for all n ≥ n0, hence Kn = K for all n ≥ n0.

We now show that τK(g(T )) = K. Clearly any natural number occuring in
g(T ) is an element of K, because Fn ⊆ K for all n ≥ n0. Choose any n ≥ n0

and assume K \Fn is non-empty. Let m = min(K \Fn). Then V = τ−1
J (f−1(↑K
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(Fn ∪ {m}))) is an open subset of T (J ). Clearly, T ∈ V , so let n′ be the
least number greater than or equal to n such that ↑T [n′] ⊆ V . Then obviously
Fn′ = Fn, thus V = τ−1

J (f−1(↑K (Fn′ ∪ {m}))), so g(T )(n′) = m. It follows
that, g(T ) is a text for K.

Therefore, g: T (J ) → T (K) satisfies τK(g(T )) ∈ f(τJ (T )) for every T ∈
T (J ). Clearly, g is continuous because each initial finite segment of g(T ) only
depends on an initial finite segment of T . 
�

3.3.3 Topological characterization of reductions

In the subsection we characterize reducibility in terms of continuous functions
and multivalued functions. Luo and Schulte [34] were the first to notice that a
strong reduction between concept spaces induces an injective continuous func-
tion between them. We next show that the converse also holds.

Theorem 3.3.4 For any concept spaces J and K, J ≤S K if and only if there
exists a Π-continuous injection from J to K.

Proof: If 〈Θ,Ψ〉 is a strong reduction from J to K, then by Proposition 3.3.2
τJ (T ) = τJ (T ′) ⇐⇒ τK(Θ(T )) = τK(Θ(T ′)) for every T, T ′ ∈ T (J ). This im-
plies that f :J → K, uniquely determined as satisfying f(τJ (T )) = f(τK(Θ(T )))
for all T ∈ T (J ), is a well defined function and injective. By Corollary 3.1.10,
f is Π-continuous.

Conversely, if g:J → K is a Π-continuous injection, then from Corollary
3.1.10 there exists a Π-continuous Θ: T (J ) → T (K) such that g ◦ τJ = τK ◦ Θ.
Clearly Θ satisfies Proposition 3.3.2 with ≡K as the usual equality on K. 
�

Next we give a characterization of when J is weakly reducible to K, provided
that J is identifiable in the limit from positive data. The following character-
ization is essentially Theorem 3.3.4 with single valued functions replaced by
multivalued functions.

Theorem 3.3.5 Let J be a countable TD concept space and let K be an ar-
bitrary concept space. Then J ≤W K if and only if there exists an absolutely
injective lower semicontinuous multivalued function f :J ⇒ K.

Proof: (⇒). Assume that 〈Θ,Ψ〉 is a weak reduction from J to K. Define
f :J ⇒ K by K ∈ f(J) if and only if there is T ∈ T (J ) such that τJ (T ) = J
and τK(Θ(T )) = K. As shown in the proof of Proposition 3.3.2, τK(Θ(T )) ≡K
τK(Θ(T ′)) implies τJ (T ) = τJ (T ′), which implies that f is absolutely injective.

Let U be a Π-open subset of K. Then W = τJ (Θ−1(τ−1
K (U))) is Π-open in

J because Θ and τK are Π-continuous and τJ is an open map. Furthermore,
it is clear from the definition of f that W = f−1(U). It follows that f is an
absolutely injective lower semicontinuous multivalued function from J to K.

(⇐). Assume f :J ⇒ K is an absolutely injective lower semicontinuous
multivalued function. By Theorem 3.3.3, there is a continuous Θ:T (J ) → T (K)
such that τK(Θ(T )) ∈ f(τJ (T )) for every T ∈ T (J ). Define an equivalence
relation ≡K on K by K ≡K K ′ if and only if K = K ′ or else there is J ∈ J such
that both K and K ′ are in f(K). Since f is absolutely injective, it is clear that

τJ (T ) = τJ (T ′) ⇐⇒ τK(Θ(T )) ≡K τK(Θ(T ′))
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for every T, T ′ ∈ T (J ). By Proposition 3.3.2, it follows that J ≤W K. 
�

By reviewing the proof of Theorem 3.3.5, it is clear that J ≤W K implies
there exists an absolutely injective lower semicontinuous multivalued function
J to K even for arbitrary J . In general, however, this criterion is not sufficient
to guarantee weak reducibility when J is not a countable TD space, which we
will now show.

Proposition 3.3.6 Assume J is a countable concept space and K is quasi-
dense. Then there exists an absolutely injective lower semicontinuous multival-
ued function f :J ⇒ K.

Proof: Let {Fi}i∈ω be an enumeration of all finite subsets of ω such that ↑KFi is
non-empty for all i ∈ ω. Let q:ω×ω → K be an injection such that Fi ⊆ q(〈i, j〉)
for each 〈i, j〉 ∈ ω × ω. Such an injection can easily be constructed because by
assumption ↑K Fi is an infinite subset of K for each i ∈ ω. Let g:J → ω be
injective, and define f :J ⇒ K so that f(J) = {q(〈i, g(J)〉) | i ∈ ω}. Clearly f
is absolutely injective because q and g are injective. If F ⊆ ω is finite and ↑KF
is non-empty, then F = Fi for some i ∈ ω. Since Fi ⊆ q(〈i, j〉) for each j ∈ ω,
clearly f−1(↑KF ) = J . Therefore, f is lower semicontinuous. 
�

Thus, if K contains a quasi-dense subspace and J is countable, then there
exists an absolutely injective lower semicontinuous multivalued function from
J to K. Since there are countable concept spaces that are not TD spaces, and
concept spaces with quasi-dense subspaces that are TD spaces, this shows that
Theorem 3.3.5 cannot be generalized in its current form to allow J that are not
countable TD spaces.

A weak-complete [27] concept space is one that is identifiable in the limit,
and for which every other identifiable concept space is weakly reducible to it.
Jain et al. [24] characterized weak-complete concept spaces as precisely those
that are identifiable in the limit and contain a quasi-dense subspace. This
characterization is easily seen to follow from Proposition 3.3.6 above. It follows
from Theorem 3.2.5 that a concept space is weak-complete if and only if it is a
non-scattered countable TD space.

Finally, we mention a result by Luo and Schulte that shows that weak re-
ductions preserve mind-change complexity.

Proposition 3.3.7 (Luo and Schulte [34]) If K is a scattered concept space
and J ≤W K then J is scattered and acc(J ) ≤ acc(K). 
�
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Chapter 4

Representations of Concept
Spaces

In the identification in the limit paradigm, a learner essentially converts one
representation (a stream of information) of some concept into another represen-
tation (a sequence of hypotheses) of the concept. It is important to understand
how these representations are different, and why one representation may be
preferred over another one.

When a concept space is represented by texts, the natural topology induced
on the concept space is the Π-topology as we saw in the previous chapter. On
the other hand, when a concept space is represented by a hypothesis space, the
induced topology is the discrete topology (i.e., every subset of the concept space
is open). The representation by a hypothesis space is in a sense more informative
than texts because it allows every subset of the concept space to be observable.
From this perspective, the learner’s goal is to convert a representation of the
concept space into a representation that allows more properties to be observable.
From a more semantical perspective, the learner’s goal is to refine the topology
of the concept space.

However, in general this is an impossible task because the operation of con-
verting a topological space into a space with strictly more open sets is not
continuous. Therefore, the learner can not directly convert a representation in
terms of texts into a representation by a hypothesis space. Instead, the iden-
tification in the limit paradigm asks if the learner can make this conversion in
the limit. Thus, instead of the representation 〈H, h〉 of the concept space in
terms of individual hypotheses, the learner produces a limiting representation
〈Hω , limH〉 in terms of a converging sequence of hypotheses. Although identifi-
cation in the limit produces a concept space with a finer topology, the cost is
that the representation of the concepts becomes more abstract.

In this chapter we investigate a hierarchy of representations of topological
spaces which allow us to quantify the level of “abstraction” of representations.
For example, texts form a Σ0

1-admissible representation of the concept space
with respect to the Π-topology, whereas the limiting representation 〈Hω, limH〉
is a Σ0

2-admissible representation with respect to the discrete topology. We
also characterize which functions between topological spaces can be “realized”
or computed with respect to different levels of representations. We will apply

81



82 CHAPTER 4. REPRESENTATIONS OF CONCEPT SPACES

these results in the last section of this chapter to show how several variations
of the identification in the limit paradigm can be modeled in terms of realizing
functions between topological spaces.

We introduce the notion of a Σ0
α-admissible representation and investigate

their properties in the following section. In Section 4.2 we construct some
specific examples of Σ0

α-admissible representations for various spaces. In Section
4.3 we apply the results in this chapter to characterizing some variations of the
identification in the limit model.

4.1 Σ0
α-admissible representations

In this section we introduce the notion of a Σ0
α-admissible representation. The

basic idea is a generalization of an “admissible representation” that is often
used in the field of computable analysis (see Weihrauch [59] and Schröder [48]).
We have seen earlier that texts and informants are admissible representations
of concept spaces with respect to specific topologies. In the hierarchy that we
present next, these representations are called Σ0

1-admissible. In later sections,
we will see that the representation limH:⊆ H → L, which maps a converging
sequence of hypotheses to the concept represented by the limit of the sequence, is
an example of Σ0

2-admissible representation with respect to the discrete topology
on L. By characterizing the representations of concept spaces and the function
between concept spaces that can be “realized”, we can reduce some problems in
learning theory to the problem of “computing” functions between represented
spaces. The results in this section were presented in [16].

4.1.1 The Borel hierarchy

In this subsection we define the Borel hierarchy on arbitrary topological spaces
and introduce some basic properties. We will use a definition of the Borel
hierarchy that differs from the classical definition (e.g., the definition in [29]) on
non-metrizable spaces, but is more suitable for general topological spaces.

We let ω1 denote the least uncountable ordinal and ω the set of natural
numbers (or the first infinite ordinal), and for sets A and B we let A \B denote
the subset of A of elements not in B.

Definition 4.1.1 Let X be a topological space. For each ordinal α (1 ≤ α < ω1)
we define Σ0

α(X) inductively as follows.

1. Σ0
1(X) is the set of all open subsets of X.

2. For α > 1, Σ0
α(X) is the set of all subsets A of X which can be expressed

in the form

A =
⋃
i∈ω

Bi \B′
i,

where for each i, Bi and B′
i are in Σ0

βi
(X) for some βi < α.

We define Π0
α(X) = {X \ A |A ∈ Σ0

α(X)}, ∆0
α(X) = Σ0

α(X) ∩ Π0
α(X), and

B(X) =
⋃

1≤α<ω1
Σ0

α(X). 
�
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The above definition of the Borel hierarchy is equivalent to the definition that
was used by Tang [58] in studying descriptive set theory on P(ω) (the power
set of the natural numbers with the Scott-topology), and more systematically
investigated by Selivanov (see [52] for a survey of results and an extensive list
of references).

The classical definition of the Borel hierarchy (which requiresBi = X for all i
in the second clause of Definition 4.1.1) is not suitable for non-metrizable spaces.
For example, consider the Sierpinski space S = {⊥,$} (where {$} is open, but
{⊥} is not). If we used the classical definition then Σ0

2n+1(S) is the set of open
subsets of S and Σ0

2n+2(S) is the closed subsets, so Σ0
2n+1(S) �⊆ Σ0

2n+2(S) (for
0 ≤ n < ω). The Borel hierarchy defined in Definition 4.1.1 is equivalent to the
classical definition for all metrizable spaces, and behaves as we expect it should
even for non-metrizable spaces.

In the following, X and Y will denote arbitrary topological spaces, unless
stated otherwise. The following results are easily proven, and can also be found
in [52].

Proposition 4.1.2 For each α (1 ≤ α < ω1),

1. Σ0
α(X) is closed under countable unions and finite intersections,

2. Π0
α(X) is closed under countable intersections and finite unions,

3. ∆0
α(X) is closed under finite unions, finite intersections, and complemen-

tation.

Proposition 4.1.3 If β < α then Σ0
β(X) ∪ Π0

β(X) ⊆ ∆0
α(X).

Proposition 4.1.4 For α > 2, each A ∈ Σ0
α(X) can be expressed in the form

A =
⋃
i∈ω

Bi,

where for each i, Bi is in Π0
βi

(X) for some βi < α.

Proposition 4.1.5 If X is a metrizable space, then every A ∈ Σ0
2(X) is equal

to a countable union of closed sets.

Proposition 4.1.6 If X is a subspace of Y , then Σ0
α(X) = {A ∩ X |A ∈

Σ0
α(Y )} and Π0

α(X) = {A ∩X |A ∈ Π0
α(Y )}.

Next we show how the complexity of some subsets of a topological space
relate to the separation axioms the space satisfies.

Proposition 4.1.7 For any countably based topological space X,

1. Every singleton set {x} ⊆ X is in Π0
2(X) ⇐⇒ X is a T0-space,

2. Every singleton set {x} ⊆ X is in ∆0
2(X) ⇐⇒ X is a TD-space,

3. Every singleton set {x} ⊆ X is in Π0
1(X) ⇐⇒ X is a T1-space,

4. Every singleton set {x} ⊆ X is in ∆0
1(X) ⇐⇒ X is a discrete space.
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Therefore, if X is a countable space and P(X) is the power set of X, then

5. P(X) = ∆0
3(X) ⇐⇒ X is a T0-space,

6. P(X) = ∆0
2(X) ⇐⇒ X is a TD-space,

7. P(X) = ∆0
1(X) ⇐⇒ X is a discrete space.

Proof: We only prove (1), since the other claims are easy. First assume X is
T0 and x ∈ X . Let {Ui}i∈I be a countable neighborhood basis for x, and let
{x} denote the closure of {x}. Then using the fact that X is T0 it is easily seen
that {x} = {x} ∩

⋂
i∈I Ui, which is clearly in Π0

2(X). For the converse, if X
is not T0, then there are x and y that are contained by exactly the same open
sets, hence the singleton {x} is not even Borel. 
�

Given an arbitrary countably-based topological space X , let

∆X = {〈x, y〉 ∈ X ×X |x = y}.

The following proposition assumes the product topology on X × X , which is
the coarsest topology such that each projection function is continuous (see [30]).
Note that this definition of product is equivalent (up to homeomorphism) with
the construction of products for concept spaces given in Definition 3.1.12.

Proposition 4.1.8 For an arbitrary countably-based topological space X,

1. ∆X ∈ Π0
2(X ×X) ⇐⇒ X is a T0-space,

2. ∆X ∈ ∆0
2(X ×X) =⇒ X is a TD-space,

3. ∆X ∈ Π0
1(X ×X) ⇐⇒ X is a T2-space,

4. ∆X ∈ ∆0
1(X ×X) ⇐⇒ X is a discrete space.

Furthermore, if X is countable, then

5. ∆X ∈ ∆0
2(X ×X) ⇐⇒ X is a TD-space.

Proof: (1). If X is not T0, then it is clear that the diagonal of X is not a Borel
set. For the converse, just note that

X ×X \ ∆X =
( ⋃

i∈ω

Bi × (X \Bi)
)
∪
( ⋃

i∈ω

(X \Bi) ×Bi

)
,

where {Bi}i∈ω is a countable basis for X .
(2). Assume that ∆X =

⋃
i∈ω Ui \ Vi for Ui, Vi open in X × X . Let x

be any element of X . Then there is some i ∈ ω such that (x, x) ∈ Ui and
(x, x) �∈ Vi. Therefore, there exists an open set U ⊆ X such that x ∈ U and
(x, x) ⊆ U × U ⊆ Ui. Let y �= x be an element of U . Then (x, y) ∈ Ui, and
therefore (x, y) must be in Vi. Let V and V ′ be open subsets of X such that
(x, y) ∈ V × V ′ ⊆ Vi. Since (x, x) �∈ Vi, x �∈ V ′. This implies that y is not in
the closure of {x}, and since y ∈ U was arbitrary, {x} = U ∩ cl({x}) is locally
closed in X .

(3). This result is well known.



4.1. Σ0
α-ADMISSIBLE REPRESENTATIONS 85

(4). Clearly ∆X ∈ Σ0
1(X×X) if X is discrete, since discrete countably-based

spaces have only countably many points. For the converse, if ∆X ∈ ∆0
1(X×X),

then for each x ∈ X there is an open set U ⊆ X such that 〈x, x〉 ∈ U × U ⊆
∆X . Assume that there is y ∈ U distinct from x. Then 〈x, y〉 ∈ U × U , but
〈x, y〉 �∈ ∆X , a contradiction. Therefore, U = {x}. Since x was arbitrary, X is
discrete.

