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1. Introduction

A basic notion of Computable Analysis [3, 32] is the notion of an admissible representation of a topological space
X. This is a partial continuous surjection § from the Baire space A/ onto X satisfying a certain universality property
(see Subsection 2.3 for some more details). Such a representation of X often induces a reasonable computability
theory on X, and the class of admissibly represented spaces is wide enough to include most spaces of interest for
Analysis or Numerical Mathematics. As shown by the second author [20], this class coincides with the class of
the so-called qcbg-spaces, i.e. Ty-spaces which are quotients of countably based spaces, and it forms a cartesian
closed category with the continuous functions as morphisms. Thus, among qcbg-spaces one meets many important
function spaces including the continuous functionals of finite types [13, 14] interesting for several branches of
logic and computability theory. In addition to being cartesian closed, the category QCBg of qcby-spaces is also
closed under countable limits, countable colimits, and many other important constructions, making it a very con-
venient category of topological spaces. However, along with the benefits of this generality comes the challenge of
developing comprehensive theories that provide a deeper understanding of arbitrary qcby-spaces.

Classical descriptive set theory [12] has proven to be extremely useful for classifying and studying separable
metrizable spaces. Every separable metrizable space can be topologically embedded into a Polish space (a separable
completely metrizable space), for example by taking the completion of a compatible metric. We can therefore
classify a separable metrizable space according to the complexity of defining it as a subspace of some Polish space,
where topological complexity can be quantified using natural hierarchies such as the Borel or Luzin (projective)
hierarchies. This method of classification is topologically invariant for complexity levels of at least Hg in the Borel
hierarchy (it does not depend on which Polish space we embed into) because of the remarkable fact that a subspace
of a Polish space is Polish if and only if it is a II3 subspace. We can even generalize this approach to the entire class
of countably based T-spaces (abbreviated cby-spaces) by using quasi-Polish spaces [5], which have the same IT)
absoluteness property as Polish spaces. In fact, for classifying cby-spaces we can restrict ourselves to the algebraic
domain Pw of all subsets of natural numbers (denoted w), which is quasi-Polish and universal for cby-spaces.

Unfortunately, this approach to classifying topological spaces does not immediately generalize to the entire
category of qcbg-spaces. First of all, as we will see in this paper, there is no universal qcbg-space to serve as a basis

*(In preparation. Version: July 10, 2015). This is an extended version of a conference paper to appear in Computability in Europe 2015:
Evolving Computability.

2211-3568/12/$27.50 © 2012 — IOS Press and the authors. All rights reserved



2 de Brecht, Schrader and Selivanov / Base-Complexity Classifications of Qcbg-Spaces

for comparing topological complexity. A second critical problem is that the II) absoluteness property of Polish
and quasi-Polish spaces does not apply to subspaces of non-countably based spaces. For example, in [30] it is
shown that the space O(N), the lattice of open subsets of A" with the Scott-topology, contains singleton subsets
which are IT{-complete even though they are trivially Polish with respect to the subspace topology. It is possible
to use similar methods to construct qcbg-spaces that have singleton subsets of arbitrarily high complexity in the
hyperprojective hierarchy.

Important progress towards classifying qcby-spaces was made in [25] and [26], where the Borel, projective, and
hyperprojective hierarchies of qcbg-spaces were introduced. The major insight was to classify qcbg-spaces accord-
ing to the complexity of the equivalence relation on the elements of A induced by an admissible representation of
the space, which elegantly sidesteps the problem of finding a universal space. This approach works well because
the universal property of admissible representations causes them to reflect many important topological properties
of the underlying space. In fact, it was shown in [25, 26] that for cby-spaces, the newly introduced classifica-
tion approach using admissible representations is equivalent to the approach described above that uses topological
embeddings into Pw.

However, the hierarchies defined in [25, 26] do not differentiate between countably based qcby-spaces and non-
countably based spaces. In particular, the problem of placing an upper bound on the relative complexity of even
very simple subsets (such as singletons) of non-countably based spaces can not be settled using this approach. Thus,
although the Borel, projective, and hyperprojective hierarchies quantify one important aspect of the complexity
of gcbg-spaces, there appears to be an additional dimension of complexity that is mostly apparent in the large
difference between countably based and non-countably based spaces.

In this paper we attempt to capture this additional dimension of complexity by introducing methods to classify
a topological space according to the complexity of defining a basis for its topology. Our hope is that by combining
the basis-complexity measures introduced in this paper with the hierarchies defined in [25, 26], we can obtain a
more complete measure of the topological complexity of qcby-spaces.

The basic idea of our approach is a natural generalization of the definition of a countable basis. Given a topo-
logical space X, a countable basis for X can be viewed as a mapping ¢ from w to the set O(X) of open subsets
of X such that the range of ¢ is a basis for the topology of X. As a first approach to generalizing this definition
to non-countably based spaces, we can replace the index set w with an arbitrary topological space Y and consider
whether or not a basis for X can be indexed by some mapping ¢: ¥ — O(X) which is continuous with respect
to the Scott-topology on O(X). The class of spaces that have such an indexing for a basis will be called Y-based
spaces, and the complexity of Y according to the hierarchies in [25, 26] provides an indication of the complexity
of the spaces in this class. This definition is very natural and we will show that it has several useful properties, but
unfortunately it can be difficult to use in practice. We therefore also introduce a second related concept that we call
sequentially Y-based spaces, which requires a more complicated definition but behaves much better when working
with sequential spaces. In particular, we will show that universal spaces exist for the class of sequentially Y-based
spaces for each qcbg-space Y. We expect this observation will be useful for future development of a descriptive
theory of qcby-spaces that avoids the problems mentioned earlier in this introduction.

We will provide a detailed analysis of the relationship between the proposed hierarchies and the previous ones,
and provide some applications. The newly introduced basis-complexity classifications can be particularly useful
when determining whether one space can be embedded into another space. We will demonstrate this claim by
investigating the existence of certain classes of universal qcbg-spaces, by showing that every qcby-space can be
embedded into a space with a total admissible representation, and by establishing several apparently new properties
of the Kleene-Kreisel continuous functionals of countable types.

After recalling some definitions and known facts in the next section, we discuss the notions of topological and
sequential embeddings in Section 3. In Section 4 we establish some basic facts on the hyperspace of open subsets
of a qcbg-space, and in Section 5 we investigate the hyperspace of compact subsets. In Sections 6 and 7 we first
introduce and study some versions of the notion of a Y-based space, in particular we characterize the qcby-spaces
in these terms, and then define and investigate the two relevant classifications of qcbg-spaces. In Section 8 we study
which levels of the the new and old hierarchies have a universal (or sequentially universal) space, and we conclude
in Section 9.



de Brecht, Schrader and Selivanov / Base-Complexity Classifications of Qcbg-Spaces 3

2. Notation and preliminaries

2.1. Notation

We freely use standard set-theoretic notations like dom(f), rng(f) and graph(f) for the domain, range and graph of
a function f, respectively, X x Y for the Cartesian product, X @ Y for the disjoint union of sets X and Y, ¥V’ X for the
set of functions f: X — Y (but in the case when X, Y are qcby-spaces we use the same notation to denote the set of
continuous functions from X to Y), and P(X) for the set of all subsets of X. For A C X, A denotes the complement
X \ A of A in X. We identify the set of natural numbers with the first infinite ordinal w. The first uncountable ordinal
is denoted by w;. The notation f : X — ¥ means that f is a total function from a set X to a set Y.