(5). Assume X is a countable TD-space. For x ∈ X , let Ux, Vx be open such
that {x} = Ux \ Vx. Then ∆X =

⋃
x∈X Ux \ Vx × Ux \ Vx is in Σ0

2(X ×X) and
therefore ∆X is in ∆0

2(X ×X). 
�

4.1.2 Σ0
α-measurable functions

In this subsection we will investigate some basic properties of Σ0
α-measurable

functions. Below, we will write f :⊆ X → Y to indicate that f is a partial
function from X to Y . The domain of definition of f will be denoted dom(f).
We say that f :⊆ X → Y is continuous if and only if for every open U ⊆ Y , there
is open V ⊆ X such that f−1(U) = V ∩ dom(f). In other words, f :⊆ X → Y
is continuous if and only if the total function f : dom(f) → Y is continuous with
respect to the subspace topology on dom(f).

Definition 4.1.9 A function f :X → Y is Σ0
α-measurable if and only if for

every open U ⊆ Y , f−1(U) ∈ Σ0
α(X). A partial function f :⊆ X → Y is said

to be Σ0
α-measurable if and only if for every open U ⊆ Y , there is A ∈ Σ0

α(X)
such that f−1(U) = A ∩ dom(f). 
�

Equivalently, a partial function f :⊆ X → Y is Σ0
α-measurable if and only

if for every open U ⊆ Y , f−1(U) ∈ Σ0
α(dom(f)), where dom(f) is given the

relative topology.
For any fixed α > 1, the Σ0

α-measurable functions are not closed under
composition. To characterize how composition behaves, we will need ordinal
addition. Addition on ordinals is defined recursively as follows:

1. α+ 0 = α

2. α+ (β + 1) = (α + β) + 1 = the successor of α+ β.

3. α+ λ = limβ<λ(α + β) for limit ordinal λ.

Note that ordinal addition is non-commutative. For example, 1+ω = ω �= ω+1.
Also note that if α < β, then there is a unique ordinal γ such that α+ γ = β.

Composing with continuous functions does not change the level of a function.
For that reason it would have been more convenient for our purposes to define
the Borel hierarchy so that open sets and continuous functions were of level 0
(the additive identity for ordinals). To simplify the statement of some of the
following theorems and proofs, we will often make use of the following “hat”
notation, so that we can treat the Borel hierarchy as if we defined the open sets
to be at level 0.

Definition 4.1.10 For 0 ≤ α < ω1, define

α̂ =
{
α+ 1 if α < ω
α if α ≥ ω


�
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Note that α < β ⇐⇒ α̂ < β̂ and α̂+ β = α̂ + β hold for any countable
ordinals α and β.

Lemma 4.1.11 Let X and Y be countably based T0-spaces. If f :⊆ X → Y is
Σ0

α̂-measurable (0 ≤ α < ω1) and A ∈ Σ0
β̂
(Y ) (0 ≤ β < ω1), then f−1(A) ∈

Σ0
̂α+β

(dom(f)).

Proof: If β = 0 and A ∈ Σ0
β̂
(Y ), then A is open so f−1(A) ∈ Σ0

̂α+β
(dom(f)) =

Σ0
α̂(dom(f)) by definition of a Σ0

α̂-measurable function.
For β > 1, if A ∈ Σ0

β̂
(Y ) then

A =
⋃
i∈ω

Bi \B′
i,

where for each i, Bi and B′
i are in Σ0

β̂i
(Y ) for some βi < β. Hence,

f−1(A) = f−1(
⋃
i∈ω

Bi \B′
i)

=
⋃
i∈ω

f−1(Bi) \ f−1(B′
i).

By induction hypothesis f−1(Bi), f−1(B′
i) ∈ Σ0

̂α+βi

(dom(f)) for each i ∈ ω.

Since βi < β, α̂+ βi = α̂ + βi < α̂ + β = α̂+ β for all i ∈ ω. Therefore,
f−1(A) ∈ Σ0

̂α+β
(dom(f)). 
�

Theorem 4.1.12 Let X, Y , and Z be countably based T0-spaces, f :⊆ X → Y
a Σ0

α̂-measurable function (0 ≤ α < ω1), and g:⊆ Y → Z a Σ0
β̂
-measurable

function (0 ≤ β < ω1). Then g ◦ f :⊆ X → Z is Σ0
̂α+β

-measurable.

Proof: Let U ⊆ Z be open. Then g−1(U) ∈ Σ0
β̂
(dom(g)) and, by restricting

the domain of f to dom(g ◦ f) if necessary, from Lemma 4.1.11 it follows that
(g ◦ f)−1(U) = f−1(g−1(U)) ∈ Σ0

̂α+β
(dom(g ◦ f)). 
�

In particular, if f is Σ0
2-measurable and g is Σ0

ω-measurable, then due to
the non-commutativity of ordinal addition, g ◦ f is Σ0

ω-measurable but f ◦ g is
Σ0

ω+1-measurable (assuming the compositions make sense).
The following is due to Wadge (this is Theorem 22.10 in [29]). We let ωω

denote the Baire space.

Proposition 4.1.13 (Wadge) If B ⊆ ωω is in B(ωω)\Π0
α̂(ωω) (0 ≤ α < ω1),

then for any A ∈ Σ0
α̂(ωω) there is continuous total f :ωω → ωω such that A =

f−1(B). 
�

We will need the following generalization of Wadge’s results that characterize
reductions using measurable functions.

Theorem 4.1.14 For 0 ≤ α < ω1 and 0 ≤ β < ω1, if B ∈ B(ωω) \ Π0
β̂
(ωω),

then for any A ∈ Σ0
̂α+β

(ωω) there exists a Σ0
α̂-measurable total function f :ωω →

ωω such that A = f−1(B).
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Proof: Fix α and choose U0 ∈ Σ0
α̂(ωω) \ Π0

α̂(ωω), and let {Ui}i∈ω be ∆0
α̂ sets

such that U0 =
⋃

i∈ω Ui. Define Vi = {y ∈ ωω | y(i) = 1} and V0 =
⋃

i∈ω Vi. For
1 ≤ β < ω1, let {ηβ

n}n∈ω be a non-decreasing countable sequence of ordinals
such that β = supn∈ω(ηβ

n + 1). Define Uβ ⊆ ωω and Vβ ⊆ ωω as

y ∈ Uβ ⇐⇒ (∃n ∈ ω)[(y)n �∈ Uηβ
n
],

y ∈ Vβ ⇐⇒ (∃n ∈ ω)[(y)n �∈ Vηβ
n
],

where (y)n(m) = y(〈n,m〉) for some bijection 〈·, ·〉:ω × ω → ω.
We first prove the claim that for 0 ≤ β < ω1, Uβ ∈ Σ0

̂α+β
(ωω) \ Π0

̂α+β
(ωω)

and Vβ ∈ Σ0
β̂
(ωω) \ Π0

β̂
(ωω). The proof for Uβ and Vβ are essentially the

same, so we will only prove the claim for Uβ . It is immediate for β = 0,
so assume β ≥ 1 and that the hypothesis holds for ηβ

n for all n ∈ ω. Since
y %→ (y)n is a continuous mapping, it is clear that Uβ ∈ Σ0

̂α+β
(ωω). Choose any

A ∈ Σ0
̂α+β

(ωω) \ Π0
̂α+β

(ωω), then A can be expressed as A =
⋃

i∈ω Wi, where

Wi ∈ Π0
γ̂i

(ωω) (γi < α + β) for each i ∈ ω. Define p(0) = min{n ∈ ω | γ0 ≤
α+ηβ

n} and for i ≥ 0 define p(i+1) = min{n ∈ ω |n > p(i) and γi+1 ≤ α+ηβ
n}.

Clearly p(i) is defined for all i ∈ ω because β = supn∈ω(ηβ
n + 1) and {ηβ

n}n∈ω is
non-decreasing. It is also obvious that p is injective. By induction hypothesis
Uηβ

n
is not Π0

1 hence non-empty for all n ∈ ω, so let un be an arbitrary element
of Uηβ

n
. We define continuous functions qn:ωω → ωω for n ∈ ω as follows.

If n �∈ range(p) then define qn(y) = un for all y ∈ ωω. If n ∈ range(p), then
n = p(i) for a unique i ∈ ω, so let qn be continuous such that Wi = q−1

n (ωω\Uηβ
n
)

(such a qn exists by induction hypothesis). Now define q:ωω → ωω so that
(q(y))n = qn(y). Then q is continuous and

q(y) ∈ Uβ ⇐⇒ (∃n ∈ ω)[(q(y))n �∈ Uηβ
n
]

⇐⇒ (∃n ∈ ω)[qn(y) �∈ Uηβ
n
]

⇐⇒ (∃i ∈ ω)[qp(i)(y) �∈ Uηβ
p(i)

]

⇐⇒ (∃i ∈ ω)[y ∈Wi]

Thus, A = q−1(Uβ), which implies Uβ ∈ Σ0
̂α+β

(ωω) \ Π0
̂α+β

(ωω), and the proof
of our claim is complete.

Next, define g:ωω → ωω so that

g(y)(n) =
{

1 if y ∈ Un

0 otherwise.

Then g(y) ∈ Vn ⇐⇒ y ∈ Un which implies g(y) ∈ V0 ⇐⇒ y ∈ U0, and so by
induction g(y) ∈ Vβ ⇐⇒ y ∈ Uβ for 0 ≤ β < ω1.

To see that g is Σ0
α̂-measurable, just note that the range of g is a subset

of 2ω, that {Vn ∩ 2ω |n ∈ ω} ∪ {(ωω \ Vn) ∩ 2ω |n ∈ ω} is a subbasis for the
topology on 2ω, and that the preimage under g of any of these subbasic sets is
in ∆0

α̂(ωω).
Finally, for A ∈ Σ0

̂α+β
(ωω) and B ∈ B(ωω) \Π0

β̂
(ωω), by Proposition 4.1.13

there are continuous functions f ′, f ′′:ωω → ωω such that A = (f ′)−1(Uβ) and
Vβ = (f ′′)−1(B). So f = f ′′ ◦ g ◦ f ′ is Σ0

α̂-measurable and A = f−1(B). 
�
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4.1.3 Existence of Σ0
α-admissible representations

The goal of this subsection is to show that every countably based T0-space has
a Σ0

α-admissible representation for 1 ≤ α < ω1 (Theorem 4.1.22 below). We
also show the complexity of converting between representations of different lev-
els (Theorem 4.1.23), and consider representations of representations of a space
(Corollary 4.1.24), which is a generalization of Ziegler’s “jump” of a represen-
tation [62].

Definition 4.1.15 A Σ0
α-admissible representation of a topological space X is a

Σ0
α-measurable partial function ρ:⊆ ωω → X such that for every Σ0

α-measurable
partial function f :⊆ ωω → X, there exists continuous g:⊆ ωω → ωω such that
f = ρ ◦ g.

ωω g � ωω

X

ρ

�

f
�


�

Note that the above definition implies that Σ0
α-admissible representations

are always surjective. Clearly, a Σ0
1-admissible representation is equivalent to

what is usually called an “admissible representation” in the computable analysis
literature (see, e.g., [59] and [48]). The above definition applies to arbitrary
topological spaces, but most of our results will focus on countably based spaces.

We let S denote the Sierpinski space, which has only two points $ and ⊥,
and where {$} is open but {⊥} is not open.

Proposition 4.1.16 Let A ∈ Σ0
α(ωω) \ Π0

α(ωω) and define ρ:ωω → S so that
ρ(y) = $ if y ∈ A and ρ(y) = ⊥ if y �∈ A. Then ρ is a Σ0

α-admissible represen-
tation for S.

Proof: It is clear that ρ is Σ0
α-measurable. Let f :⊆ ωω → S be a Σ0

α-
measurable partial function. Then f−1({$}) ∈ Σ0

α(dom(f)), so there is B ∈
Σ0

α(ωω) such that f−1({$}) = B ∩ dom(f). From Proposition 4.1.13 there
is continuous g:ωω → ωω such that g−1(A) = B. Then for all y ∈ dom(f),
f(y) = $ ⇐⇒ g(y) ∈ A ⇐⇒ ρ(g(y)) = $. Hence, by restricting the domain
of g if necessary, f = ρ ◦ g. 
�

Corollary 4.1.17 For 0 ≤ α < ω1 and 0 ≤ β < ω1, if ρα+β :⊆ ωω → S is
a Σ0

̂α+β
-admissible representation of S and ρβ:⊆ ωω → S is a Σ0

β̂
-admissible

representation of S, then there exists a Σ0
α̂-measurable function f :⊆ ωω → ωω

such that ρα+β = ρβ ◦ f .

Proof: Immediate from Theorem 4.1.14 and Proposition 4.1.16. 
�

Proposition 4.1.18 If X is a subspace of Y and ρ:⊆ ωω → Y is a Σ0
α-

admissible representation of Y , then ρX :⊆ ωω → X defined as the restriction
of ρ to dom(ρX) = ρ−1(X), is a Σ0

α-admissible representation of X.
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Proof: Let f :⊆ ωω → X be a Σ0
α-measurable partial function. Since X ⊆ Y

and ρ is Σ0
α-admissible for Y , there is continuous g:⊆ ωω → ωω such that f =

ρ ◦ g. Since range(f) ⊆ X we can assume that range(g) ⊆ ρ−1(X) = dom(ρX),
hence f = ρX ◦ g. 
�

Proposition 4.1.19 If {Xi}i∈ω and {Yi}i∈ω are all countably based T0-spaces,
and for each i fi:⊆ Xi → Yi is Σ0

α-measurable (1 ≤ α < ω1), then fω:⊆∏
Xi →

∏
Yi is Σ0

α-measurable, where
∏
Xi and

∏
Yi are given the product

topologies and fω is defined so that fω(ξ)(i) = fi(ξ(i)).

Proof: First note that dom(fω) =
∏
dom(fi).

∏
Yi has as a countable subbasis

sets of the form U =
∏
Ui where Un is a basic open subset from some set count-

able basis for Yn for some n ∈ ω and Ui = Yi for all i �= n. Then (fω)−1(U) =∏
f−1

i (Ui) = π−1
n (f−1

n (Un)) ∩ dom(fω), where πn:
∏
Xi → Xn is the n-th pro-

jection. Hence, (fω)−1(U) ∈ Σ0
α(dom(fω)). Since Σ0

α is closed under finite
intersections and countable unions, it follows that fω is Σ0

α-measurable. 
�

Proposition 4.1.20 If X and {Yi}i∈ω are all countably based T0-spaces, and
for each i fi:⊆ X → Yi is Σ0

α-measurable (1 ≤ α < ω1), then 〈fi〉i∈ω:⊆ X →∏
Yi is Σ0

α-measurable, where 〈fi〉i∈ω is defined so that 〈fi〉i∈ω(x)(i) = fi(x)
for all x ∈ X.

Proof: The proof is similar to the proof of Proposition 4.1.19. 
�

If Xi = X for all i ∈ ω, then we will often abbreviate
∏
Xi to Xω. For the

following proposition, let φ:ωω → (ωω)ω be a homeomorphism.

Proposition 4.1.21 Let Xi be a countably based T0-space and ρi:⊆ ωω → Xi

a Σ0
α-admissible representation for Xi (i ∈ ω). Then ρω ◦ φ is a Σ0

α-admissible
representation for

∏
Xi.

Proof: The proof that ρω ◦φ is Σ0
α-measurable follows from Proposition 4.1.19.

Let f :⊆ ωω →
∏
Xi be a Σ0

α-measurable partial function. By the Σ0
α-

admissibility of ρi:⊆ ωω → Xi, for i ∈ ω there is continuous gi:⊆ ωω → ωω

such that πi ◦ f = ρi ◦ gi, where πi:
∏
Xi → X is the i-th projection. Since πi

is a total function, we must have that dom(f) = dom(πi ◦ f) ⊆ dom(gi) for all
i ∈ ω. Define g:⊆ ωω → (ωω)ω so that g(ξ)(i) = gi(ξ). Then dom(f) ⊆ dom(g)
and

ρω(g(ξ))(i) = ρi(g(ξ)(i))
= ρi(gi(ξ))
= πi(f(ξ))
= f(ξ)(i),

so f = ρω ◦ g. Define h:⊆ ωω → ωω as h = φ−1 ◦ g. Clearly, h is continuous
and f = ρω ◦ g = ρω ◦ φ ◦ h. 
�

Theorem 4.1.22 For every countably based T0-space X and every α (1 ≤ α <
ω1), there exists a Σ0

α-admissible representation of X.
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Proof: From Propositions 4.1.16 and 4.1.21 we can see that there exists a Σ0
α-

admissible representation for Sω . It then follows from Proposition 4.1.18 that
every subspace of Sω has a Σ0

α-admissible representation.
Let {Ui}i∈ω be a countable basis for X . Define f :X → Sω so that f(x)(i) =

$ if x ∈ Ui and f(x)(i) = ⊥, otherwise. Then f is easily seen to be a topological
embedding of X into Sω. Therefore, since X is homeomorphic to a subspace of
Sω, X has a Σ0

α-admissible representation. 
�

Theorem 4.1.23 (Reductions between representations) Assume X is a
countably based T0-space. For 0 ≤ α < ω1 and 0 ≤ β < ω1, if ρα+β:⊆ ωω → X
is a Σ0

̂α+β
-admissible representation of X and ρβ:⊆ ωω → X is a Σ0

β̂
-admissible

representation of X, then there exists a Σ0
α̂-measurable function f :⊆ ωω → ωω

such that ρα+β = ρβ ◦ f .