2.2. Topological spaces

We assume the reader to be familiar with the basic notions of topology. The collection of all open subsets of a
topological space X (i.e. the topology of X) is denoted by O(X); for the underlying set of X we will write X in
abuse of notation. We will usually abbreviate “topological space” to “space”. A space is zero-dimensional if it has
a basis of clopen sets. Recall that a basis for the topology on X is a set B of open subsets of X such that for every
x € X and open U containing x there is B € 3 satisfyingx € B C U.

Let w be the space of non-negative integers with the discrete topology. Of course, the spaces w X w = w?, and
w @ w are homeomorphic to w, the first homeomorphism is realized by the Cantor pairing function (-, -). We denote
the one-point compactification of w by N ; co stands for its point at infinity.

Let A/ = w* be the set of all infinite sequences of natural numbers (i.e., of all functions ¢: w — w). Let w* be
the set of finite sequences of elements of w, including the empty sequence. For 0 € w* and £ € N, we write 0 C &
to denote that o is an initial segment of the sequence £. By o€ = o - £ we denote the concatenation of ¢ and &, and
by o - N the set of all extensions of ¢ in V. For x € N/, we can write x = x(0)x(1) ... where x(i) € w for each
i<w. Forxe N andn < w, let x<" = x(0)...x(n — 1) denote the initial segment of x of length n. Notations in
the style of regular expressions like 0“, 0*1 or 01" have the obvious standard meaning.

By endowing N with the product of the discrete topologies on w, we obtain the so-called Baire space. The
product topology coincides with the topology generated by the collection of sets of the form o - A for o € w*.
The Baire space is of primary importance for Descriptive Set Theory and Computable Analysis. The impor-
tance stems from the fact that many countable objects are coded straightforwardly by elements of A/, and it has
very specific topological properties. In particular, it is a perfect zero-dimensional space and the spaces N2, N,
wxN=N&®&N &--- (endowed with the product topology) are all homeomorphic to N. Let (x,y) — (x,y)
be a homeomorphism between N2 and N. The Baire space A has the following universality property for zero-
dimensional cby-spaces:

Proposition 2.1. [12, Theorems 1.1 and 7.8] A topological space X embeds into N iff X is a zero-dimensional
cby-space.

The subspace C := 2% of A/ formed by the infinite binary strings (endowed with the relative topology inherited
from N) is known as the Cantor space.

An important role in this paper is played by the Sierpinski space S = {_L, T}, where the set { T } is open but not
closed.

The space Pw is formed by the set of subsets of w equipped with the Scott topology. A countable base of the
Scott topology is formed by the sets {A C w | F C A}, where F ranges over the finite subsets of w. Note that
Pw = 0O(w).

The importance of Pw is explained by its following well-known properties. First, Pw is universal for cby-spaces.

Proposition 2.2. A ropological space X embeds into Pw iff X is a cby-space.
The second property shows that Pw is an injective object in the category of all topological spaces.

Proposition 2.3. [9, Proposition 3.5] Let Y be a topological space and X be a topological subspace of Y. Then
any continuous function f : X — Pw can be extended to a continuous function g : Y — Puw.

Remember that a space X is Polish if it is countably based and metrizable with a metric d such that (X, d) is a
complete metric space. Important examples of Polish spaces are w, N, C, the space of reals R and its Cartesian
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powers R" (n < w), the closed unit interval [0, 1], the Hilbert cube [0, 1] and the Hilbert space R“. Simple
examples of non-Polish spaces are S, Pw and the space Q of rationals.

Sometimes we also mention quasi-Polish spaces, which were introduced and studied in [5]. Quasi-Polish spaces
are defined as the countably based spaces which have a topology induced by a (Smyth-) complete quasi-metric. The
descriptive set theory of quasi-Polish spaces is very similar to the classical theory for Polish spaces, but the class
of quasi-Polish spaces contains many useful spaces in addition to Polish spaces, such as all w-continuous domains
and some non-Hausdorff spaces that are important to algebraic geometry. The spaces S, AV, Pw, and Spec(Z), the
spectrum of the integers with the Zariski topology, are all quasi-Polish while the space Q is not.

2.3. Admissible representations and qcby-spaces

A representation of a space X is a surjection of a subspace of the Baire space N onto X. A basic notion of
Computable Analysis is the notion of admissible representation. A representation ¢ of X is admissible, if it is
continuous and any continuous function v : Z — X from a subset Z C N to X is continuously reducible to ¢, i.e.
v = dg for some continuous function g : Z — N. A topological space is admissibly representable, if it has an
admissible representation.

The notion of admissibility was introduced in [15] for representations of cby-spaces (in a different but equivalent
formulation) and was extensively studied by many authors. In [2] a close relation of admissible representations of
countably based spaces to open continuous representations was established. In [19, 20] the notion was extended
to non-countably based spaces and a nice characterization of the admissibly represented spaces was achieved.
Namely, the admissibly represented sequential topological spaces coincide with the qcbg-spaces, i.e., Tp-spaces
which are topological quotients of countably based spaces.

The category QCBy of qcbg-spaces as objects and continuous functions as morphisms is known to be cartesian
closed (cf. [8, 20]). Products and function spaces are formed as in the supercategory Seq, which is the category
of sequential topological spaces and of continuous functions. The topology of the sequential product to sequential
spaces X and Y, which we denote by X X Y, is the sequentialisation of the classical Tychonoff topology on the
cartesian product of the respective underlying sets. By the sequentialisation of a topology 7 we mean the collection
of all sequentially open sets pertaining to this topology. This collection forms a topology which is finer than (or
equal to) the original topology. Remember that sequentially open sets are defined to be the complements of the sets
that are closed under forming limits of converging sequences.

The exponential to X, Y in Seq, denoted by YX | has the set of all continuous functions from X to Y as the underly-
ing set; its topology is equal to the sequentialisation of the compact-open topology on Y. The convergence relation
of YX is continuous convergence: a sequence (f;,), converges continuously to f.., if, whenever (x,,), converges in X
t0 Xoo, the sequence (f;,(x,)), converges to fo, (xoo ) in Y. This is equivalent to the (sequential) continuity of the uni-
versal function f: Nog x X — Y defined by f(n, x) = f,(x). Further information can be found in e.g. [8, 20]. Note
that a function between sequential spaces is topologically continuous if, and only if, it is sequentially continuous.

We will also use the following well-known facts (see e.g. [20, 32]).