Proof: We prove the case for X = Sω , from which the general case follows. Let
δα+β :⊆ ωω → S be a Σ0

̂α+β
-admissible representation of S and δβ:⊆ ωω → S is

a Σ0
β̂
-admissible representation of S, and let f ′:⊆ ωω → ωω be a Σ0

α̂-measurable
function such that δα+β = δβ ◦ f .

Define fω:⊆ (ωω)ω → (ωω)ω so that fω(ξ)(i) = f ′(ξ(i)) and define δω
α+β :⊆

ωω → Sω and δω
β :⊆ ωω → Sω similarly. Then

δω
β (fω(ξ))(i) = δβ(fω(ξ)(i))

= δβ(f ′(ξ(i)))
= δα+β(ξ(i))
= δω

α+β(ξ)(i),

which implies δω
α+β = δω

β ◦ fω.
Let φ:ωω → (ωω)ω be a homeomorphism. We have that δω

α+β ◦φ is a Σ0
̂α+β

-
admissible representation of Sω by Proposition 4.1.21, and also that δω

β ◦ φ is
Σ0

β̂
-measurable. Therefore, there are continuous g, h ⊆ ωω → ωω such that

ρα+β = δω
α+β ◦ φ ◦ g and δω

β ◦ φ = ρβ ◦ h. Define f :⊆ ωω → ωω as f =
h ◦ φ−1 ◦ fω ◦ φ ◦ g. Then

ρα+β = δω
α+β ◦ φ ◦ g

= δω
β ◦ fω ◦ φ ◦ g

= δω
β ◦ φ ◦ φ−1 ◦ fω ◦ φ ◦ g

= ρβ ◦ h ◦ φ−1 ◦ fω ◦ φ ◦ g
= ρβ ◦ f.

The case that X is a subspace of Sω is handled by restricting the domain of fω,
δω
α+β and δω

β in the above argument. 
�

Corollary 4.1.24 (Representations of representations) Let X be a count-
ably based T0-space, ρβ :⊆ ωω → X a Σ0

β̂
-admissible representation of X, and

ρα:⊆ ωω → dom(ρβ) a Σ0
α̂-admissible representation of dom(ρβ), (0 ≤ α < ω1,

0 ≤ β < ω1). Then ρβ ◦ ρα:⊆ ωω → X is a Σ0
̂α+β

-admissible representation of
X.
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Proof: First note that ρβ ◦ρα is Σ0
̂α+β

-measurable by Theorem 4.1.12. Let ρ:⊆
ωω → X be a Σ0

̂α+β
-admissible representation of X . By Theorem 4.1.23, there

is a Σ0
α̂-measurable f :⊆ ωω → ωω such that ρ = ρβ ◦f . We can assume without

loss of generality that range(f) ⊆ dom(ρβ), and so by the Σ0
α̂-admissibility of

ρα there is a continuous g:⊆ ωω → ωω such that f = ρα ◦ g. It follows that g
is a continuous reduction of ρ to ρβ ◦ ρα, thus ρβ ◦ ρα is Σ0

̂α+β
-admissible. 
�

Let ι′:⊆ ωω → ωω be a Σ0
2-admissible representation of ωω. By the above

theorem, if ρ:⊆ ωω → X is a Σ0
β-admissible representation (1 ≤ β < ω) of

a countably based T0-space X , then ρ ◦ ι′ is a Σ0
β+1-admissible representation

of X . This corresponds to Ziegler’s “jump” of a representation [62]. However,
it should be noted that if ρ is Σ0

β-admissible for β ≥ ω, then ρ ◦ ι′ is still
Σ0

β-measurable and thus not Σ0
β+1-admissible.

4.1.4 Properties of Σ0
α-admissible representations

The main purpose of this subsection is to relate the Borel complexity of a
subset of a space with the complexity of the preimage of the subset under
a Σ0

α-admissible representation. These results will be useful in the following
subsection where we characterize the functions that are realizable with respect
to these representations.

The first step is Corollary 4.1.31, which shows that the complexity of a
subset of a countably based T0-space is exactly the complexity of the preimage
of the subset under a Σ0

1-admissible representation. This result follows almost
immediately from a recent result by J. Saint Raymond (Lemma 17 in [43]), but
as the original statement was for metrizable spaces, we will reproduce the proof
here (Proposition 4.1.30 below) so that the reader can easily verify that Saint
Raymond’s argument applies to more general spaces when we define the Borel
hierarchy according to Definition 4.1.1.

The following definitions and propositions concerning meager sets can be
found in Kechris [29] Chapter I Section 8. Recall that a topological space is a
polish space if and only if it is countably based and completely metrizable.

Definition 4.1.25 A subset A of a topological space X is nowhere dense if its
closure has empty interior. A set A ⊆ X is meager if it is equal to the union
of a countable collection of nowhere dense sets. A set A ⊆ X is comeager if its
complement is meager. 
�

Note that a subset of a meager set is meager.

Proposition 4.1.26 Every non-empty open subset of a Polish space is non-
meager. 
�

Definition 4.1.27 A subset A of a topological space X has the Baire Property
if (A \ U) ∪ (U \A) is meager for some open U ⊆ X. 
�

Proposition 4.1.28 Every Borel subset of a Polish space has the Baire Prop-
erty. 
�

Proposition 4.1.29 If A ⊆ X is non-meager and has the Baire Property, then
there is a non-empty open U ⊆ X in which U \A is meager in X. 
�
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Proposition 4.1.30 (Saint-Raymond [43]) Let φ:X → Y be an open con-
tinuous surjective total function with Polish fibers (i.e. φ−1(y) is Polish for
each y ∈ Y ), where X is a separable metric space and Y is a countably based
T0 topological space. Then for every A ⊆ Y and 1 ≤ α < ω1, A ∈ Σ0

α(Y ) if and
only if φ−1(A) ∈ Σ0

α(X).

Proof: The “only if” part holds because φ is continuous, so we only need to
prove the “if” part.

For all Borel subsets B of X , define

N0(B) = {y ∈ Y |B ∩ φ−1(y) is non-meager in φ−1(y)}
N1(B) = {y ∈ Y |B ∩ φ−1(y) is comeager in φ−1(y)}

Let {Uk}k∈ω be a countable basis for X . We show that for 1 ≤ α < ω1, if
B ∈ Σ0

α(X) then N0(B) ∈ Σ0
α(Y ) and if B ∈ Π0

α(X) then N1(B) ∈ Π0
α(Y ).

Note that

N1(X \B) = {y ∈ Y | (X \B) ∩ φ−1(y) is comeager in φ−1(y)}
= {y ∈ Y |B ∩ φ−1(y) is meager in φ−1(y)}
= Y \ {y ∈ Y |B ∩ φ−1(y) is non-meager in φ−1(y)}
= Y \N0(B).

Therefore, the statements we wish to prove for N0 and N1 are equivalent. For
the case α = 1, B is open and since φ−1(y) is Polish for every y ∈ Y , by
Proposition 4.1.26 B∩φ−1(y) is non-meager in φ−1(y) if and only if B∩φ−1(y)
is non-empty. Therefore, N0(B) = φ(B) is open in Y by our assumption that φ
is an open map.

For α > 1, B =
⋃

i∈ω Bi, where each Bi ∈ Π0
βi

(X) for some βi < α. For
any y ∈ Y , B ∩ φ−1(y) is non-meager in φ−1(y) if and only if Bi ∩ φ−1(y) is
non-meager for some i ∈ ω, because the countable union of meager sets are
meager. If Bi ∩ φ−1(y) is non-meager, then by Propositions 4.1.28 and 4.1.29
there is an open U ⊆ X such that U∩φ−1(y) is non-empty and (U \Bi)∩φ−1(y)
is meager in φ−1(y). Let Uk ⊆ U be a basic open set such that Uk ∩ φ−1(y) is
non-empty, then (Uk \Bi) ∩ φ−1(y) is meager in φ−1(y), since it is a subset of
(U \Bi)∩φ−1(y). Since (Bi∪(X \Uk)) = (X \(Uk\Bi)), (Bi∪(X \Uk))∩φ−1(y)
is comeager in φ−1(y).

On the other hand, if y ∈ φ(Uk) and (Bi ∪ (X \Uk))∩φ−1(y) is comeager in
φ−1(y), then (Uk \Bi)∩φ−1(y) is meager in φ−1(y). Uk ∩φ−1(y) is non-empty,
and therefore non-meager in φ−1(y) by Proposition 4.1.26. Since Uk ∩φ−1(y) =
[(Uk \Bi)∩ φ−1(y)]∪ [(Uk ∩Bi) ∩ φ−1(y)], (Uk ∩Bi)∩ φ−1(y) is non-meager in
φ−1(y) (otherwise Uk ∩ φ−1(y) would be equal to the union of two meager sets
and be meager). It follows that B ∩ φ−1(y) is non-meager in φ−1(y).

Therefore,

N0(B) =
⋃
i∈ω

⋃
k∈ω

N1(Bi ∪ (X \ Uk)) ∩ φ(Uk).

Since Bi ∈ Π0
βi

(X) and (X \ Uk) is closed, Bi ∪ (X \ Uk) is in Π0
βi

(X). By
the induction hypothesis, N1(Bi ∪ (X \ Uk)) ∈ Π0

βi
(Y ). Hence, N1(Bi ∪ (X \

Uk))∩φ(Uk) ∈ Σ0
α(Y ) for all i and k, and it follows that N0(B) ∈ Σ0

α(Y ), which
completes the induction argument.
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Let A ⊆ Y and assume that φ−1(A) ∈ Σ0
α(X). Then A = N0(φ−1(A)) ∈

Σ0
α(Y ). 
�

We can now prove that the Borel hierarchy is preserved under Σ0
1-admissible

representations of countably based T0-spaces.

Corollary 4.1.31 Let X be a countably based T0-space and ρ:⊆ ωω → X a
Σ0

1-admissible representation of X. Then for 1 ≤ α < ω1, A ∈ Σ0
α(X) if and

only if ρ−1(A) ∈ Σ0
α(dom(ρ)).

Proof: Define δ:ωω → P(ω) such that δ(ξ) = {n− 1 | ∃j(ξ(j) = n �= 0)}, where
P(ω) is the power set of ω. Note that δ is a continuous (total) surjection with
respect to the Scott-topology on P(ω), and furthermore δ is an open map.

For every x ∈ P(ω), the singleton {x} is in Π0
2(P(ω)) by Proposition 4.1.7.

Since δ is continuous and total, δ−1(x) is in Π0
2(ω

ω), and hence a Gδ set. Every
Gδ subspace of a Polish space is Polish (Theorem 3.11 in [29]). Therefore, δ−1(x)
is a Polish subspace of ωω for every x ∈ P(ω).

Since X is a countably based T0-space, we can assume without loss of gen-
erality that X is a subspace of P(ω). Let φ: δ−1(X) → X be the restriction of
δ to δ−1(X). It follows that φ is an open continuous surjective total function
with Polish fibers, and from Proposition 4.1.30 that for 1 ≤ α < ω1 and A ⊆ X ,
A ∈ Σ0

α(X) if and only if φ−1(A) ∈ Σ0
α(φ−1(X)).

Let f :⊆ ωω → ωω be continuous such that φ = ρ ◦ f , which exists be-
cause ρ is Σ0

1-admissible. Let A ⊆ X be such that ρ−1(A) ∈ Σ0
α(dom(ρ)).

Then f−1(ρ−1(A)) ∈ Σ0
α(dom(f)) since f is continuous. Therefore, φ−1(A) =

f−1(ρ−1(A)) is in Σ0
α(φ−1(X)) because φ−1(X) ⊆ dom(f). It follows that

A ∈ Σ0
α(X). 
�

Our next goal is to generalize Corollary 4.1.31 to some Σ0
α-admissible rep-

resentations.
Let ω∗ have as a base set ω ∪ {∞} and the topology so that U is open if

and only if either ∞ �∈ U or else U is cofinite (i.e., for some m < ω, n ∈ U
for all n ≥ m). Note that ω∗ is the one-point compactification of ω with the
discrete topology, hence the notation (which should not be confused with the
set of finite strings of natural numbers).

Lemma 4.1.32 Let ρ:⊆ ωω → ω∗ be Σ0
α-admissible (1 ≤ α < ω1). Then

S ⊆ ω∗ is open if and only if ρ−1(S) ∈ Σ0
α(dom(ρ)).

Proof: Since ρ is Σ0
α-measurable, if S is an open subset of ω∗ then ρ−1(S) ∈

Σ0
α(dom(ρ)).

Assume, for a contradiction, that ρ−1(S) ∈ Σ0
α(dom(ρ)) but S is not open

in ω∗. Then ∞ must be in S, so ω∗ \ S is open and it follows that ρ−1(S) ∈
∆0

α(dom(ρ)) because ρ is Σ0
α-measurable.

First assume that S is finite, say S = {n0, n1, . . . , nk,∞}. First note that
ρ−1(∞) ∈ ∆0

α(dom(ρ)) because ρ−1(∞) = ρ−1(S) \ ρ−1({n0, n1, . . . , nk}) and
ρ−1({n0, n1, . . . , nk}) ∈ ∆0

α(dom(ρ)). Now let X ∈ Σ0
α(ωω) \ Π0

α(ωω). Set
X =

⋃
i∈ω Wi, where Wi ∈ ∆0

α(ωω) for each i ∈ ω. Define f :ωω → ω∗ so that
for ξ ∈ ωω,

f(ξ) =
{

min{i ∈ ω | ξ ∈Wi} if ξ ∈ X
∞ if ξ �∈ X
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For any open U ⊆ ω∗, if ∞ �∈ U , then f−1(U) equals the countable union of
some ∆0

α sets (for example, f−1(0) = W0 and f−1(i) = Wi \ (W0 ∪ · · · ∪Wi−1)
for 0 < i < ∞), and is therefore Σ0

α. If ∞ ∈ U , then ω∗ \ U is finite and
does not contain ∞, so f−1(ω∗ \ U) ∈ ∆0

α(ωω), and it follows that f−1(U) ∈
Σ0

α(ωω). Therefore, f is Σ0
α-measurable. Since ρ is Σ0

α-admissible, there is
continuous g:⊆ ωω → ωω such that f = ρ ◦ g. Since g is continuous and
ρ−1(∞) ∈ ∆0

α(dom(ρ)), ωω \X = f−1(∞) = g−1(ρ−1(∞)) ∈ ∆0
α(ωω), which is

a contradiction.
Next, assume that S is infinite. Let X,Y ∈ Σ0

α(ωω) be disjoint (i.e. X∩Y =
∅). Set X =

⋃
i∈ω Vi, where Vi ∈ ∆0

α(ωω) for each i ∈ ω. Define A0 = V0 and
Ai = Vi \ (V0 ∪ · · · ∪ Vi−1) for i > 0. Then X =

⋃
i∈ω Ai, where the Ai are

all pairwise disjoint ∆0
α sets (i.e. Ai ∈ ∆0

α(ωω) for all i ∈ ω and Ai ∩ Aj = ∅
whenever i �= j). Similarly, Y =

⋃
i∈ω Bi, where the Bi are pairwise disjoint

∆0
α sets. Define f :ωω → ω∗ so that for ξ ∈ ωω,

f(ξ) =

⎧⎨⎩ min{j ∈ S | j ≥ i} if ξ ∈ Ai

min{j ∈ ω∗ \ S | j ≥ i} if ξ ∈ Bi

∞ if ξ �∈ X ∪ Y

Since S is infinite but not open, it is clear that f−1(∞) = ωω \ (X ∪ Y ), and
furthermore f−1(n) (n < ω) is a finite union of ∆0

α sets and is therefore in
∆0

α(ωω). It then easily follows that f is Σ0
α-measurable. Let g:⊆ ωω → ωω be

continuous such that f = ρ◦g. Since g is continuous and ρ−1(S) ∈ ∆0
α(dom(ρ)),

f−1(S) ∈ ∆0
α(ωω). Furthermore, X ⊆ f−1(S) and Y ∩ f−1(S) = ∅. Since

X,Y ∈ Σ0
α(ωω) were arbitrary, this implies that any two Σ0

α subsets of ωω can
be separated by a ∆0

α set, which is a contradiction (see Proposition 22.15 (iv)
in [29]). 
�

Definition 4.1.33 Let X be an arbitrary topological space. A subset A ⊆ X
is sequentially open if and only if for every sequence {xi}i∈ω that converges to
x ∈ A, there is some m such that xn ∈ A for all n ≥ m. X is a sequential
space if and only if all sequentially open subsets of X are open. 
�

Note that all countably based spaces are sequential spaces (see Theorem
1.6.14 in [17]).

Theorem 4.1.34 Let X be a sequential T0-space and ρ:⊆ ωω → X be Σ0
α-

admissible (1 ≤ α < ω1). Then U ⊆ X is open if and only if ρ−1(U) ∈
Σ0

α(dom(ρ)).

Proof: If U is open then ρ−1(U) ∈ Σ0
α(dom(ρ)) holds because ρ is Σ0

α-
measurable.

Assume that ρ−1(U) ∈ Σ0
α(dom(ρ)) and let {xi}i∈ω be a sequence converging

to x ∈ U . Define f :ω∗ → X so that f(n) = xn and f(∞) = x. Then f is clearly
continuous. If δ is a Σ0

α-admissible representation of ω∗, then f ◦ δ is Σ0
α-

measurable, so by the Σ0
α-admissibility of ρ there is continuous g:⊆ ωω → ωω

such that f ◦ δ = ρ ◦ g. Since g is continuous, δ−1(f−1(U)) = g−1(ρ−1(U)) ∈
Σ0

α(dom(δ)). It follows that f−1(U) is open by Lemma 4.1.32. Since ∞ ∈
f−1(U), there is m < ω such that n ∈ f−1(U) for all n ≥ m. Therefore, xn ∈ U
for all n ≥ m. Since {xi}i∈ω and its limit x ∈ U were arbitrary, U is sequentially
open, hence open because X is a sequential space. 
�
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The rest of this subsection extends Theorem 4.1.34 to the entire hierarchy
for a special class of topological spaces.

Lemma 4.1.35 Let ρ:⊆ ωω → ωω be a Σ0
α̂-admissible representation of ωω

(0 ≤ α < ω1). For 0 ≤ β < ω1 and A ⊆ ωω, A ∈ Σ0
β̂
(ωω) if and only if

ρ−1(A) ∈ Σ0
̂α+β

(dom(ρ)).

Proof: If A ∈ Σ0
β̂
(ωω) then ρ−1(A) ∈ Σ0

̂α+β
(dom(ρ)) follows from Lemma

4.1.11.
For the converse, let 0 ≤ β < ω1 and A ⊆ ωω be such that ρ−1(A) ∈

Σ0
̂α+β

(dom(ρ)). First note that A ∈ Σ0
̂α+β

(ωω) ⊆ B(ωω), because by the Σ0
α̂-

admissibility of ρ there is continuous h:ωω → ωω such that ρ◦h is the identity on
ωω. Now assume for a contradiction that A �∈ Σ0

β̂
(ωω). Choose B ∈ Π0

̂α+β
(ωω)\

Σ0
̂α+β

(ωω), and let f :ωω → ωω be a total Σ0
α̂-measurable function such that

B = f−1(A), which exists by Theorem 4.1.14. Since f is Σ0
α̂-measurable, there

exists continuous g:ωω → ωω such that f = ρ ◦ g (note that g is total because f
is). Since g is continuous, B = g−1(ρ−1(A)) ∈ Σ0

̂α+β
(ωω), a contradiction. 
�

Lemma 4.1.36 Let X be a zero-dimensional Polish space and ρ:⊆ ωω → X a
Σ0

α̂-admissible representation of X (0 ≤ α < ω1). For 0 ≤ β < ω1, A ∈ Σ0
β̂
(X)

if and only if ρ−1(A) ∈ Σ0
̂α+β

(dom(ρ)).

Proof: For the non-trivial part of the lemma, we can assume that X is a closed
subset of ωω (see Theorem 7.8 in [29]) and ρ:⊆ ωω → X is the restriction of a
Σ0

α̂-admissible representation ρ′:⊆ ωω → ωω of ωω as in Proposition 4.1.18 (i.e.,
dom(ρ) = (ρ′)−1(X), and ρ = ρ′|dom(ρ)). It follows from these assumptions that
dom(ρ) ∈ Π0

α̂(ωω) because X is a closed subset of ωω and ρ′ is Σ0
α̂-measurable.

The case β = 0 is the statement of Theorem 4.1.34, so assume β ≥ 1 and
A ⊆ X is such that ρ−1(A) ∈ Σ0

̂α+β
(dom(ρ)). By Proposition 4.1.6 there

is B ∈ Σ0
̂α+β

(ωω) such that ρ−1(A) = B ∩ dom(ρ). Since α < α + β and

dom(ρ) ∈ Π0
α̂(ωω), ρ−1(A) ∈ Σ0

̂α+β
(ωω). Since (ρ′)−1(A) = ρ−1(A), it follows

from Lemma 4.1.35 that A ∈ Σ0
β̂
(ωω) and hence A ∈ Σ0

β̂
(X). 
�

Definition 4.1.37 We will say that a space X has a Polish representation if
and only if there is a Σ0

1-admissible representation ρ:⊆ ωω → X of X such that
dom(ρ) with the subspace topology is a (zero-dimensional) Polish space.

In particular, the real numbers with the Euclidean topology and P(ω) with
the Scott-topology have Polish representations (an admissible representation of
the reals with closed domain of definition is given in [60], and the representation
δ of P(ω) used in the proof of Corollary 4.1.31 can be shown to be admissible).

Theorem 4.1.38 Let X be a countably based T0-space with a Polish represen-
tation and ρ:⊆ ωω → X a Σ0

α̂-admissible representation of X (0 ≤ α < ω1).
For 0 ≤ β < ω1, A ∈ Σ0

β̂
(X) if and only if ρ−1(A) ∈ Σ0

̂α+β
(dom(ρ)).
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Proof: For the non-trivial part of the proof, let δ:⊆ ωω → X be Σ0
1-admissible

such that dom(δ) is Polish. Let δ′:⊆ ωω → dom(δ) be a Σ0
α̂-admissible rep-

resentation of dom(δ). Since δ ◦ δ′ is Σ0
α̂-measurable, there is continuous f :⊆

ωω → ωω such that δ ◦ δ′ = ρ ◦ f .
Assume A ⊆ X is such that ρ−1(A) ∈ Σ0

̂α+β
(dom(ρ)). Then

(δ′)−1(δ−1(A)) = f−1(ρ−1(A)) ∈ Σ0
̂α+β

(dom(δ′))

because f is continuous (here we are using the fact that dom(δ′) ⊆ dom(f)). It
follows from Lemma 4.1.36 that δ−1(A) is in Σ0

β̂
(dom(δ)), hence A ∈ Σ0

β̂
(X)

from Corollary 4.1.31. 
�

4.1.5 Realizability Theorems

In this subsection we will investigate which functions are realizable with respect
to Σ0

α-admissible representations. We only consider topological realizability,
and do not consider computational issues.

Definition 4.1.39 Let X and Y be arbitrary topological spaces, and f :X → Y
a function. We say that f is 〈Σ0

α,Σ
0
β〉-realizable by a Σ0

γ-measurable function if
there is a Σ0

α-admissible representation ρX of X and a Σ0
β-admissible represen-

tation ρY of Y and a Σ0
γ-measurable partial function g:⊆ ωω → ωω such that

f ◦ ρX = ρY ◦ g. If a continuous such g exists, then we say that f is 〈Σ0
α,Σ

0
β〉-

continuously realizable. 
�

Lemma 4.1.40 Let X be an arbitrary topological space, and ρ:⊆ ωω → X be
a Σ0

α-admissible representation of X (1 ≤ α < ω1). Then X is a T0-space.

Proof: Exactly like Schröder’s proof for Σ0
1-admissible representations (Theo-

rem 13 in [48]). 
�

Lemma 4.1.41 For 1 ≤ β < α < ω1, a function from the discrete two point
space 2 to the Sierpinski space S is 〈Σ0

α,Σ
0
β〉-continuously realizable if and only

if it is a constant function.

Proof: It is clear that constant functions are always continuously realizable.
For the converse, let ρ2 be a Σ0

α-admissible representation of the discrete
two point space 2 = {0, 1}, and let ρS be a Σ0

β-admissible representation of
the Sierpinski space S = {⊥,$} ({$} is open). Let f :2 → S be such that
f(0) �= f(1). We will assume f(0) = ⊥ and f(1) = $, as the proof for the
other non-constant function is similar. Assume, for a contradiction, that there
is continuous g:⊆ ωω → ωω such that f ◦ρ2 = ρS ◦g. Let A ∈ Π0

β(ωω)\Σ0
β(ωω),

and define δ:ωω → 2 so that δ(A) = {1} and δ(ωω\A) = {0}. Since α > β, both
A and ωω \ A are in Σ0

α(ωω), which implies that δ is Σ0
α-measurable. Hence,

there exists continuous h:ωω → ωω such that δ = ρ2 ◦ h. Since g and h are
continuous, A = δ−1(f−1($)) = h−1(g−1(ρ−1

S ($))) ∈ Σ0
β(ωω), a contradiction.


�

Note that the following theorem does not assume thatX and Y are countably
based.
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Theorem 4.1.42 Let X and Y be any topological spaces such that X has a
Σ0

α-admissible representation and Y has a Σ0
β-admissible representation, where

1 ≤ β < α < ω1. Then a function from X to Y is 〈Σ0
α,Σ

0
β〉-continuously

realizable if and only if it is a constant function.

Proof: For the non-trivial part, let f :X → Y be such that f(x0) �= f(x1) for
some x0, x1 ∈ X . Let ρX :⊆ ωω → X be a Σ0

α-admissible representation of
X , ρY :⊆ ωω → Y a Σ0

β-admissible representation of Y , ρ2 a Σ0
α-admissible

representation of the discrete two point space 2, and ρS a Σ0
β-admissible repre-

sentation of the Sierpinski space S.
Assume, for a contradiction, that there is continuous g:⊆ ωω → ωω such

that f ◦ ρX = ρY ◦ g. By Lemma 4.1.40, both X and Y are T0-spaces, so let
U ⊆ Y be an open set such that (without loss of generality) f(x1) ∈ U and
f(x0) �∈ U . Let p:2 → X be defined as p(0) = x0 and p(1) = x1 and let
q:Y → S be defined so that q(U) = $ and q(Y \ U) = ⊥.

Since p is continuous, p ◦ ρ2 is Σ0
α-measurable, so there is continuous p′:⊆

ωω → ωω such that p ◦ ρ2 = ρX ◦ p′. Likewise, q ◦ ρY is Σ0
β-measurable so there

is continuous q′:⊆ ωω → ωω such that q ◦ ρY = ρS ◦ q′. Define φ = q ◦ f ◦ p and
φ′ = q′ ◦ g ◦ p′. Then φ:2 → S is such that φ(0) = ⊥ and φ(1) = $, and φ is
〈Σ0

α,Σ
0
β〉-continuously realized by φ′, a contradiction. 
�

Statement (3) in the following is a topological generalization of Brattka’s
extention [8] of the Kreitz-Weihrauch Representation Theorem [59] to all count-
ably based T0-spaces and all countable ordinals. Statements (1) and (2) are
generalizations of some results by Ziegler [62].

Theorem 4.1.43 Let X and Y be countably based T0-spaces, f :X → Y a total
function, and 1 ≤ α < ω1.

1. f is 〈Σ0
1,Σ

0
α〉-continuously realizable if and only if f is Σ0

α-measurable,

2. f is 〈Σ0
α,Σ

0
α〉-continuously realizable if and only if f is continuous,

3. f is 〈Σ0
1,Σ

0
1〉-realizable by a Σ0

α-measurable function if and only if f is
Σ0

α-measurable.

Proof: The “if” parts of (1) and (2) immediately follow from the definition
of admissibility. For (3), assume f is Σ0

α-measurable. From statement (1) it
follows that f is 〈Σ0

1,Σ
0
α〉-continuously realizable, and by Theorem 4.1.23 there

is a Σ0
α-measurable reduction of any Σ0

α representation of Y to a Σ0
1-admissible

representation of Y . Composing the two produces a Σ0
α-measurable function

that 〈Σ0
1,Σ

0
1〉-realizes f .

The proof of the “only if” parts are similar for all three statements, so we only
prove (1). Let ρX be a Σ0

1-admissible representation of X , ρY a Σ0
α-admissible

representation of Y , and assume g:⊆ ωω → ωω is continuous such that f ◦ρX =
ρY ◦g. Let U ⊆ Y be open. Then ρ−1

X (f−1(U)) = g−1(ρ−1
Y (U)) ∈ Σ0

α(dom(ρX))
because ρY is Σ0

α-measurable, g is continuous, and dom(ρX) ⊆ dom(g). By
Corollary 4.1.31, it follows that f−1(U) ∈ Σ0

α(X), hence f is Σ0
α-measurable

(for statement (2), use Theorem 4.1.34 instead of Corollary 4.1.31). 
�

The following shows that, assuming that a representation of a set is admissi-
ble at some level with respect to some topology on the set, then the level of the
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representation and any corresponding sequential topology on the set is uniquely
determined. Note, however, that it is easy to construct representations of a set
that are not admissible at any level with respect to any topology on the set.

Corollary 4.1.44 Let X be a set with at least two elements, and let ρ:⊆ ωω →
X be an arbitrary function. If τ and τ ′ are two topologies on X such that
ρ is Σ0

α-admissible (1 ≤ α < ω1) with respect to τ , and ρ is Σ0
β-admissible

(1 ≤ β < ω1) with respect to τ ′, then α = β. If in addition τ and τ ′ are
sequential topologies then τ = τ ′.

Proof: The identity function 1X :X → X is non-constant becauseX has at least
two elements. The identity on ωω both 〈Σ0

α,Σ
0
β〉 and 〈Σ0

β ,Σ
0
α〉-continuously

realizes 1X with respect to ρ, and therefore α = β by Theorem 4.1.42. Finally,
if τ and τ ′ are sequential topologies, then they satisfy the T0 axiom by Lemma
4.1.40, therefore (as in the proof of statement (2) of Theorem 4.1.43) Theorem
4.1.34 implies that 1X is a homeomomorphism, hence τ = τ ′. 
�

Finally, we give a complete characterization for the case that X has a Polish
representation (recall that ordinal addition is non-commutative). Note that a
generalization of Theorem 4.1.38 to all countably based T0-spaces would allow
us to drop the “Polish representation” restriction on X .

Theorem 4.1.45 Let X and Y be countably based T0-spaces, and further as-
sume X has a Polish representation. For any total function f :X → Y and any
countable ordinals α, β and γ, there exists a Σ0

γ̂-measurable g:⊆ ωω → ωω that
〈Σ0

α̂,Σ
0
β̂
〉-realizes f if and only if:

1. α > γ + β and f is a constant function, or

2. α ≤ γ + β and f is a Σ0
η̂-measurable function, where η is (the unique

ordinal) such that α+ η = γ + β.

Proof: Let ρX be a Σ0
α̂-admissible representation of X and ρY a Σ0

β̂
-admissible

representation of Y .
We first prove the “if” part. If f is constant, then it is continuously realiz-

able. Otherwise, if f is Σ0
η̂-measurable and α+ η = γ+β, then f ◦ ρX is Σ0

̂γ+β
-

measurable, so there is continuous g′:⊆ ωω → ωω such that f ◦ ρX = ρ′Y ◦ g′,
where ρ′Y is some Σ0

̂γ+β
-admissible representation of Y . By Theorem 4.1.23

there is a Σ0
γ̂-measurable g′′:⊆ ωω → ωω such that ρ′Y = ρY ◦ g′′. Then

g = g′′ ◦ g′ is Σ0
γ̂-measurable and f ◦ ρX = ρ′Y ◦ g′ = ρY ◦ g′′ ◦ g′ = ρY ◦ g.

For the “only if” part, assume g is Σ0
γ̂-measurable and f ◦ ρX = ρY ◦ g.