Proposition 2.4. Let X, Y be qcby-spaces, let § be a continuous representation of X and let vy be an admissible
representation of Y. Then any continuous function f : X — Y has a continuous realiser g, i.e., g is a partial contin-
uous function on N satisfying f6(p) = ~vg(p) for all p € dom(6). If § is additionally an admissible representation
of X, then any function f: X — Y is continuous if, and only if, it has a continuous realiser.

Apart from being cartesian-closed, the category QCBy is closed under countable products and countable coprod-
ucts. The product of a sequence Xy, X, . .. of gcbo-spaces is denoted by [ ], X, the coproduct by €, ., X,,. The
category QCBy is also closed under countable limits and countable colimits.

As is well known, every Polish (and even every quasi-Polish) space X has a total admissible representation

€: N = X (cf. [5]).

new

2.4. Hierarchies of sets

A pointclass on a countably based space X is simply a collection I'(X) of subsets of X. A family of pointclasses
[30] is a family I = {I"(X) } indexed by countably based topological spaces X such that each I'(X) is a pointclass
on X and T is closed under continuous preimages, i.e. f~!(A) € T'(X) for every A € T'(Y) and every continuous
functionf: X — Y. A basic example of a family of pointclasses is given by the family O = {7x} of the topologies
of all the spaces X.
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We will use some operations on families of pointclasses. First, the usual set-theoretic operations will be apphed
to the families of pointclasses pointwise: for example, the union | J; I'; of the families of pointclasses T'y, T'y, . . . is
defined by ({J, T')(X) = U, Ti(X).

Second, a large class of such operations is induced by the set-theoretic operations of L.V. Kantorovich and
E.M. Livenson (see e.g. [30] for the general definition). Among them are the operation I' — T, where I'(X),,
is the set of all countable unions of sets in I'(X), the operation I" — I's, where I'(X); is the set of all countable
intersections of sets in I'(X), the operation T' — T, where T'(X), is the set of all complements of sets in I'(X),
the operation T +— Ty, where T'(X), is the set of all differences of sets in I'(X), the operation I" — '3 defined
by T'5(X) := {3V (A) | A € T(NV x X)}, where 3V (A) := {x € X | Ip € N.(p,x) € A} is the projection of A C
N x X along the axis N, and finally the operation T' — T'y defined by Ty(X) := {VN(A) | A € T(NV x X)},
where VNV (A) := {x € X | Vp € N.(p,x) € A}.

The operations on families of pointclasses enable to provide short uniform descriptions of the classical hier-
archies in arbitrary spaces. E.g., the Borel hierarchy is the family of pointclasses {29}, defined by induc-
tion on «a as follows [5, 29]: ZH(X) := {0}, ) := O, X9 := (X0)45, and 20,(X) 1= (U TH(X))co for
a > 2. The sequence {X?,(X)}a<y, is called the Borel hierarchy in X. We also let TI%(X) := (£}(X)). and
A% (X) := X% (X) N TI%(X). The classes X2 (X), 1% (X), A% (X) are called the levels of the Borel hierarchy in X.

For this paper the hyperprojective hierarchy is of main interest. The hyperprojective hierarchy is the family of
pointclasses {2, o<, defined by induction on « as follows: £) = X9, X! | = (213, B} = (2L, )s3, where
o, A < wy, As alimit ordinal, and XL, (X) := {J, ., B4, (X).

In this way, we obtain for any topological space X the sequence {X! (X)}q<w,, which we call here the hyperpro-
jective hierarchy in X. The pointclasses X!, (X), IT] (X) := (Z! (X)), and AL (X) := XL (X) NI} (X) are called
levels of the hyperprojective hierarchy in X. The finite non-zero levels of the hyperprojective hierarchy coincide
with the corresponding levels of Luzin’s projective hierarchy [5, 25]. The class of hyperprojective sets in X is
defined as the union of all levels of the hyperprojective hierarchy in X. For more information on the hyperprojec-
tive hierarchy see [11, 12, 26].

Remark 2.1. (1) If X is Polish then one can equivalently take £} = Y in the definition of the hyperprojective
hierarchy and obtain the same non-zero levels as above. For non-Polish spaces our definition guarantees the
“right” inclusions of the levels, as the first item of the next proposition states.

(2) Inthe case of Polish spaces our “hyperprojective hierarchy” is in fact an initial segment of the hyperprojective
hierarchy from [11], so “w;-hyperprojective”” would be a more precise name for our hierarchy; nevertheless,
we prefer to use the easier term “hyperprojective”.

(3) In the literature one can find two slightly different definitions of hyperprojective hierarchy. Our definition
corresponds to that in [11]. The other one (see e.g. Exercise 39.18 in [12]) differs from ours only for limit
levels, namely it takes (X, ), instead of our .

The next assertion collects some properties of the hyperprojective hierarchy. They are proved just in the same
way as for the classical projective hierarchy in Polish spaces [12].

Proposition 2.5. (1) Forany a < 3 < w;, !, UTI!, C A}g.

(2) For any limit countable ordinal \, £', = TIL | and (XL )5 = (TIL ).

(3) For any non-zero a < wy, B, = (X)), = (E))s = (BL)a. In particular, the class X, (N) is closed under
countable unions, countable intersections, continuous images, and continuous preimages of functions with a
I19-domain.

(4) Forany non-zero o < wy, I}, = (1)), = (I1}))s = (I1))y. In particular, the class T}, (N) is closed under
countable unions and countable intersections, and continuous preimages of functions with a Hg-domain.

(5) For any uncountable Polish space (and also for any uncountable quasi-Polish space [5]) X, the hyperprojec-
tive hierarchy in X does not collapse, i.e. $},(X) € TI}(X) for each o < wy.

Remark 2.2. It is known that the Borel and hyperprojective hierarchies behave quite well for some classes of
cbp-spaces, namely for the Polish and quasi-Polish spaces [5, 12]. For non-countably based spaces, the situation is
more complicated. Although the levels of these hierarchies are natural pointclasses in arbitrary topological spaces,
their behaviour (even for qcbg-spaces) may be quite different from what one expects from the classical Descriptive
Set Theory.
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2.5. Hyperprojective hierarchy of qcby-spaces

For any representation ¢ of a space X, let EQ(8) := {(p,q) € N | p,q € dom(6) A 6(p) = 6(q)}. Let I be a family
of pointclasses. A topological space X is called I'-representable, if X has an admissible representation § with
EQ(0) € T'(N'). The class of all I'-representable spaces is denoted QCBg(T'"). This notion from [25] enables to
transfer hierarchies of sets to the corresponding hierarchies of qcbg-spaces. In particular, we arrive at the following
definition.

Definition 2.6. The sequence {QCBy (X))} <., is called the hyperprojective hierarchy of qcby-spaces. By levels
of this hierarchy we mean the classes QCBo(X),) as well as the classes QCBo(TI!,) and QCBy(AL).