First assume that α > γ + β. Let ρ′Y be a Σ0
̂γ+β

-admissible representation of

Y . Since ρY ◦ g is Σ0
̂γ+β

-measurable there is continuous g′:⊆ ωω → ωω such

that ρY ◦ g = ρ′Y ◦ g′. Then f is 〈Σ0
α̂,Σ

0
̂γ+β

〉-continuously realized by g′. Since
α > γ + β, it follows from Theorem 4.1.42 that f is a constant function.

Next assume that α+ η = γ + β and U ⊆ Y is open. Then ρ−1
X (f−1(U)) =

g−1(ρ−1
Y (U)) ∈ Σ0

̂α+η
(dom(ρX)) since ρY ◦ g is Σ0

̂γ+β
-measurable and dom(ρX)

is a subset of dom(g). From Theorem 4.1.38 it follows that f−1(U) ∈ Σ0
η̂(X),

hence f is Σ0
η̂-measurable. 
�
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4.2 Examples of representations

Theorem 3.1.11 showed that 〈T (L), τL〉 is a Σ0
1-admissible representation of L

with respect to the Π-topology. We also saw by Theorem 3.1.28 that 〈I(L), ιL〉
is a Σ0

1-admissible representation of L with respect to the informant topology.
In this section, we will give some more examples of representations that we
can later apply to learning theory. Our major focus will be on Σ0

2-admissible
representations.

4.2.1 Representations of the Sierpinski space

Recall that the Sierpinski space S = {⊥,$} is defined as having only the open
sets {$}, S, and ∅.

Definition 4.2.1 For 1 ≤ n < ω, define ϕn ⊆ ωω → S as follows:

dom(ϕn) = 2ω,

ϕn(ξ) = $ ⇐⇒ ∃x1∀x2 . . . Qxn[ξ(〈x1, x2, . . . , xn〉) = 1].

Here, 〈·, . . . , ·〉 is a bijection between ωn and ω, and Q is ∃ if n is odd and ∀,
otherwise. 
�

Lemma 4.2.2 ϕn ⊆ ωω → S is Σ0
n-admissible for all 1 ≤ n < ω.

Proof: Note that if n is odd, then

ϕ−1
n ($) =

⋃
x1∈ω

⋂
x2∈ω

· · ·
⋃

xn∈ω

U〈x1,x2,...,xn〉,

and if n is even then

ϕ−1
n ($) =

⋃
x1∈ω

⋂
x2∈ω

· · ·
⋂

xn∈ω

U〈x1,x2,...,xn〉,

where U〈x1,x2,...,xn〉 = {ξ ∈ 2ω | ξ(〈x1, x2, . . . , xn〉) = 1} is clearly clopen in 2ω.
Therefore, ϕn is Σ0

n-measurable.
Next, let X ∈ Σ0

n(ωω). Since ωω is zero-dimensional, X can be expressed in
the form

X =
⋃

x1∈ω

⋂
x2∈ω

· · ·C〈x1,x2,...,xn〉.

where each C〈x1,x2,...,xn〉 is clopen. Define f :ωω → 2ω so that for each ω ∈ 2ω,

f(ξ)(i) = 1 ⇐⇒ ξ ∈ Ci.

Then f is continuous and f−1(ϕ−1
n ($)) = X because f−1(Ui) = Ci. Therefore,

every set in Σ0
n(ωω) can be reduced to f−1(ϕ−1

n ($)), which implies that ϕn is
Σ0

n-admissible by Proposition 4.1.16. 
�

Next we introduce a “limiting” representation of the Sierpinski space, which
is implicitly used in the classification in the limit paradigms as studied by, for
example, Kelly [31] and Martin et al. [36].
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Definition 4.2.3 Define δS :⊆ ωω → S as follows:

dom(δS) = 2ω,

δS(ξ) = $ ⇐⇒ ∃m∀n ≥ m[ξ(n) = 1].


�

Intuitively, ξ ∈ 2ω represents $ if and only if the sequence of 0’s and 1’s in ξ
eventually converges to 1. If ξ does not converge, or if it converges to 0, then ξ
represents ⊥.

Theorem 4.2.4 δS :⊆ ωω → S is a Σ0
2-admissible representation of S.

Proof: Clearly, δS is Σ0
2-measurable because

δ−1
S ($) =

⋃
m∈ω

⋂
n≥m

Un,

where Un = {ξ ∈ 2ω | ξ(n) = 1} is clopen in 2ω. So it suffices to show that there
is a continuous f : 2ω → 2ω such that ϕ2 = δS ◦ f . In other words, we want f to
satisfy

∃x1∀x2[ξ(〈x1, x2〉) = 1] ⇐⇒ ∃m∀n ≥ m[f(ξ)(n) = 1].

Intuitively, f can be constructed as follows. First, f scans ξ(〈0, 0〉), ξ(〈0, 1〉),
ξ(〈0, 2〉), . . ., outputting 1 each time until an n is found such that ξ(〈0, n〉) = 0.
If such an n is found, then f outputs 0, and then starts searching the next row
ξ(〈1, 0〉), ξ(〈1, 1〉), ξ(〈1, 2〉), . . ., outputting 1’s until a 0 is found, in which case
f outputs a 0 and starts searching the next row, etc. If there exists an x1 such
that ξ(〈x1, x2〉) = 1 for all x2, then when f reaches the first such row f will
forever after output 1’s. If there is no such x1, then f will output infinitely
many 0’s. Therefore, ϕ2 = δS ◦ f . 
�

Next we give a representation of Sω, which is the product of infinitely many
copies of the Sierpinski space. Let φ:ωω → (ωω)ω be a homeomorphism. In the
following definition, we will abbreviate φ(ξ)(i) as (ξ)i for each ξ ∈ ωω.

Definition 4.2.5 Define δSω ⊆ ωω → Sω as follows:

dom(δSω ) = φ−1((2ω)ω),
δSω (ξ)(i) = $ ⇐⇒ ∃m∀n ≥ m[(ξ)i(n) = 1].


�

Intuitively, δSω is just a countably infinite number of copies of δS . It fol-
lows from Theorem 4.2.4 and Proposition 4.1.21 that δSω is a Σ0

2-admissible
representation of Sω .

4.2.2 Representations of ω and ω⊥
Next we consider representations of ω viewed as a discrete space (i.e., every
subset is open), and ω⊥ which is ω with an additional “bottom” element.

We will first construct a representation of ω⊥. Formally, ω⊥ = ω ∪ {⊥}
and U ⊆ ω⊥ is open if and only if U = ω⊥ or else ⊥ �∈ U . We can define an
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embedding f :ω⊥ → Sω from ω⊥ to the product of infinitely many Sierpinski
spaces by defining f(⊥)(m) = ⊥ for each m ∈ ω, and for i �= ⊥ define f(i)(m) =
$ ⇐⇒ i = m for each m ∈ ω. So X ∈ range(f) if and only if X contains
at most one occurence of $. It is easily seen that ω⊥ is homeomorphic to
f(ω) ⊆ Sω , so a representation for ω⊥ can be created by restricting δSω to the
range of f . In particular, δω⊥ :ωω → ω⊥ defined as:

dom(δω⊥) = δ−1
Sω (range(f)),

δω⊥(ξ) = ⊥ ⇐⇒ ∀i∀m∃n ≥ m[(ξ)i(n) �= 1],
δω⊥(ξ) = i ⇐⇒ ∃m∀n ≥ m[(ξ)i(n) = 1],

is a Σ0
2-admissible representation of ω⊥. This representation is somewhat non-

intuitive, but it is a start. Next consider the representation limω:ωω → ω⊥
defined as:

limω(ξ) =
{
i if ∃m∀n ≥ m[ξ(n) = i],
⊥ otherwise.

So limω sends converging sequences in ωω to the limit of the sequence, and sends
non-converging sequences to ⊥.

Theorem 4.2.6 limω:ωω → ω⊥ is a Σ0
2-admissible representation of ω⊥.

Proof: We see that limω is Σ0
2-measurable because for each i ∈ ω,

lim−1
ω ({i}) =

⋃
m∈ω

⋂
n≥m

U i
n,

where U i
n = {ξ ∈ ωω | ξ(n) = i}. Since Σ0

2-sets are closed under countable
unions, it follows that the preimage under limω of any subset of ω is a Σ0

2-
subset of ωω. Therefore, the preimage of any open subset of ω⊥ is open in
ωω.

Now we just have to show that δω⊥ continuously reduces to limω. This
means we need to construct a continuous function g:⊆ ωω → ωω in a way that
for every ξ ∈ dom(δω⊥), if there is i ∈ ω satisfying ∃m∀n ≥ m[(ξ)i(n) = 1] then
g(ξ) converges to i (which is necessarily unique), and g(ξ) does not converge if
no such i exists.

To do this, first we define a function g′:⊆ ωω → ω×ω. Set g′(ξ)(0) = 〈0, 1〉
and for n ≥ 0 assume g′(ξ)(n) = 〈j, b〉 and define

g′(ξ)(n+ 1) =

⎧⎨⎩ 〈j, b〉 if (ξ)j(n) = 1,
〈j + 1, b〉 if (ξ)j(n) �= 1 and j < b,
〈0, b+ 1〉 if (ξ)j(n) �= 1 and j ≥ b.

Intuitively, g′ searches up to b for a j satisfying (ξ)j(n) = 1. If (ξ)j(n) �= 1,
then g′ checks j + 1, etc. If g′ searches all the way up to b without finding an
appropriate j, then g′ increments b and starts over the search from zero. This
forces g′ to check each value of j infinitely many times. It is then easy to see
that g′(ξ) converges to 〈i, b〉 for some b ∈ ω if and only if there is some m ∈ ω
such that (ξ)i(n) = 1 for all n ≥ m, which holds just in case δω⊥(ξ) = i. Thus,
by defining g(ξ)(n) = π1(g′(ξ)(n)), we see that δω⊥ = limω ◦g. 
�

We can let limω:⊆ ωω → ω be the restriction of limω:ωω → ω⊥ to only
the sequences that converge. By Proposition 4.1.18 and the above theorem, we
immediately obtain the following.
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Theorem 4.2.7 limω:⊆ ωω → ω is a Σ0
2-admissible representation of ω. 
�

4.2.3 Representations of ωω and more

Since ωω is homeomorphic to the product of countably many copies of ω, we can
use Proposition 4.1.21 and Theorem 4.2.7 to construct a simple Σ0

2-admissible
representation of ωω. Again, let φ:ωω → (ωω)ω be a homeomorphism and
abbreviate φ(ξ)(i) as (ξ)i for each ξ ∈ ωω.

Corollary 4.2.8 The function limωω :⊆ ωω → ωω defined as:

dom(limωω) = {ξ ∈ ωω | ∀i ∃m∀n ≥ m[(ξ)i(n) = (ξ)i(m)]},
limωω (ξ) = ζ ⇐⇒ ∀i ∃m∀n ≥ m[(ξ)i(n) = ζ(i)],

is a Σ0
2-admissible representation of ωω. 
�

Given ξ ∈ ωω, for each n ∈ ω let ξn ∈ ωω be defined as ξn(i) = (ξ)i(n)
for each i ∈ ω. Then from the definition of limωω , we see that limωω (ξ) = ζ if
and only if for each i ∈ ω there exists m such that ξn(i) = ζ(i) for all n ≥ m.
In other words, limωω (ξ) = ζ if and only if the sequence {ξn}i∈ω converges to
ζ with respect to the usual topology on ωω. Thus, limωω as defined above is
equivalent to the “jump” introduced by Ziegler [62] and the “derivative” used in
Brattka and Makananise [9]. These two papers only investigated metric spaces,
but the results of the previous section show that the results in these two papers
can be extended to all countably based T0-spaces.

By Corollary 4.1.24, it follows that limωω ◦ limωω is a Σ0
3-admissible repre-

sentation of ωω, that limωω ◦ limωω ◦ limωω is Σ0
4-admissible, and so on. Fur-

thermore, if 〈R, ρ〉 is a Σ0
1-admissible representation of a countably based T0-

space X , then 〈R, ρ ◦ limωω〉 is Σ0
2-admissible for X , 〈R, ρ ◦ limωω ◦ limωω 〉 is

Σ0
3-admissible, etc. This provides a simple way of constructing Σ0

n-admissible
representations for n < ω. Computability aspects of these representations for
metric spaces has been investigated in [8], [62], and [9].

4.3 Applications to learning theory

In this section, we will apply the results of the previous sections in the chapter
to problems in Gold-style learning models.

Although previous chapters involved specific forms of information presenta-
tion, like positive data (the representation 〈T (L), τL〉) or positive and negative
data (the representation 〈I(L), ιL〉), in this section we will be much more gen-
eral. In the following we will assume that 〈R, ρ〉 is a Σ0

1-admissible represen-
tation of a concept space L, with respect to some countably based T0-topology
on L. By Corollary 4.1.44, the topology that 〈R, ρ〉 induces on L is uniquely
determined, so we will often write Lρ to emphasize that we view L as a topo-
logical space with the topology determined by 〈R, ρ〉. So, for example, LτL is L
with the Π-topology, and LιL is L with the informant topology.
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4.3.1 Identification in the limit

It has become clear that the domain of a learner can be interpreted as a repre-
sentation of L, but the following theorem shows that the learner’s codomain is
also a representation of L.

Theorem 4.3.1 Let 〈H, h〉 be a hypothesis space for a concept space L, and
let limH:⊆ Hω → H be the function that maps each converging sequence of
hypotheses to its limit. Then,

1. 〈H, h〉 is Σ0
1-admissible with respect to the discrete topology on L,

2. 〈Hω, limH〉 is Σ0
2-admissible with respect to the discrete topology on H,

3. 〈Hω, h ◦ limH〉 is Σ0
2-admissible with respect to the discrete topology on L.

Proof: The first claim is trivial, although the reader should note that techni-
cally we must assume that H is appropriately encoded as a subspace of ωω in
order for 〈H, h〉 to be a representation as we have defined it. This is done by
encoding each H ∈ H as the sequence ξ ∈ ωω that satisfies ξ(n) = H for all n.

The second claim follows from Theorem 4.2.7, and the third claim follows
from the first two and Corollary 4.1.24. 
�

We let Lρ denote L with the topology induced by 〈R, ρ〉, and Lh denote L
with the topology induced by 〈H, h〉. Note that from the above theorem, every
subset of Lh is open. Let idL:Lρ → Lh be the identity function on L.

By definition, a learner (continuous function) ψ:R → Hω identifies L in the
limit with respect to 〈R, ρ〉 and 〈H, h〉 if and only if ρ = h◦limH ◦ψ. Since idL is
the identity on L, this is equivalent to requiring ψ to satisfy idL◦ρ = h◦limH ◦ψ.
Since 〈R, ρ〉 is Σ0

1-admissible for Lρ, and 〈Hω, h◦ limH〉 is Σ0
2-admissible for Lh,

it follows from Theorem 4.1.43 that such a ψ exists if and only if idL:Lρ → Lh

is Σ0
2-measurable. Since every subset of Lh is open, idL is Σ0

2-measurable if
and only if every subset of Lρ is a Σ0

2-set if and only if every subset of Lρ is a
∆0

2-set. Applying now Proposition 4.1.7, we have proved the following.

Theorem 4.3.2 Let L be a (countable) concept space with representation 〈R, ρ〉
and hypothesis space 〈H, h〉, such that 〈R, ρ〉 is Σ0

1-admissible with respect to a
countably based T0-topology on L. Then the following are equivalent.

1. L is identifiable in the limit with respect to 〈R, ρ〉 and 〈H, h〉,

2. idL:Lρ → Lh is Σ0
2-measurable,

3. Lρ is a TD-space.

R ψ � Hω

Lρ

ρ

� idL � Lh

h ◦ limH

�


�
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Note that any learner ψ that identifies L in the limit (with respect to 〈R, ρ〉
and 〈H, h〉) is a 〈Σ0

1,Σ
0
2〉-realizer of the function idL:Lρ → Lh. Thus, in a

sense, the goal of ψ is to “compute” the function idL.
Now, since Lh has the discrete topology, every property of Lh is observable

in the sense defined in the introduction. On the other hand, the same cannot
always be said about Lρ, since some subsets may not be open. Although being
the identity function may seem trivial, since the topologies on Lρ and Lh are
different in general, idL is in fact modifying the information theoretical structure
(topology) of L so as to make all properties observable.

4.3.2 Variations on convergence

Once the representation 〈R, ρ〉 and hypothesis space 〈H, h〉 have been deter-
mined, the function idL:Lρ → Lh and its complexity are uniquely determined.
Variations on the convergence requirements of a successful learner can be inter-
preted as finding out how much we must weaken the representation induced by
the hypothesis space until a learner can realize the function idL.