This hierarchy has many nice properties [26], in particular the full subcategory of QCBg formed by the hyper-
projective qcbg-spaces is the smallest full subcategory of QCB( which contains the Sierpinski space as an object
and is closed under forming function spaces, countable limits and countable colimits in QCBy.

We will cite the following facts from [26]:

Proposition 2.7. (1) Let T € {X! I}, |0 < a <w} and let X be a Hausdorff space. Then X is T-
representable, if X has an admissible representation § with dom(8) € T'(N).
(2) Forany T € {E! . TI! | 1 < a < w}, we have QCBy(T') N CBy = CBy(T'), where CBy(T) is the class of
spaces homeomorphic to a I'-subspace of Pw.

Proposition 2.8. Let 1 < a < w;, X € QCBy (X)) and Y € QCBy(I1). Then Y* € QCBy(II)).

2.6. Continuous functionals of countable type

The hyperprojective hierarchy of qcbg-spaces is closely related to the continuous functionals of countable types
over w defined by induction on countable ordinals « as follows [26]:

N(0) :=w, N(a + 1) := o™ and N(\) := [] N(o),
a<

where w denotes the space of natural numbers endowed with the discrete topology, o, A < w; and A is a limit
ordinal. We call N{(«) the space of continuous functionals of type o over w. Obviously, for k < w the space N(k)
coincides with the space of Kleene-Kreisel continuous functionals of type k extensively studied in the literature,
and N(1) coincides with the Baire space A/. We will also deal with the coproduct spaces

N(<)\) := D N(a),
a<A

where ) is a countable ordinal limit.
The following propositions list facts which were established in [26].

Proposition 2.9. For every countable successor ordinal o > 2, N{(a) € QCBo(II! ;)\ QCBo(X! ). For
1

any countable limit ordinal o, N{a) € QCBo((IIL,)s) \ QCBo((EL,)s). Moreover, N(1) € QCBo({N'}) and
N(0) € QCBo({{n0* |n € w}}).

For every countable ordinal o we fix an admissible representation J,, of N{«) witnessing Proposition 2.9 and
denote the domain of ,, by D, (see [26] for an explicit construction).

Proposition 2.10. For any countable successor ordinal o > 2, D,, € II, (N)\ Z. | (N). For any countable
limit ordinal X, D € (TIIL \)s(N) \ (EL,)(N).

Proposition 2.11 relates the spaces N{«) to the countable hyperprojective hierarchy over V.

Proposition 2.11. Let « be a non-zero countable ordinal and B a non-empty subset of N'. Then B € (N iff
there is a continuous function f : N(a) — N with rng(f) = B.

In the following X =2 Y denotes that the spaces X and Y are homeomorphic.
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Proposition 2.12. For all countable ordinals ap,, . .., we have ], N(a;) = N(sup{l,a;|i € w}). For all
a < f <wy, N(o) x N(B) = N(B) and N{(«) is a retract of N{3).

We add the following lemma about coproducts.

Lemma 2.13. (1) For any countable ordinal o, N(o) = N(a) © N() = @), N(«).

(2) Forany a < w;, N(a)™"™ 2 N(a).
(3) For any non-empty qcbg-space X, w* @ w* =2 wX and w x w* = WX,
(4) Let \ < wy be a limit ordinal and {ay} be a sequence of pairwise distinct ordinals with Uk ar = \. Then

(B, N{ay))N= = @, N(cw), in particular N{< AN = N(< A).
(5) In notation of the previous item, the spaces @, N(ow) and N(< \) are retracts (in particular, continuous
images) of each other.

Proof. (1) Let 2 be a two point discrete space. Proposition 2.10 yields us
N{a) 2w x N{a) 2 (2 x w) x N{a) 22 x (w x N(a)) 2 2 x N{a) .
In the category of sequential spaces, we have X © X = 2 x X and P,.,, X = w x X. We obtain

N(a) ® N{a) 22 x N(a) 2 N{a) and @N(a) >~ w x N{a) 2 N{a).

iCw

(2) This assertion is checked by induction. Since N, is a compact zero-dimensional metric space and w is
countable and discrete, wN is countable and discrete as well. Hence wNe= is homeomorphic to the discrete
space of natural numbers w, which proves the assertion for v = 0.

By the cartesian closedness of QCBy, we obtain for @ < wy:

N + 1) o (N Noo o ((Noo)N(@) o ) N@) & N(o + 1),

Using Proposition 2.12, for a limit countable ordinal A we obtain:

N = ([ Na+ )™ = ([T w")™
a<A a<A
> L") = T] )" = [T =TT Na) = [] Nja) = N,
a<A a<A a<A 1<a<A a<A

(3) Fixxo € X and let ¥, := {f € w¥ | f(xo) = n} for each n < w. Then {Y,} is a clopen partition of w*, hence
wX = @n Y,. By symmetry, Y, =2 Y, for all m,n < w. Therefore, the usual bijections between w & w and w,
and between w X w and w induce the desired homeomorphisms.

(4) Let X := P, N(ay) and Y := XN, we have to show X =Y. For any k < w, let My := {f € Y | f(c0) €
{k} x N{(cy)}. Then {My} is a clopen partition of Y, hence ¥ = P, M;.

Let F be the set of finite subsets of w and S := {f € M | f~'({k} x N{oy)) = N, \ F} forany F € F.
Since N is compact, {S§. | F € F} is a clopen partition of M, hence My = @ 7 Sk.

The equality f =f|y_\rUf|r induces a homeomorphism f > (f|ly_\r.f|lr) between S} and
N(ak>N°°\F X (@#kN(a,,))F. Since N \ F = N and F is a discrete subspace of N,

S§ 22 N{ow)"™ x (D N{aw))™

n#k

where m is the number of elements in F. By (2), N(ay)""™ 22 N(v), hence S5 = N{ay). Since {N(a,) | n #
k} is closed under the binary product by Proposition 2.12, we obtain by (1)

(P Nan))" = P N{aw)

n#k n#k
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for any m # 0. Therefore,

Sk 2 N{aw) x (P N{aw)) = ED(N(aw) x N{aw)).

n#k n#k

From Item (3) we obtain S% 2 @nz « N{a,) for F # (). Altogether we obtain (using again Item (3)):

Y= PEP s = (@Psh) & (P s5) =P w x N(ow)) = X.
k

k FeF kF#£D k

(5) The assertion follows easily from Proposition 2.12.

3. Topological embeddings versus sequential embeddings

In this section we briefly discuss two notions of embedding for sequential spaces relevant to this paper. The first
one is the usual topological embedding which is used in Section 6. The second one is a lesser known sequential
embedding which is more natural for sequential spaces and results in a more satisfactory theory in Section 7 than
the theory based on topological embeddings.

Recall that any subset X of a topological space Y may be considered as a topological space (which is called
a topological subspace of Y) with the induced topology {VNX |V € O(Y)}. We say that a space X embeds
topologically into Y, if X is homeomorphic to a topological subspace M of Y; the corresponding homeomorphism
seen as a function e from X to Y is called a topological embedding of X into Y.