As an example, finite identification is a variation of identification in the
limit where the learner must read in an information presentation and eventually
output a single correct hypothesis and then halt. This paradigm was also intro-
duced by Gold [21] and characterized for the learning from texts and learning
from informants paradigms by Mukouchi [38].

This paradigm is modeled in our framework by simply defining a finite
learner to be a continuous function ψ:R → H, and defining ψ to be successful
if and only if ρ = h ◦ ψ. Since H is assumed to have the discrete topology, the
continuity requirement guarantees that the entire output of ψ will only depend
on a finite portion of the input, hence ψ finitely identifies L.

Using the fact that 〈H, h〉 is Σ0
1-admissible for Lh, we can apply Theorem

4.1.43 to obtain the following topological characterization of finite identification.

Theorem 4.3.3 Let L be a (countable) concept space with representation 〈R, ρ〉
and hypothesis space 〈H, h〉, such that 〈R, ρ〉 is Σ0

1-admissible with respect to a
countably based T0-topology on L. Then the following are equivalent.

1. L is finitely identifiable with respect to 〈R, ρ〉 and 〈H, h〉,

2. idL:Lρ → Lh is continuous,

3. Lρ is a discrete space.

R ψ � H

Lρ

ρ

� idL � Lh

h

�


�

Mind-change complexity uses representations like Hω
α that are weaker than

H but stronger than Hω, so these representations make up a hierarchy between
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Σ0
1 and Σ0

2-admissibility. This can be viewed as a refinement of determining
the complexity of idL:Lρ → Lh between continuity and Σ0

2-measurability.
Although much research on the learning in the limit paradigm has been

dedicated on characterizing stronger convergence requirements, little research
has been done on relaxing the convergence requirements. By Proposition 4.1.7,
we see that idL:Lρ → Lh is always Σ0

3-measurable because L is countable. This
suggests that a further refinement of the complexity of representations between
Σ0

2 and Σ0
3-admissibility (in a fashion similar to mind-change complexity) could

be used to better understand the difficulty of identifying concept spaces that
are not identifiable in the limit. Since many concept spaces of interest are not
identifiable in the limit, a further refinement in this sense is important to let
us know what our options are when we are confronted with a “non-learnable”
concept space.

4.3.3 Classification

In the classification paradigm, instead of the learner identifying a concept, the
learner must determine whether a particular property holds of the concept. In
particular, given a property P ⊆ L, and R ∈ R, the learner must determine
whether ρ(R) ∈ P . In this case, a hypothesis space for L is not needed, so it
is meaningful to investigate classification of properties of uncountable concept
spaces. The relationship between classification and topology has been investi-
gated by many researches, such as Kelly [31] and Martin et al. [36]. Below we
will compare their results with our own.

Here is a summary of some basic variations of classification. The notation
we use comes from Kelly [31].

Definition 4.3.4 Let L be a (possibly uncountable) concept space, 〈R, ρ〉 a rep-
resentation of L, P ⊆ L, and ψ:R → 2ω be a continuous function.

1. ψ decides P with certainty if and only if

ρ(R) ∈ P ⇐⇒ ∃n : ψ(R)(n) = 1, and
ρ(R) �∈ P ⇐⇒ ∃n : ψ(R)(n) = 0;

2. ψ verifies P with certainty if and only if

ρ(R) ∈ P ⇐⇒ ∃n : ψ(R)(n) = 1;

3. ψ decides P in the limit if and only if

ρ(R) ∈ P ⇐⇒ ∃m∀n ≥ m : ψ(R)(n) = 1, and
ρ(R) �∈ P ⇐⇒ ∃m∀n ≥ m : ψ(R)(n) = 0;

4. ψ verifies P in the limit if and only if

ρ(R) ∈ P ⇐⇒ ∃m∀n ≥ m : ψ(R)(n) = 1.

�
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Note that verifying P with certainty is the same as observing P in the sense
described in the introduction.

Just as we have viewed the identification paradigms as realizing a function
between topological spaces, the classification paradigms above can be viewed
as the problem of realizing functions. In particular, let S = {⊥,$} be the
Sierpinski space and let 2 = {0, 1} be the discrete space with two points. Given
P ⊆ L, define a function χS

P :L → S and χ2
P :L → 2 as

χS
P (L) =

{
$ if L ∈ P ,
⊥ if L �∈ P ;

χ2
P (L) =

{
1 if L ∈ P ,
0 if L �∈ P ;

We can think of χS
P as the problem of “verifying” P , and χ2

P as the problem of
“deciding” P . Comparing the criteria for the different classification paradigms
with the representations we defined earlier for S and discrete spaces, we can
easily see that:

1. ψ decides P with certainty if and only if ψ 〈Σ0
1,Σ

0
1〉-realizes χ2

P ,

2. ψ verifies P with certainty if and only if ψ 〈Σ0
1,Σ

0
1〉-realizes χS

P ,

3. ψ decides P in the limit if and only if ψ 〈Σ0
1,Σ

0
2〉-realizes χ2

P ,

4. ψ verifies P in the limit if and only if ψ 〈Σ0
1,Σ

0
2〉-realizes χS

P .

We therefore obtain the following simple characterization of classification.

Theorem 4.3.5 Let L be a concept space with representation 〈R, ρ〉, such that
〈R, ρ〉 is Σ0

1-admissible with respect to a countably based T0-topology on L. The
following hold for any P ⊆ L.

1. P is decideable with certainty ⇐⇒ χ2
P :Lρ → 2 is continuous ⇐⇒

P ∈ ∆0
1(Lρ),

2. P is verifiable with certainty ⇐⇒ χS
P :Lρ → S is continuous ⇐⇒

P ∈ Σ0
1(Lρ),

3. P is decideable in the limit ⇐⇒ χ2
P :Lρ → 2 is Σ0

2-measurable ⇐⇒
P ∈ ∆0

2(Lρ),

4. P is verifiable in the limit ⇐⇒ χS
P :Lρ → S is Σ0

2-measurable ⇐⇒
P ∈ Σ0

2(Lρ).

R ψ � 2ω

Lρ

ρ

� χS
P � S

δS

�


�
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Kelly [31] gave topological characterizations of the classification paradigms in
terms of the Borel complexity of the property just like the above theorem. How-
ever, the characterizations only applied to the case that L is a zero-dimensional
space, so the results cannot be applied to classification from positive data only.
Martin et al. [36] extended the Borel characterizations of classification to a
more general logical setting that could also handle positive data only. In their
case, L is essentially a set of structures of a logical language and R essentially
represents each structure by enumerating (a subset of) the formulas that are
true in it. Classification in this case is to determine whether or not a structure
is a model of some given logical formula. Classification with mind-change com-
plexity was also characterized in [36] using the Hausdorff difference hierarchy
(see [29]). Connections between logic and topology are a major contribution
of [36], but to the disadvantage that the model is extremely complicated thus
difficult to apply.

The advantage of our approach is in its generality, since it applies to all
countably based T0-spaces, of which the topological spaces in [31] and [36] are
special cases. We have also given a complete characterization of which prop-
erties are classifiable, whereas [36] only considers classification with respect to
properties that correspond to the set of models of some given logical formula.
Combined with restrictions on the topological spaces considered, this explains
why [36] could obtain complete characterizations of classification with respect
to a definition of the Borel hierarchy which is in general different from Definition
4.1.1.1

Our approach is also relatively simple compared with [36], since the only
parameters are the characteristic function χP and the representations of the
domain and codomain of χP . We have also clarified how identification and
classification are related, the difference being only in the function, idL or χP ,
to be realized. Variations on convergence are also made clear, since they simply
involve a modification of the representation of the codomain of the function to
be realized (the characterization of mind-change complexity using the difference
hierarchy as in [36] is extended to our framework in a straightforwad way). In
this way, characterizations of various inductive inference paradigms are nicely
formulated in our single Theorem 4.1.43.

4.3.4 Borel complexity of concept spaces

This subsection investigates the Borel complexity of concept spaces as subsets of
P(ω). These results will be applied in the following subsection. We will assume

1The Borel hierarchy is defined in [36] for a topological space X generated by B as follows

(we put “hats” over the symbols to distinguish them from our definitions): Π̂0
0-sets are formed

by the finite unions and intersections of B; Σ̂0
0-sets are the complements of Π̂0

0-sets; Σ̂0
α-sets

are the countable unions of sets from the Π̂0
β -sets (β < α); Π̂0

α-sets are the complements of the

Σ̂0
α-sets. It immediately follows that every Σ̂0

α-set in the sense of [36] is Σ0
α in our sense (for

α > 0). However, consider the space X = {0, 1, 2} with open sets B = {∅, {2}, {1, 2}, {0, 1, 2}}.
B is closed under arbitrary unions and intersections, so Σ̂0

1(X) = Π̂0
0(X) = B and Π̂0

1(X) =

Σ̂0
0(X) = {∅, {0}, {0, 1}, {0, 1, 2}}. Σ̂0

2(X) is defined as unions of sets from Π̂0
0(X) and Π̂0

1(X),

hence Σ̂0
2(X) = {∅, {0}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}. In particular, {1} �∈ Σ̂0

2(X) even
though ∆0

2(X) = P(X) according to our definition. This example shows that there are

properties P that are decideable in the limit without even being Σ̂0
2 in the sense of [36].
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the Π-topology on all concept spaces in this subsection.

Lemma 4.3.6 For every concept space L, A(L) ∈ Π0
2(P(ω)).

Proof: It is easy to see that CL:P(ω) → P(ω) is continuous and CL(P(ω)) =
A(L). Let id:P(ω) → P(ω) be the identify function, then 〈id, CL〉:P(ω) →
P(ω) × P(ω), defined as 〈id, CL〉(X) = 〈X,CL(X)〉, is continuous by Theorem
3.1.14. By Proposition 4.1.8, ∆P(ω) = {〈X,Y 〉 ∈ P(ω) × P(ω) |X = Y } is
in Π0

2(P(ω)), hence A = 〈id, CL〉−1(∆P(ω)) is in Π0
2(P(ω)) because 〈id, CL〉

is continuous. Since X ∈ A if and only if X = CL(X), A = A(L), hence
A(L) ∈ Π0

2(P(ω)). 
�

The following theorem relates topological properties of concept spaces that
are identifiable in the limit from positive data with the Borel complexity of the
concept space. This theorem emphasizes the naturalness of the hierarchy of
topological properties investigated in Chapter 3.

Theorem 4.3.7 If L is a countable TD-space, then

1. L ∈ ∆0
3(A(L)) and L ∈ ∆0

3(P(ω)),

2. L is Alexandrov ⇐⇒ L ∈ Σ0
2(A(L)),

3. L is scattered ⇐⇒ L ∈ Π0
2(A(L)) ⇐⇒ L ∈ Π0

2(P(ω)),

4. L is scattered Alexandrov ⇐⇒ L ∈ ∆0
2(A(L)).

Proof: (4) clearly follows from (2) and (3).
Proof of (2): Assume L is Alexandrov. For each L ∈ L there is finite FL ⊆ ω

such that L = CL(F ). Thus, {L} = (↓A(L)L)∩ (↑A(L)FL), is a Σ0
2-set in A(L),

hence
L =

⋃
L∈L

(↓A(L)L) ∩ (↑A(L)FL)

is in Σ0
2(A(L)).

For the converse, assume L is a countable TD-space and L ∈ Σ0
2(A(L)). Let

L ∈ L be given. Then there are open U and closed A subsets of A(L) such
that L ∈ U ∩ A ⊆ L because L ∈ Σ0

2(A(L)). We can assume that U =↑A(L)F
for some finite F ⊆ L and A =↓A(L) L. Let F ′ be a finite tell-tale of L that
contains F . If X ∈ A(L) is a subset of L and contains F ′, then it contains F
so X ∈ L, hence X = L because F ′ is a finite tell-tale of L. Thus, L = CL(F ′)
is compact in A(L).

Proof of (1): Since every singleton subset of A(L) is a Π0
2-set and L is

countable, L =
⋃

L∈L{L} is a Σ0
3-subset of A(L). Thus, it only remains to

show that A(L) \L is in Σ0
3(A(L)). Let K be an Alexandrov concept space and

f :L → K a continuous injection. K ∈ Σ0
2(A(K)), so A(f)−1(K) ∈ Σ0

2(A(L))
because A(f) is continuous. Thus, A(L) \ A(f)−1(K) ∈ Σ0

3(A(L)). For each
K ∈ K, A(f)−1(K) ∈ Π0

2(A(L)), hence A(f)−1(K) \ {LK} ∈ Σ0
3(A(L)), where

LK is the unique LK ∈ L such that f(LK) = K. It follows that

A(L) \ L =

( ⋃
K∈K

A(f)−1(K) \ {LK}
)

∪ A(f)−1(K)
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is in Σ0
3(A(L)). Therefore, L ∈ ∆0

3(A(L)). To see that L ∈ ∆0
3(P(ω)), note

that by Proposition 4.1.6 there is A ∈ ∆0
3(P(ω)) such that L = A∩A(L). Since

A(L) ∈ Π0
2(P(ω)) by Lemma 4.3.6, it follows that L is the intersection of two

∆0
3 subsets of P(ω), hence L ∈ ∆0

3(P(ω)).
Proof of (3): L ∈ Π0

2(A(L)) ⇐⇒ L ∈ Π0
2(P(ω)) follows from Proposition

4.1.6 and Lemma 4.3.6. Assume L is scattered. Let A be a Noetherian alge-
braic closure system and f :L → A a continuous injection. Since A(A) = A,
A(f):A(L) → A is a continuous extension of f to A(L). Since A is a TD-space,
A(f)−1(x) ∈ ∆0

2(A(L)) for each x ∈ A, and there is at most one L ∈ L such
that L ∈ A(f)−1(x) because f is injective. For each L ∈ L, define

XL = {L} ∪
(
A(L) \ A(f)−1(f(L))

)
,

which is the union of a Π0
2-set and a ∆0

2-set, hence XL ∈ Π0
2(A(L)). Define

Z =

(⋂
L∈L

XL

)
∩ A(f)−1(f(L)),

which is in Π0
2(A(L)) (note that f(L), the image of L under f , is in ∆0

2(A)
because every subset of A is ∆0

2 by virtue of being a countable TD-space).
Assume L ∈ L. Clearly L ∈ XL, and for any L′ ∈ L, if L′ �= L then

f(L′) �= f(L), so L �∈ A(f)−1(f(L′)), hence L ∈ XL′ . Thus, L ⊆ Z.
Assume X ∈ Z. Since X ∈ A(f)−1(f(L)), A(f)(X) = f(L) for some L ∈ L.

Since X ∈ XL and X �∈ A(L) \ A(f)−1(f(L)), X = L ∈ L. Thus, Z ⊆ L.
Therefore, L = Z ∈ Π0

2(A(L)).
For the converse, assume that L is a countable TD-space and L ∈ Π0

2(A(L)).
To show that L is scattered, it is sufficient to show that L(α) contains an isolated
point (i.e., there is L ∈ L(α) such that {L} is open in L(α)) for each α ≥
0. Clearly, if L(α) is finite then it contains an isolated point, so assume that
L(α) = {Ln |n ∈ ω} where n �= m implies Ln �= Lm. Since L(α) is a closed
subset of L, it follows that L(α) ∈ Π0

2(A(L)), so let

A(L) \ L(α) =
⋃
i∈ω

Ui \ Vi

for Ui, Vi open subsets of A(L).
Assume for a contradiction that L(α) has no isolated point. Let F−1 = ∅.

For n ≥ 0, if there is L ∈ Vn ∩ L(α) such that Fn−1 ⊆ L, then let F ⊇ Fn−1

be finite such that L ∈↑A(L)F ⊆ Vn. If there is no such L, then let F = Fn−1.
Next, if F �⊆ Ln, then let Fn = F . If F ⊆ Ln, then let F ′ ⊇ F be a finite
tell-tale for Ln. Since {Ln} is not isolated, there is L′ ∈ L(α) containing F ′ and
distinct from Ln. Clearly, L′ �⊂ Ln because F ′ is a finite tell-tale for Ln, so
choose x ∈ L′ \ Ln and define Fn = F ′ ∪ {x}. Thus {Fn}n∈ω is an increasing
chain of finite subsets of ω such that for each n ∈ ω:

1. Fn �⊆ Ln,

2. There is L ∈ L(α) containing Fn,

3. If there is L ∈ Vn ∩ L(α) containing Fn, then ↑A(L)Fn ⊆ Vn.
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Since {Fn}n∈ω is an increasing chain, X =
⋃

n∈ω CL(Fn) is in A(L). Since
∀n : Fn �⊆ Ln, it is clear that X �∈ L(α), so there is i ∈ ω such that X ∈ Ui \ Vi.
Let n ≥ i be such that X ∈↑A(L) CL(Fn) ⊆ Ui (such an n exists because Ui

is Scott-open and {CL(Fn)}n∈ω is a directed set with supremum in Ui). Since
↑A(L) Fn =↑A(L) CL(Fn), there is L ∈ L(α) such that Fn ⊆ L hence L ∈ Ui.
Thus, L ∈ Vi and since i ≤ n, Fi ⊆ Fn, so L ∈ Vi ∩ L(α) and contains Fi.
Therefore, ↑A(L)Fi ⊆ Vi, which implies X ∈ Vi, a contradiction.

Therefore, L(α) must contain an isolated point. 
�

Note that Proposition 4.1.6 implies that L ∈ Σ0
2(P(ω)) ⇒ L ∈ Σ0

2(A(L))
and L ∈ ∆0

2(P(ω)) ⇒ L ∈ ∆0
2(A(L)), but the converses do not hold. For

example, L = {ω} is clearly scattered Alexandrov, hence {ω} ∈ ∆0
2(A({ω})),

but {ω} ∈ Π0
2(P(ω)) \ Σ0

2(P(ω)).

4.3.5 Confidence and reliability

In this subsection, we will investigate requirements on how a learner should
behave when given an information presentation for a concept that is not in the
concept space the learner identifies.

Let U be a (possibly uncountable) concept space, and let 〈RU , ρU〉 be a
representation of U that is Σ0

1-admissible with respect to a countably based
topology on U . We assume that L ⊆ U , and 〈R, ρ〉 is the restriction of 〈RU , ρU 〉
to L (i.e., R = ρ−1

U (L) ⊆ RU and ρ = ρU |R, the restriction of ρU to R). Let
〈H, h〉 be a hypothesis space for L.

We write Lρ and Uρ to emphasize that L and U are viewed as topological
spaces induced by 〈RU , ρU 〉, and Lh is L with the discrete topology induced by
〈H, h〉.

Confident learners

A confident learner (see Jain et al. [25]) is a learner that converges no matter
what information presentation it receives, even if it does not represent any
concept in the concept space the learner is expected to identify. Confident
identifiability of concept spaces can be formalized as follows.

Definition 4.3.8 L is confidently identifiable within U (with respect to 〈RU , ρU 〉
and 〈H, h〉) if and only if there is a learner ψ:RU → Hω such that ψ|R, the
restriction of ψ to R, identifies L and ψ(R) converges for all R ∈ RU . 
�

Equivalently, L is confidently identifiable within U if and only if there is
a learner ψ:RU → Hω such that ψ|R identifies L and limH ◦ψ:⊆ RU → H
is a total function. The following theorem completely characterizes confident
identifiability.

Theorem 4.3.9 L is confidently identifiable within U (with respect to 〈RU , ρU 〉
and 〈H, h〉) if and only if Lρ is a countable TD-space and L ∈ Π0

2(Uρ).

Proof: Assume L is confidently identified by ψ:RU → Hω. It follows from The-
orem 4.3.2 that Lρ is a countable TD-space. Since ψ is confident, limH ◦ψ:RU →
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H is total, hence f :RU → Lh, defined as f = h ◦ limH ◦ψ, is a total Σ0
2-

measurable function. Let S = {⊥,$} be the Sierpinski space. Every singleton
subset of a countably based T0-space is a Π0

2-set, hence χ¬L:U → S, defined as

χ¬L(X) =
{

⊥ if X = L ,
$ if X �= L,

is Σ0
2-measurable for eachL ∈ Lh. Thus, χ:U →

∏
L∈Lh

S defined as χ(X)(L) =
χ¬L(X) is Σ0

2-measurable by Proposition 4.1.20 (here we are treating Lh as
a subspace of ω to simplify notation). Define g:RU → (

∏
L∈Lh

S) × Lh by
g = 〈χ ◦ ρU , f〉. Clearly, g is Σ0

2-measurable because χ ◦ ρU and f are Σ0
2-

measurable.
Intuitively, for eachR ∈ RU , g(R) runs ψ onR and checks in parallel whether

R is a representation of L for each L ∈ L. Let R ∈ RU be given and assume
that g(R) = 〈ξ, L〉 ∈ (

∏
L∈Lh

S) × Lh. If R ∈ R, then since ψ identifies L,
ρU (R) = L, hence ξ(L) = χ(ρU (R))(L) = χ¬L(ρU (R)) = ⊥. If R �∈ R, then
clearly ρU (R) �= L, hence ξ(L) = $.

Next, we show that ε: (
∏

L∈Lh
S) × Lh → S, defined as ε(〈ξ, L〉) = ξ(L),

is continuous.2 If we let πL:
∏

L∈Lh
S → S be the L-th projection, then

π−1
L ($) = {ξ | ξ(L) = $} is open because πL is continuous. It follows that
UL = (π−1

L ($)) × {L} is open in (
∏

L∈Lh
S) × Lh. Since ε−1($) =

⋃
L∈LUL is

open, ε is continuous.
It follows that ε ◦ g:RU → S is a Σ0

2-measurable function. By our construc-
tion, ε(g(R)) = ⊥ ⇐⇒ R ∈ R holds, hence R ∈ Π0

2(RU ). It follows from
Corollary 4.1.31 that L ∈ Π0

2(Uρ).
To prove the converse, assume that L ∈ Π0

2(Uρ) and Lρ is a countable TD-
space. Let L�

h = Lh ∪ {$} have the topology defined as U ⊆ L�
h is open if and

only if U = ∅ or else $ ∈ U . Define f :U → L�
h as f(X) = $ if X �∈ L and

f(X) = L if X = L ∈ L. If U ⊆ L�
h is non-empty, then f−1(U) = (U \ L) ∪ S,

where S ⊆ Lρ. Since Lρ is a countable TD-space, S ∈ ∆0
2(Lρ), so by Proposition

4.1.6 there is W ∈ Σ0
2(Uρ) such that S = W ∩ L. U \ L is in Σ0

2(Uρ) by
assumption, thus f−1(U) = (U \L)∪W is in Σ0

2(Uρ), hence f is Σ0
2-measurable.

Let 〈R�, ρ�〉 be a Σ0
1-admissible representation of L�

h . By Theorem 4.1.43
there is a Σ0

2-measurable F :RU → R� such that f ◦ ρU = ρ� ◦ F .
Next define a multivalued function g:L�

h ⇒ Lh so that g(L) = {L} for L ∈
Lh and g($) = Lh. For every non-empty U ⊆ Lh, g−1(U) = U ∪{$}, hence g is
lower semicontinuous. Since L�

h is a countable TD-space, Theorem 3.3.3 implies3

that there is a continuous function G:R� → H such that h(G(R)) ∈ g(ρ�(R))
for every R ∈ R�.

Define p:RU → Lh by p = h ◦ G ◦ F . Then p is Σ0
2-measurable since G is

continuous and F is Σ0
2-measurable. For each R ∈ R with ρU (R) = L ∈ L,

ρ�(F (R)) = f(ρU(R)) = f(L) = L,

2The reader should note that
∏

L∈Lh
S is homeomorphic to SLh , so this is essentially just

a special case of Lemma 3.1.19.
3Although Theorem 3.3.3 is phrased in terms of concept spaces with the Π-topology and

texts, the fact texts form a Σ0
1-admissible representation (Theorem 3.1.11) and that every

countably based T0-space is homeomorphic to a concept space with the Π-topology shows
that the result applies to all countably based T0-spaces with texts replaced by arbitrary Σ0

1-
admissible representations.
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thus
p(R) = h(G(F (R))) ∈ g(ρ�(F (R))) = g(L) = {L},

hence p(R) = L = ρU (R).
Finally, since p is Σ0

2-measurable and since 〈Hω, h◦ limH〉 is a Σ0
2-admissible

representation of Lh by Theorem 4.3.1, there is continuous ψ:RU → Hω such
that p = h ◦ limH ◦ψ. Since p is a total function, limH ◦ψ is total, thus ψ
converges on every R ∈ RU . Clearly, ψ(R) converges to a hypothesis for p(R) =
ρU (R) for each R ∈ R, thus ψ confidently identifies L within U . 
�

Corollary 4.3.10 If Lρ is confidently identifiable within Uρ and Jρ ⊆ Lρ, then
Jρ is confidently identifiable within Uρ.

Proof: Jρ ∈ Π0
2(Lρ) because Lρ is a countable TD-space, so by Proposition

4.1.6 there is A ∈ Π0
2(Uρ) such that Jρ = A∩Lρ. Since Lρ ∈ Π0

2(Uρ), it follows
that Jρ ∈ Π0

2(Uρ). 
�

Ambainis et al. [2] proved that L is confidently identifiable from positive
data if and only if L is identifiable with a mind-change bound. This result follows
from Theorem 4.3.9 and Theorem 4.3.7 by taking U = P(ω) and RU = T (P(ω)).

Corollary 4.3.11 (Ambainis et al. [2]) L is confidently identifiable within
P(ω) from positive data if and only if L is scattered with respect to the Π-
topology. 
�

In the case of identification from positive and negative data, note that P(ω)
with the informant topology is homeomorphic to 2ω, so the Π0

2-subsets of P(ω)
(with the informant topology) are precisely the zero-dimensional Polish spaces.
Therefore, L is confidently identifiable within P(ω) from positive and negative
data if and only if L is a countable zero-dimensional Polish space (with respect
to the informant topology). Based on this observation, we can show that the
above result by Ambainis et al. [2] also applies to identification from positive
and negative data.

Corollary 4.3.12 L is confidently identifiable within P(ω) from positive and
negative data if and only if L is scattered with respect to the informant topology.

Proof: If L is confidently identifiable within P(ω) from positive and negative
data then it is a countable Polish space therefore it is scattered (see Section 6
in [29]).

For the converse, assume L is scattered with respect to the informant topol-
ogy. Let e:P(ω)I → P(ω)Π be a topological embedding of P(ω) with the
informant topology into P(ω) with the Π-topology. Then e(L), being homeo-
morphic to L, is scattered, so e(L) ∈ Π0

2(P(ω)Π) by Theorem 4.3.7. Therefore,
L = e−1(e(L)) is in Π0

2(P(ω)I) because e is continuous. It follows that L is
confidently identifiable within P(ω) from positive and negative data. 
�

Next we give a sufficient condition for confident identifiability from positive
and negative data based only on the set-theoretical structure of L.

Corollary 4.3.13 If A(L) is countable, then L is confidently identifiable within
P(ω) from positive and negative data.
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Proof: Let id:P(ω)I → P(ω)Π be the identity function from P(ω) with the
informant topology to P(ω) with the Π-topology. Clearly, id is continuous. Since
A(L) ∈ Π0

2(P(ω)Π) holds by Lemma 4.3.6, f−1(A(L)) = A(L) ∈ Π0
2(P(ω)I).

Since A(L) is countable, it follows that A(L) is confidently identifiable within
P(ω) from positive and negative data, therefore L is confidently identifiable
within P(ω) from positive and negative data. 
�

The converse does not hold. For example, COSINGLE = {ω\{n} |n ∈ ω} is
easily seen to be confidently identifiable within P(ω) from positive and negative
data, but A(COSINGLE) = P(ω) is uncountable. The concept space

ω + 1 = {{n |n < m} |m ∈ ω} ∪ {ω}

satisfies A(ω + 1) = ω + 1, so it is confidently identifiable within P(ω) from
positive and negative data, even though ω + 1 is not even identifiable from
positive data alone.

Reliable learners

Reliable learners were introduced and investigated by Sakurai [44]. A reliable
learner is opposite of a confident learner, in that it converges only on information
presentations that are for concepts in the concept space it identifies.

Definition 4.3.14 L is reliably identifiable within U (with respect to 〈RU , ρU〉
and 〈H, h〉) if and only if there is a learner ψ:RU → Hω such that ψ|R identifies
L and for all R ∈ RU , ψ(R) converges if and only if ρU(R) ∈ L. 
�

Equivalently, L is reliably identifiable within U if and only if there is a learner
ψ:RU → Hω such that ψ|R identifies L and dom(limH ◦ψ) = R. The following
theorem completely characterizes reliable identifiability.

Theorem 4.3.15 L is reliably identifiable within U (with respect to 〈RU , ρU〉
and 〈H, h〉) if and only if Lρ is a countable TD-space and L ∈ Σ0

2(Uρ).

Proof: Assume ψ:RU → Hω reliably identifies L within U . Then clearly
Lρ is a countable TD-space. Define f :Hω → S by f(ξ) = $ if and only if
∃m∀n ≥ m : ξ(n) = ξ(m). It is easily seen that f is Σ0

2-measurable, and
f ◦ ψ(R) = $ if and only if ψ(R) converges if and only if R ∈ R. Therefore,
R = (f ◦ ψ)−1($) ∈ Σ0

2(RU ), so L ∈ Σ0
2(Uρ) by Corollary 4.1.31.

For the converse, assume that Lρ is a countable TD-space and L ∈ Σ0
2(Uρ).

Let L⊥
h = Lh ∪ {⊥} have the topology defined as U ⊆ L⊥

h is open if and only
if U = L⊥

h or else ⊥ �∈ U . Define f :U → L⊥
h as f(X) = ⊥ if X �∈ L and

f(X) = L if X = L ∈ L. If U ⊆ L⊥
h is open and U �= L⊥

h then ⊥ �∈ U so
f−1(U) ⊆ L. Thus, f−1(U) ∈ Σ0

2(Lρ) because Lρ is a countable TD-space,
hence f−1(U) ∈ Σ0

2(Uρ) because L ∈ Σ0
2(Uρ). Therefore, f is Σ0

2-measurable.
It easily follows from Theorem 4.2.6 that lim⊥:Hω → L⊥

h , defined as

lim⊥(ξ) =
{
h(limH(ξ)) if ξ converges,
⊥ otherwise,

is a Σ0
2-admissible representation of L⊥

h . Therefore, there is continuous ψ:RU →
Hω such that f ◦ ρU = lim⊥ ◦ψ. For each R ∈ R with ρU (R) = L ∈ L,
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f(ρU(R)) = f(L) = L = lim⊥(ψ(R)), so ψ(R) converges to a hypothesis for L.
If R �∈ R, then f(ρU (R)) = ⊥ = lim⊥(ψ(R)), so ψ(R) diverges. Therefore, ψ
reliably identifies L within U . 
�

Corollary 4.3.16 If Lρ is reliably identifiable within Uρ and Jρ ⊆ Lρ, then Jρ

is reliably identifiable within Uρ.

Proof: Jρ ∈ Σ0
2(Lρ) because Lρ is a countable TD-space, so by Proposition

4.1.6 there is A ∈ Σ0
2(Uρ) such that Jρ = A∩Lρ. Since Lρ ∈ Σ0

2(Uρ), it follows
that Jρ ∈ Σ0

2(Uρ). 
�
It immediately follows from Theorem 4.3.15 and Theorem 4.3.7 that if L is

reliably identifiable within P(ω) from positive data, then L is an Alexandrov
space. Sakurai [44] gave a necessary and sufficient condition.

Corollary 4.3.17 (Sakurai [44]) L is reliably identifiable within P(ω) from
positive data if and only if every concept in L is a finite set.

Proof: If every concept in L is finite then L is clearly a countable TD-space. It
is easily seen that {F} ∈ ∆0

2(P(ω)) for every finite F ⊆ ω. Therefore, L is the
countable union of ∆0

2-sets, hence L ∈ Σ0
2(P(ω)).

For the converse, assume that L ∈ Σ0
2(P(ω)). Then for any L ∈ L there are

Π-open sets U, V ⊆ P(ω) such that L ∈ U \ V ⊆ L. We can assume without
loss of generality that U =↑P(ω)F for some finite F ⊆ ω, and that V =↓P(ω)L.
If L is infinite, then for any finite G ⊆ L, L′ = F ∪ G is a strict subset of L
containing G, and L′ ∈ U \ V , so G is not a finite tell-tale for L. It follows that
if L contains an infinite concept, then L is not a TD-space. 
�

Corollary 4.3.18 If Uρ is a (possibly uncountable) TD-space, then every count-
able L ⊆ U is reliably identifiable within U (with respect to 〈RU , ρU〉).

Proof: Since every singleton subset of Uρ is a ∆0
2-set, if L is countable then it

is the countable union of ∆0
2 sets, hence L ∈ Σ0

2(Uρ). 
�
We immediately obtain Sakurai’s characterization of reliable identification

from positive and negative data.