When dealing with sequential spaces (in particular, qcbg-spaces), it is natural to consider the following modifi-
cation of topological embeddings:

Definition 3.1. Let X, Y be sequential spaces.

(1) The space X is a sequential subspace of Y, if X C Y and, whenever (x,), is a sequence in X and x,, € X,
convergence of (x,), to X in X is equivalent to convergence of (x,), to x in Y.

(2) We say that X embeds sequentially into Y, if there is an injection e: X — Y such that convergence of (x,), to
Xoo in X is equivalent to convergence of (e(x,)), to e(xs) in Y. In this case we call e a sequential embedding
ofXintoY.

The distinction between topological subspace and sequential subspace is subtle, but very important. For example,
Proposition 2.3 does not hold in general if “topological subspace” is replaced by “sequential subspace”.

It can be shown that if X and Y are sequential spaces, then X embeds sequentially into Y if and only if there is a
topological subspace S C Y such that X is homeomorphic to the sequentialisation of S.

It is easy to check that, for all sequential spaces X, Y, if e: X — Y is a topological embedding then it is also a
sequential embedding, but the converse does not hold in general. If e: X — Y is a surjective sequential embedding,
then e is a homeomorphism.

Lemma 3.2. Let X, Y, Z be sequential Ty-spaces and q: X — Y a quotient map. Then the induced map Z9: Z¥ —
ZX defined by Z4(f) := f o q is a sequential embedding of Z¥ into ZX.

Proof. By the cartesian closedness of Seq, Z is continuous. From the surjectivity of g it follows that Z4 is injective.
Now let (f,)n<oo be a sequence in Z' such that (Z9(f,)), converges to Z4(f,) in ZX. This is equivalent to the
continuity of the function g: Ny, x X — Z defined by g(n,x) := f,(g(x)). Since in the category of sequential
spaces Seq quotient maps are preserved by products (see [27]), the function §: N, x X — N, x ¥ mapping (n, x)
to (n,¢(x)), is a quotient map as well. As the function f: No, x ¥ — Z sending (n,y) to f,(y) satifies g =f o g
and q is quotient,f is continuous (cf. [7, Proposition 2.4.2]). This is equivalent to saying that (f,), converges to fuo
in Z¥. We conclude that Z¢ is a sequential embedding. g

Given topological spaces X and Y and subsets A C X and B C Y, we say that A Wadge-reduces to B, denoted
A <y B, if and only if there is a continuous function f: X — Y such that A = f~!(B).
We will apply the following easy fact to topological or sequential embeddings.
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Lemma 3.3. Let £: N — X be a total continuous representation of X € QCBy, §: D — Y an admissible repre-
sentation of Y € QCBg and e: X — Y a continuous injection. Then EQ(E) <w EQ(9).

Proof. Since £ is continuous and § is admissible, by Proposition 2.4 there is a continuous realizer : N' — D of
e. Then we have £(a) = £(D) iff e(£(a)) = e(£(b)) iff 5(e(a)) = d(e(D)). Thus the continuous function (a, b) —
(e(a),e(b)) Wadge-reduces EQ(€) to EQ(0). O

4. Hyperspaces of open sets

Topological spaces formed by pointclasses in a space X are sometimes referred to as “hyperspaces”. In this section
we discuss hyperspaces of open subsets and in Section 5 hyperspaces of compact subsets.

4.1. The w-Scott topology on the open subsets

Let X be a sequential space. We define O(X) to be the space of open subsets of X topologized with the w-Scott
topology T,scon defined on the complete lattice (O(X); C). So a set H C O(X) belongs to T,scou, if H is upwards
closed in (O(X); C) and D N H #  for each countable directed subset D of (O(X); C) with | JD € H. Elements
of Tuscott are called w-Scott open. The more familiar Scott topology Tscor 1s defined similarly by considering all
directed families of opens, not only the countable directed ones. The w-Scott topology 7,,scorx refines the Scott
topology, i.e. Tscott C Twscott-

The w-Scott topology T,scor is known to be sequential. This is the reason why we equip the collection O(X) with
the w-Scott topology rather than with the Scott topology. However, both topologies induce the same convergence
relation on the collection O(X). Moreover, if X is hereditarily Lindel6f (in particular if X is a qcbg-space), then the
w-Scott topology coincides with the Scott topology. It is useful to identify a subset W C X with its characteristic
function ¢f (W): X — S defined by ¢f(W)(x) = T :<= x € W, where S is the Sierpinski space. Clearly, W is
open if, and only if, the function ¢f (W) is continuous.

For more details, we refer e.g. to Section 2 in [23].

Proposition 4.1. Let X be a sequential space.

(1) The function cf : O(X) — S* is a homeomorphism between O(X) and the function space SX.
(2) If X is a gcbg-space, then O(X) is a gcbo-space and the w-Scott topology coincides with the Scott topology.
(3) A sequence (U,), converges to U in O(X) iff Vi := (>, Un N U is open for all k € w and U = | J,, Vi-

Proof. See e.g. Proposition 2.2 in [23]. 0

Note that 7,,scon forms the underlying set of the sequential space O(O(X)).

4.2. Consonant spaces

We discuss some conditions on a space X which simplify understanding of the space O(X).

To this aim we consider yet another topology on the collection O(X) of open subsets, namely the compact-
open topology Tco. It is generated by the subbasic opens K< := {U € O(X) | K C U}, where K runs through the
compact subsets of X. The name “compact-open topology” is motivated by the fact that it coincides with the usual
compact-open topology on the function space S* under the natural identification of an open subset U C X with its
continuous characteristic function ¢f (U). Obviously, T7co C Tscott C Twscott- If X 18 sequential, then 7co induces the
same convergence relation on O(X) as both the w-Scott topology and the Scott topology (see Proposition 2.2 in
[23D).

A topological space X is called consonant, if the Scott topology on the collection O(X) coincides with the
compact-open topology. Non-consonant space are usually called dissonant.

Proposition 4.2. (1) Every quasi-Polish space is consonant.
(2) The space Q of rationals is dissonant.
(3) A metrizable space X € CBoy(I1}) is consonant if, and only if, X is Polish.
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Proof. Item (1) follows from the known facts that Polish spaces are consonant (see Theorem 4.1 in [6]), that every
(non-empty) quasi-Polish space is the image of A/ under an open continuous mapping (Lemma 38 in [5]), and that
the image of a consonant space under a continuous open mapping is consonant (Theorem 8.2 in [17]).

Item (2) is known (see e.g. [4]).

To prove (3), let X be a metrizable space in CBo(I1}) which is not Polish. By a theorem by Hurewicz (see e.g.
Theorem 21.18 in [12]), Q is homeomorphic to a closed subspace of X. Since Q is dissonant, X is also dissonant
by Proposition 4.2 in [6]. O

A. Bouziad [1] has shown that it is independent of ZFC whether or not every metrizable consonant space in
CBo(X}) is Polish.
Next we give some remarks on when the hyperspaces of open sets are countably based.