Corollary 4.3.19 (Sakurai [44]) L is reliably identifiable within P(ω) from
positive and negative data if and only if L is countable. 
�

Refuting learners

Refutable identification was introduced by Mukouchi and Arikawa [41]. In this
case, the learner is required to identify L in the limit, but in addition, if given
an information presentation of a concept not in L, then the learner must halt
within finite time and display an error. This means that the learner must be
able to observe the property that R ∈ RU \ R within finite time, which means
that R must be a closed subset of RU , hence L must be a closed subset of U .

Theorem 4.3.20 L is refutably identifiable within U (with respect to 〈RU , ρU 〉
and 〈H, h〉) if and only if Lρ is a countable TD-space and L is a closed subset
of Uρ. 
�
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The following example shows how the results in this section apply to non-
traditional concept spaces.

Example 4.3.21 Let Q be the set of rational numbers viewed as a subspace
of the real numbers, R, with the Euclidean topology. Since R is a metric space,
it is a TD-space, hence Q is a countable TD-space. It is well known that Q is
in Σ0

2(R) \Π0
2(R). Therefore, with respect to any Σ0

1-admissible representation
of R, Q is reliably identifiable within R but neither confidently identifiable nor
refutably identifiable within R. Note that this also applies if we replace R with
any perfect Polish space and Q with any countable dense subset (see Exercise
8.7 in [29]). The natural numbers, N, are a closed subset of R, so they are
refutably identifiable within R. 
�
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Chapter 5

Conclusion

We have explored many algebraic and topological aspects of algorithmic learning
theory.

In Chapter 2 we introduced an algebraic closure operator on concept spaces
which we used to give a characterization of the mind-change complexity of un-
bounded unions of restricted pattern languages.

In Chapter 3 we showed many connections between well known structural
properties of concept spaces and well known topological properties. We also
gave a complete topological characterization of strong and weak reducibility
between concept spaces.

In Chapter 4 we introduced a very general class of representations of spaces
and characterized the functions between spaces that can be realized. We then
used these results to place several variations of identification in the limit as well
as classification in the limit within a common topological framework.

Some important future work would be to model scenarios where the learner
interacts with the environment and to introduce probability into our framework.

An example of an interactive learner is a query learner (see [5]). A query
learner asks a teacher questions about an unknown concept, and produces hy-
potheses based on the answers it receives. Such a learner is essentially doing
two tasks at once: querying and inferring. The querying aspect can be mod-
eled as a function q: (Q × A)<ω → Q that chooses a query from Q based on
the finite sequences of answers (elements of A) that it received from previous
queries. If q’s queries are answered with respect to a particular concept L ∈ L,
then q determines an infinite sequence in (Q×A)ω which can be interpreted as
a particular representation of L. In this way, q determines a representation of
L in terms of infinite sequences of query-answer pairs. The inferring aspect of
a query learner can then be interpreted as a learner ψ in our sense with respect
to the representation generated by q. The main issue then is whether or not a
querier q exists that can generate a representation in a way that a learner ψ can
identify L.

If we assume that Q and A are countable, and that for each concept L ∈ L
and query Q ∈ Q there is a unique answer A ∈ A to the query Q about L,
then each L ∈ L can be viewed as a function L:Q → A, hence L is naturally
interpreted as a subspace of the exponential object AQ (where Q and A have
discrete topologies). If q is defined to always ask every possible query in Q,
then q will determine a representation of L that is admissible with respect to
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the topology L inherits as a subspace of AQ. Therefore, all of our results will
apply to identifying L in this situtation.

Probability is an important tool in learning theory that we have not ad-
dressed. One application is to investigate identification with high probabilites.
For example, we might assume that each L ∈ L determines a probabilistic mea-
sure µL on the Borel subsets of T (L) determining the probability that particular
texts T will be presented given L is the concept to be identified. Then given
any learner ψ: T (L) → Hω, and assuming L is the concept to be identified, the
probability that ψ converges to a hypothesis for L is µL((h◦limH ◦ψ)−1(L)). We
could then investigate which scenarios would allow a ψ to exist that could iden-
tify each concept with some given probability. It would be interesting to see how
allowing some probability of error affects ψ’s ability to realize non-continuous
functions of varying complexity.

Another application is to investigate learners that must identify or in some
sense work with probability distributions. Some investigation into Σ0

1-admissible
representations of probability measures in terms of probabilistic processes has
been done by [50] and [49]. Σ0

2-admissible representations may be useful for
representing probability distributions by random samples. For example, define
δ:⊆ 2ω → [0, 1] by

δ(ξ) = p ⇐⇒ lim
n→∞

( 1
n

n∑
i=0

ξ(i)
)

= p

Assume X(0)
p , X

(1)
p , . . . is a countable sequence of independently drawn random

samples withXp ∈ {0, 1}, P (Xp = 1) = p, and P (Xp = 0) = 1−p. By the strong
law of large numbers, we have that δ(〈X(0)

p , X
(1)
p , . . .〉) = p almost surely (i.e.

with probability 1). This justifies our interpretation of δ as a representation
of probability distributions by samples. Although δ is not a Σ0

1-admissible
representation, it is a Σ0

2-admissible representation of [0, 1] with the Euclidean
topology.
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[7] I. Battenfeld, M. Schröder, and A. Simpson, A convenient category of do-
mains, Electr. Notes Theor. Comput. Sci. 172 (2007), 69–99.

[8] V. Brattka, Effective Borel measurability and reducibility of functions,
Mathematical Logic Quarterly 51 (2005), 19–44.

[9] V. Brattka and M. Makananise, Limit computable functions and subsets,
(to appear).

[10] D. J. Brown and R. Suszko, Abstract logics, Dissertationes Mathematicae
102 (1973), 9–41.

[11] S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer-
Verlag, 1981.

[12] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, second
ed., Springer-Verlag, 1996.

[13] M. de Brecht, M. Kobayashi, H. Tokunaga, and A. Yamamoto, Inferability
of closed set sytems from positive data, Joint JSAI 2006 Workshop Post-
Proceedings, Lecture Notes in Artificial Intelligence, vol. 4384, Springer,
2007, pp. 265–275.

119



120 BIBLIOGRAPHY

[14] M. de Brecht and A. Yamamoto, Mind change complexity of inferring un-
bounded unions of pattern languages from positive data, Proc. ALT ‘06,
Lecture Notes in Artificial Intelligence, vol. 4262, Springer, 2006, pp. 124–
138.

[15] , Topological properties of concept spaces, Proc. ALT ‘08, Lecture
Notes in Artificial Intelligence, vol. 5254, Springer, 2008, pp. 374–388.

[16] , Σ0
α-admissible representations, Sixth International Conference on

Computability and Complexity in Analysis (CCA 2009), 2009.

[17] R. Engelking, General topology, Heldermann, 1989.

[18] R. Freivalds and C. H. Smith, On the role of procrastination for machine
learning, Information and Computation 107 (1993), 237–271.

[19] J. H. Gallier, What’s so special about Kruskal’s theorem and the ordinal
γ0? a survey of some results in proof theory, Annals of Pure and Applied
Logic 53 (1991), 199–260.

[20] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and
D. W. Scott, Continuous lattices and domains, Cambridge University Press,
2003.

[21] E. M. Gold, Language identification in the limit, Information and Control
10 (1967), 447–474.

[22] R. Hasegawa, Well-ordering of algebras and Kruskal’s theorem, Logic, Lan-
guage and Computation, Lecture Notes in Computer Science, vol. 792,
Springer, 1994, pp. 133–172.

[23] G. Higman, Ordering by divisibility in abstract algebras, Proceedings of the
London Mathematical Society, Third Series, vol. 2, 1952, pp. 326–336.

[24] S. Jain, E. Kinber, and R. Wiehagen, Language learning from texts: Degrees
of intrinsic complexity and their characterizations, Journal of Computer
and System Sciences 63 (2001), 305–354.

[25] S. Jain, D. Osherson, J. Royer, and A. Sharma, Systems that learn: An
introduction to learning theory, second ed., MIT Press, 1999.

[26] S. Jain and A. Sharma, Elementary formal systems, intrinsic complexity,
and procrastination, Proceedings of COLT ‘96, 1996, pp. 181–192.

[27] S. Jain and A. Sharma, The intrinsic complexity of language identification,
Journal of Computer and System Sciences 52 (1996), 393–402.

[28] P. T. Johnstone, Stone spaces, Cambridge University Press, 1982.

[29] A. Kechris, Classical descriptive set theory, Springer-Verlag, 1995.

[30] J. Kelley, General topology, Springer-Verlag, 1975.

[31] K. Kelly, The logic of reliable inquiry, Oxford University Press, 1996.



BIBLIOGRAPHY 121

[32] S. Kobayashi, Approximate identification, finite elasticity and lattice struc-
ture of hypothesis space, Technical Report, CSIM 96-04, Dept. of Compt.
Sci. and Inform. Math., Univ. of Electro- Communications, 1996.

[33] K. Kunen, Set theory: An introduction to independence proofs, North Hol-
land Publishing Company, 1980.

[34] W. Luo and O. Schulte, Mind change efficient learning, Information and
Computation 204 (2006), 989–1011.

[35] S. Mac Lane, Categories for the working mathematician, Springer-Verlag,
1971.

[36] E. Martin, A. Sharma, and F. Stephan, Unifying logic, topology and learn-
ing in parametric logic, Theoretical Computer Science 350 (2006), 103–124.

[37] T. Motoki, T. Shinohara, and K. Wright, The correct definition of finite
elasticity: Corrigendum to identification of unions, Proc. COLT ‘91, 1991,
p. 375.

[38] Y. Mukouchi, Characterization of finite identification, Proceedings of the
International Workshop on Analogical and Inductive Inference, Lecture
Notes in Computer Science, vol. 642, Springer, 1992, pp. 260–267.

[39] , Containment problems for pattern languages, IEICE Trans. Inform.
Systems E75-D (1992), 420–425.

[40] , Inductive inference of an approximate concept from positive data,
Proc. ALT ‘94, Lecture Notes in Artificial Intelligence, vol. 872, Springer,
1994, pp. 484–499.

[41] Y. Mukouchi and S. Arikawa, Inductive inference machines that can refute
hypothesis spaces, Proc. ALT ‘93, Lecture Notes in Artificial Intelligence,
vol. 744, Springer, 1993, pp. 123–137.

[42] G. Plotkin, Domains, The “Pisa notes”, 1983.

[43] J. Saint Raymond, Preservation of the Borel class under countable-compact-
covering mappings, Topology and its Applications 154 (2007), 1714–1725.

[44] A. Sakurai, Inductive inference of formal languages from positive data enu-
merated primitive-recursively, Proc. 2nd Int. Workshop on Algorithmic
Learning Theory, IOS Press, 1992, pp. 73–83.

[45] M. Sato and T. Moriyama, Inductive inference of length bounded EFS’s
from positive data, Technical Report DMSIS-RR-94-2, Department of
Mathematical Sciences and Information Sciences, University of Osaka,
1994.

[46] M. Sato, Y. Mukouchi, and D. Zheng, Characteristic sets for unions of
regular pattern languages and compactness, Proc. ALT ‘98, Lecture Notes
in Artificial Intelligence, vol. 1501, Springer, 1998, pp. 220–233.

[47] M. Sato and K. Umayahara, Inductive inferability for formal languages from
positive data, IEICE Trans. Inf. and Syst. E75-D(4) (1992), 415–419.



122 BIBLIOGRAPHY
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[50] M. Schröder and A. Simpson, Representing probability measures using prob-
abilistic processes, Journal of Complexity 22 (2006), 768–782.

[51] D. Scott, Domains for denotational semantics, Automata, Languages and
Programming, 1982, Lecture Notes in Computer Science, vol. 140, Springer,
1982, pp. 577–613.

[52] V. Selivanov, Towards a descriptive set theory for domain-like structures,
Theoretical Computer Science 365 (2006), 258–282.

[53] C. E. Shannon, A mathematical theory of communication, Bell System
Technical Journal 27 (1948), 379–423, 623–656.

[54] T. Shinohara and H. Arimura, Inductive inference of unbounded unions of
pattern languages from positive data, Theoretical Computer Science 241
(2000), 191–209.

[55] S. G. Simpson, Ordinal numbers and the Hilbert basis theorem, Journal of
Symbolic Logic 53 (1988), 961–974.

[56] M. Smyth, Topology, Handbook of Logic in Computer Science, vol. 1, Ox-
ford University Press, 1992.

[57] F. Stephan and Y. Ventsov, Learning algebraic structures from text, Theo-
retical Computer Science 268 (2001), 221–273.

[58] A. Tang, Chain properties in P (ω), Theoretical Computer Science 9 (1979),
153–172.

[59] K. Weihrauch, Computable analysis, Springer-Verlag, 2000.

[60] K. Weihrauch and C. Kreitz, Representations of the real numbers and of
the open subsets of the set of real numbers, Annals of Pure and Applied
Logic 35 (1987), 247–260.

[61] K. Wright, Identification of unions of languages drawn from an identifiable
class, Proceedings of COLT ‘89, 1989, pp. 328–333.

[62] M. Ziegler, Revising type-2 computation and degrees of discontinuity, Elec-
tronic Notes in Theoretical Computer Science 167 (2007), 255–274.



Index

Bad(〈P,≤P 〉), 31
Bad�=ε(〈P,≤P 〉), 40
CL, 26
Ord(〈P,≤P 〉), 35
OrdB(〈P,≤P 〉), 40
P ∗, 31
X \ Y , 18
X × Y , 37
A(L), 26
A(f):A(K) → A(L), 52
I(L), 12
O(X), 18
T (L), 12
∆0

α(X), 82∨
,
∧

, 25
Π0

α(X), 82
Σ0

α(X), 82
J ≤S K, 75
J ≤W K, 75
L(α), 63
P(X), 24
∼=, 34
∅, 18
≡L, 41
ιL, 12
limH, 75
COINIT , 33
SINGLE , 33
ω, 11
ω<ω, 19
ωω, 11
ω1, 36
π1, π2, 37
πω

1 , π
ω
2 , 37

�S , 31
�H , 31
�L, 41
σ ≺ ξ, 19
τL, 12
∪̃, 29
↑ σ, 19

ε, 12
ε0, 36
ξ(n), 12
ξ[i], 12
acc(L), 63
accL(L), 63
dom(f), 21
f :X ⇒ Y , 76
f :⊆ X → Y , 21
ordP (x), 35
range(f), 21
↑L S, ↓L S, 50

absolutely injective, 76
accumulation order, 63
accumulation point, 63
admissible representation, 56, 88
Alexandrov space, 65
algebraic closure operator, 24
algebraic closure system, 24
anti-chain, 31

bad sequence, 31
Baire topology, 19
basis, 51

characteristic set, 28, 65
clopen set, 19
closed set, 19
closure operator, 24
compact, 25
complete lattice, 25
concept, 11
concept space, 11
confident, 110
content, 54
continuous, 14, 20
countably based, 51

directed set, 25

finitary element, 25

123



124 INDEX

finite cross property, 65
finite elasticity, 29
finite identification, 104
finite tell-tale, 14
finite thickness, 32
finitely generated closed set, 24

greatest lower bound, 25

Higman embedding, 31
homeomorphic, 51
hypothesis space, 11

identification in the limit, 14
infimum, 25
infinite cross sequence, 65
infinite elasticity, 29
informant, 12, 61
information ordering, 16
isolated point, 63

learner, 14
least upper bound, 25
limit ordinal, 35
lower semicontinuous, 76

M-finite thickness, 72
MEF-condition, 72
MFF-condition, 72
mind-change complexity, 37
multivalued function, 76

Noetherian closure system, 29

observable, 16
open function, 55
open set, 19
order-isomorphism, 34
order-type, 35
ordinal, 34

pair of finite tell-tales, 73
partial function, 21
partially ordered set, 25
Π-topology, 50
poset, 25
positive information topology, 50
property, 15

quasi-dense, 64
query learning, 117

quotient topology, 20

〈Σ0
α,Σ

0
β〉-realizable, 96

refutable, 114
reliable, 113
representation, 11

Scott-continuous, 52
Scott-open, 51
Scott-topology, 51
Σ0

α-measurable, 85
sober space, 67
strong reduction, 75
subsequence relation, 31
subspace topology, 19, 51
successor ordinal, 35
supremum, 25

T0-space, 51
TD-space, 68
text, 12
topological invariance, 62
topological space, 18
topologically compact, 60
topology, 19

upper set, 51

weak reduction, 75
well-founded, 35
well-order, 34
well-partial-order, 31

zero-dimensional, 56



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