Proposition 4.3. Let X be a countably based Hausdorff space.

(1) The space O(X) has a countable base if, and only if, X is locally compact.
(2) If O(X) has a countable base, then X is consonant.

We remark that Statement (2) can be shown for any Hausdorff qcb-space.

Proof. The first statement follows from Theorem 7.3 and Corollary 7.4 in [21].

If X is locally compact, then there is a countable base B for X such that the closure Cls(B) is compact for any
base element B € B. Let H be Scott-open and U € H. Then there is a sequence (B;); of base elements in B such
that U = (J,c,, Bi = U,c,, Cls(B;). Moreover there is some k € w such that | J,_, B; € H. Then K := | J;_, CIs(B;)

O

i<k
is compact and satisfies U € K< C H. Therefore X is consonant.

i<k

4.3. Representing open subsets of countably based spaces

Here we obtain some new information on admissible representations of the hyperspace of open sets. In [30] it was
shown that for any countably based space X the space O(X) has a total admissible representation mx: N” — O(X).
It is constructed as follows. We choose a numbered base {By, B, . . .} in X containing the empty set (say, By = (),
and define 7y by mx(a) := [, Ba(n)- Up to continuous equivalence of representations, my does not depend on the
choice of such a numbered base.

We start with improving this result to the fact that there is an admissible representation vyx: C — O(X) of O(X)
by elements of the Cantor space C (this is indeed an improvement because if we have such vx then vx o r, where
r: N' = C is a continuous retraction, is an admissible representation of O(X) with domain ).

To define ~yy, we choose a numbered base {By, By, ...} of X such that any base set appears in the numbering
infinitely often (this time it is not necessary to require that the base contains the empty set) and set vx(p) :=
U{B. | p(n) = 1}. Up to the continuous equivalence of representations, yx does not depend on the choice of such
a numbered base.

Proposition 4.4. The representation vx is an admissible representation of O(X).

Proof. Similarly to the proof of Theorem 6.5 in [30], vx is continuous. Since 7y is admissible (w.r.t. any of the
topologies in Section 4) by Theorem 8.6 in [30], it suffices to show that 7y is topologically reducible to vy, i.e.
to find a continuous function f : N' — C such that mx = vy of. Let my be defined from a base {By,Bj,...} as
specified above.

Define the numbered basis {B;, | n < w} of O(X) by B, ,, = By, so any element B,, of the former base appears
infinitely many times in the new numbering. Choose now a continuous function f on A such that: f(x) = 0%

if x = 0 has no non-zero elements, f(x) = 0% =11 ...k =110% for suitable ny, ...,n; if x = 0" (ko +
1)---0™(k; + 1)0¥ has [+ 1 non-zero elements, and f(x) = 0%om)=110%kim)=11 ... for suitable ng,ny, ... if
x=0"(ko+ 1)0™ (k; + 1) - - - has infinitely many non-zero elements. Such an f has the desired property. O

Below we will especially be interested in the particular case X = N and, more generally, in the case when X
is a subspace of V. Let 0, 071, ... be an enumeration without repetition of the set w* such that o is the empty
string. Then the sets B, = o, - N form a numbered base of A\ that has no empty set, while the sets By = 0, B, =
B,, form a numbered base of A/ that has the empty set. According to the general construction above, we obtain
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admissible representations 7 : N — O(N) (constructed from {B,}) and yx: C — O(N) (constructed from
{B,}) of O(A).

For any X C N, we can canonically define admissible representations 7x: A' — O(X) and 7x: C — O(X) of
O(X) by mx(p) = X N 7ar(p) and vx(p) = X Nyar(p) (the representations are admissible because both {X N B, |
n<w}and {XNB,|n < w} are suitable numbered bases in X).

Below we make use of the following estimation of Wadge degrees of EQ(mx) and EQ(vx):

Lemma 4.5. Forany () # X C N, N'\ X is Wadge reducible to both EQ(rx) and EQ(vx).

Proof. Since mx and 7y are topologically equivalent, EQ(mx) =w EQ(7x), so it suffices to show N \ X <y
EQ(mx). Since N is Hausdorff, the function p — N\ {p} € O(N) is continuous. By the admissibility of mar,
there is a continuous function f on N such that mar(f(p)) = N\ {p}. For p € N'\ X we have mx(f(p)) =
XN N\ {p}) = X, whereas for p € X we have

mx(f(p)) = XN N\ {p}) =X\ {p} #X.

Thus, A"\ X <y EQ(mx) via the continuous function p — (f(p), g(p)), where g is a constant function satisfying
7xg(p) = X forall p € N. O

4.4. The descriptive complexity of O(N(«)) and O(D,,)

Here we establish a precise estimation of the descriptive complexity of the spaces O(N(a)) and O(D,,) in the
hyperprojective hierarchy of qcby-spaces. Remember that D, is the domain of a natural admissible representation
of N{a) chosen in Section 2.5.

The lower bound in Lemma 4.5 for the complexity of EQ(7y) is in general far from optimal, as the following
immediate corollary of Theorem 8.11 from [30] shows:

Proposition 4.6. The sets EQ(mxr) and EQ(yn) are Wadge complete in TI}(N).

It turns out that it is possible to completely characterize the topological complexity of the spaces O(D,,) and
O(N{a)). To show this, we first establish the following lemma. For a pointclass I' C P(A) and a set S C N, let
I' <y S denote that C <y Sforall C € T.

Lemma 4.7. (1) Let X be a qcby-space, v an admissible representation of O(X), and f : X — N a continuous
function. Then N\ rng(f) <w EQ(v).
(2) Let X be a gcby-space and T' C P(N') a pointclass such that any non-empty set in T is a continuous image
of X. Then T'. <y EQ(v) for every admissible representation v of O(X).

Proof. (1) Define a function h: N — S*¥ = O(X) by: h(p)(x) = T iff f(x) # p. Since f and the function
neq : N x N'— S such that neq(p,q) = T iff p # ¢ are continuous, £ is also continuous. For any p € A/
we then have p € N\ mg(f) iff h(p) = X. Let ¢ € NV satisfy v(gq) = X and let g be the constant func-
tion on N sending all elements to g. Then p € N \ rng(f) iff A(p) = g(p), hence the continuous function
p— (h(p),neq(p,q)) Wadge reduces N\ rg(f) to EQ(v).

(2) We have to Wadge reduce any S € T, to EQ(v). For § = N the assertion is trivial, so let S # A/. Then
N\ S = mg(f) for some continuous function f : X — N. By (1), S <y EQ(v).
O

Theorem 4.8. For any 1 < o < wy, the spaces O(N{a)) and O(D,,) are in QCBy(I1.). Moreover, TIL,(N') <w
EQ(v) for every admissible representation v of O(N{(«a)) or of O(Dy,).

Proof. From Propositions 2.9 and 2.10 we know that N{(a),D, € QCBo(IT}), if o=+ 1 is a successor

ordinal, and N(a),D, € QCBo((TIL,)s), if o is a limit ordinal. In both cases, Proposition 2.8 yields us
O(N(@)), O(Dy) € QCBy(IT,,), because S € QCBy(TTy), T(N) C B (N) and (TIL,)s(N) € ZL(N) by
Proposition 2.5.
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Let now v be an arbitrary admissible representation of O(N({«a)). By Proposition 2.11, for any non-empty set
S € X! (V) there is a continuous function f from N(«) onto S. Taking X = N(a) and T = ! (V) in Lemma 4.7,
we obtain II! (N) <y EQ(v).

Finally, let v be an arbitrary admissible representation of O(D,,). By Proposition 2.11, for any non-empty set S
from X! (V) there is a continuous surjection f from N{«) onto S. Then f§,, is a continuous surjection f from D,
onto S, so IIL, (NV) <y EQ(v) just as in the previous paragraph. O

Theorem 4.8 immediately implies the following

Corollary 4.9. Forany 1 < a < wj, O(N{a)),O(D,) € QCB(I1}) \ QCBy(XL).

5. Hyperspaces of compact sets

In this section we discuss hyperspaces on the collection of compact subsets.

5.1. Topologies on the compact sets

We dicuss two natural topologies on the set of compact subsets of X, known as the Vietoris topology and the upper
Vietoris topology.

The upper Vietoris topology can fail to be Ty, unless one restricts oneself to saturated sets. Remember that
a subset A of X is called saturated if, and only if, it is equal to its saturation. The saturation TA of A is the
intersection of all open sets containing A. So we will study the family of compact saturated subsets of X, which we
henceforth denote by /C(X). If X is T}, then IC(X) is indeed the family of all compact subsets, as in 7}-spaces the
saturation of a set is the set itself.

The Vietoris topology on K(X) is generated by the subbasic open sets OU := {K € K(X) | K C U} and QU :=
{KeK(X)|KNU# 0}, where U € O(X). The upper Vietoris topology only has the sets OU for U € O(X) as
a subbasis. Obviously, the Vietoris topology refines the upper Vietoris topology.

We do not know whether any of these topologies are sequential in general. However, if X is countably based
then both topologies are countably based and thus sequential. By /C,,,(X) we denote the space of compact saturated
subsets of X equipped with the sequentialisation of the upper Vietoris topology; Kvie is defined analogously. If X
is a qcbg-space, then both /Cy, (X) and Kvie (X) are qebo-spaces as well (cf. Section 4.4.3 in [20]).

Remember that the compact-open topology on the function space Y¥ is defined by the subbasis of open sets
C(K,U) :={f € Y*|fIK] C U}, where K is compact and U € O(Y). Since C(1K,U) = C(K, U), it suffices to
consider only the saturated compact subsets K of X.

Below we will refer to the following continuity property of this construction.

Proposition 5.1. For two sequential spaces X, Y, the map C is a sequentially continuous function from KCyp(X) x
O(Y) to O(YX).

Proof. Let (K,), converge to K in Kyp(X), let (V,,), converge to Vo in O(Y), let (f,), converge to fo in Y* and
let oo € C(Koo» Vo). Since Koy C Uso := 2! [Voo] € O(X), there is some n; such that K, C Uy, for all n > n,.
From the fact that (K,,), converges to K, one can easily deduce that the set L := Ko, U Ui>nI K; is compact in X.
Hence M := f[L] C V4 is compact in Y. By Proposition 4.1(3) the set W,, := Vo N ﬂn;m V, is open in Y for
allm € wand V = Umew W... Therefore there is some n, € w with M C Wy U ... U Wn; hence M C W,, and
foo € C(L, W,,). Since the compact open topology induces the convergence relation on Y (see Section 2.3), there
is some n3 € w such thatf,, € C(L, W,,,) forall n > n3. For all n > max{n;,n,,n3} we have K, C L, W,, C V, and
thus f, € C(L, Wy,) € C(Ky, V,). We conclude that (C(K,, V"))n converges to C(Koo, Voo ) in O(Y¥). Hence C is
sequentially continuous. g

5.2. The upper Vietoris topology for quasi-Polish spaces

It is well known that if X is a Polish space then K(X) with the Vietoris topology is also Polish (see e.g. Theorem
4.25 in [12]). Our next goal is to prove a similar result for the upper Vietoris topology.

Lemma 5.2. Every compact saturated subset K of a Ty-space X is equal to the saturation of a compact T)-
subspace of X.
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Proof. Let < be the specialization order on X (i.e., x < y iff x is in the closure of {y}), and let M be the subset
of elements of K that are minimal with respect to the specialization order. Clearly M is a T-subspace of X. We
show that K is the saturation of M, which easily implies that M is compact. Let {x; | i € I} be a subset of K that is
totally ordered with respect to the specialization order. Clearly (), Cls{x;} has non-empty intersection with K for
every finite F' C 1. The compactness of K implies that A = ["),; Cls{x;} has non-empty intersection with K, hence
any y € KN A is a lower bound for {x; | i € I}. It follows from Zorn’s lemma that every x € K is greater than or
equal to some y € M. Therefore, any open subset of X that contains M contains all of K, which implies that K is
the saturation of M. We remark that Zorn’s lemma can be avoided if X is a qcbg-space X; the Axiom of Dependent
Choice is sufficient in this case. 0

This lemma is instrumental in showing:

Theorem 5.3. Assume X and Y are countably based Ty-spaces. If X is a Hg—subset of Y, then ICuy(X) is homeo-
morphic to a TI9-subset of Kp(Y).

Proof. Fix a countable basis {Bo, By, ...} for Y. Since X € II9(Y), there exist open subsets U;, V; (i € w) of ¥
such that x € X iff (Vi € w)[x € U; = x € V;]. Let A be the subset of /(Y defined as K € A iff for all finite
FCwandicw,ifK € O(U;cp B UU) then K € O(U;ep B U Vi). Clearly A € TI9(Kyp(Y)).

Letf: KCup(X) — Kup(Y) map each K € Ky (X) to the saturation of K in Y. It is easy to see that f is a topological
embedding. We claim that f is a homeomorphism from /Cy, (X) to A.

First we show range(f) C A. Fix K € Kyp(X). Since f(K) is the saturation of K in Y, for all finite F C w and
i€w,iff(K)C U U UJEF Bjthen K C U; UJ,cp Bj hence K C V; U UjEF B, because every element of K that is
in U is also in V;. It follows that f(K) C V; U e B;, hence f(K) € A.

Next we show A C range(f). Fix K € A. Using Lemma 5.2 we have that K is the saturation in Y of a T-subspace
M of Y. Assume for a contradiction that M Z X. Then there is x € M and i € w such that x € U; \ V;. For every
y € M\ {x} choose j, such that y € B; and x ¢ B; . The open set U; together with the open sets B;, form a cover
of the compact set M, hence there is finite F C w such that x ¢ B; for any j € F and U; U Uje rBj covers M. Then
KCUu UjeF B; but x € K is not in V; U UjeF Bj, contradicting the assumption that K € A. This proves that
M C X, hence K € range(f).

Therefore, A = range(f), hence Ky, (X) is homeomorphic to the IT9 subset A of Ky (Y). O

Corollary 5.4. If X is quasi-Polish then K,(X) is quasi-Polish.

Proof. Since X is quasi-Polish it is homeomorphic to a TI-subspace of Pw, hence Kup(X) is homeomorphic to a
IT9-subspace of K, (Pw). The results of M. Smyth [31] show that for any w-algebraic domain D, the set (D) of
compact saturated subsets is an w-algebraic domain when ordered by reverse subset inclusion, and it is easily seen
that the upper Vietoris topology and the Scott-topology coincide in this case (see Lemma 7.26 in [18]). Therefore,
Kup(Pw) is quasi-Polish because every w-algebraic domain with the Scott-topology is quasi-Polish, and it follows
that Cyp(X) is quasi-Polish because it is homeomorphic to a IT3-subspace of Ky, (Pw) by Theorem 5.3. O

The following result is well known for the Vietoris topology, and here we show that it holds for the upper Vietoris
topology as well.

Corollary 5.5. Let X € CBo(I1}) be metrizable. Then K, (X) € CBo(X1) if and only if X is Polish.

Proof. We first show that Ky, (Q) & CBo(2}). The identity function f: Kyie((R) — Kyp(R) is continuous, hence
if KCup(Q) was an analytic subset of the quasi-Polish space Ky (R) then Kyie((Q) = £~ (Kyp(Q)) would be an ana-
lytic subset of the Polish space Kviet(R), contradicting the well-known fact that KCyie (Q) is co-analytic complete
[12].

In general, if X € CBg(II}) is metrizable space but not Polish, then using a theorem by Hurewicz (see Theo-
rem 21.18 in [12]) we have that Q is homeomorphic to a closed subspace of X, hence Ky, (Q) is homeomorphic
to a IT9-subspace of K, (X) by Theorem 5.3, which implies that Ky, (X) can not be homeomorphic to an analytic
subset of Pw. 0

6. Y-Based topological spaces

In this section we introduce and study the notion of a Y-based space (where Y is a topological space) which induces
classifications of qcby-spaces alternative to the hyperprojective hierarchy of qcbg-spaces.
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6.1. Characterizing qcby-spaces

Recall that S is the Sierpinski space and O(X) is the hyperspace of open subsets of a space X topologised with the w-
Scott topology. If X is sequential (in particular a qcbg-space), then O(X) is homeomorphic to S* (see Section 4.1).

Definition 6.1. Let X and Y be topological spaces. A continuous function ¢: ¥ — O(X) is a Y-indexing of a basis
for X, if the range of ¢ is a basis for the topology on X. The space X is Y-based if there is a Y-indexing of a basis
for X.

The introduced notions are purely topological and apply to arbitrary topological spaces. The following lemma
shows some natural properties of these notions.

Lemma 6.2. (1) Let X be Y-based and Y be a continuous image of a space Z. Then X is Z-based.
(2) Any topological subspace of a Y-based space is Y-based.

Proof. (1) Let ¢: ¥ — O(X) be a Y-indexing of a basis for X and ¢ be a continuous surjection from Z onto Y.
Then ¢ o v is a Z-indexing of a basis for X.
(2) Let ¢ be a Y-indexing of a basis for X and let Z be a topological subspace of X. Define ¢): ¥ — O(Z) by
Y(y) =Z N ¢(y). It is straightforward to check that ¢ is a Y-indexing of a basis for Z.
O

The next proposition generalises the fact that any countably-based T-space embeds topologically into Pw which
is homeomorphic to O(w).

Theorem 6.3. Let X, Y be sequential Ty-spaces such that X is Y-based. Then X embeds topologically into O(Y).

Proof. Let¢: Y — O(X) be a Y-indexing of a basis for X. By the cartesian closedness of Seq the function ¢): X —
SY defined by ¥(x)(y) = ¢(y)(x) is continuous. Clearly, we have y € ¥ (x) iff x € ¢(y).

To show that v is injective, let x and x’ be distinct elements of X, and assume without loss of generality that
there is open U C X containing x, but not x". By the definition of ¢, there is some y € ¥ such that x € ¢(y) C U,
hence y € ¥(x) buty & ¢ (x’). Therefore, 1 (x) # (x').

Finally, the set {y}< = {V € O(Y) |y € V} is w-Scott open. It is easy to see that )[$(y)] = {y}< N range()).
Since {¢(y) | y € Y} is a basis for X, it follows that ¢ is an open map onto range(v)). Therefore, v is a topological
embedding of X into O(Y). O

Since X is O(X)-based via the identity on O(X), we obtain:
Corollary 6.4. Any sequential Ty-space X embeds topologically into O(O(X)).
Furthermore, we obtain the following using Proposition 4.3.

Corollary 6.5. IfY is a countably based locally compact Hausdorff space, then every Y-based sequential Ty-space
is countably based.

The next basic fact characterizes qcbg-spaces in terms of the introduced notions.

Theorem 6.6. For any sequential Ty-space X the following conditions are equivalent:

(1) X is Y-based for some Y C N.

(2) X is Y-based for some zero-dimensional cby-space Y.

(3) X is Y-based for some qcby-space Y.

(4) X topologically embeds into O(Y) for some qcby-space Y.
(5) X is a gcbo-space.

Proof. By Proposition 2.1, (1) is equivalent to (2). Since any cby-space is a qcbg-space, (2) implies (3). Theo-
rem 6.3 yields (3) = (4). By Proposition 4.1, O(Y) is a qcbg-space and consequently any topological subspace
of O(Y) which happens to be sequential. This yields (4) = (5).

To show (5) = (1), let X be a qcbg-space. By Proposition 4.1, O(X) is also gcbg-space. By [20], there is an
admissible representation ¢: Z — O(X) of O(X), where Z C N Since ¢ is a surjection, it is trivially a Z-indexing
of a basis for X. g
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Corollary 6.7. Every qcbg-space topologically embeds into a space with a total admissible representation.

Proof. By Section 4.3, O(Y) has a total admissible representation whenever Y is a countably based Ty-space.
Every qcbg-space X has an admissible representation £: Z — X, where Z is a subspace of A/. By Theorem 6.3, X
embeds into O(Z). O

Example 6.1. Given a topological space X and Y C N, a countable pseudo-base [19] for X can be directly obtained
from a Y-indexing ¢: ¥ — O(X) of a basis for X in the following way. For each finite sequence o € w<%, define

Ar=({9(p) |p € Y and o C p},

where o C p if and only if o is an initial prefix of p. Then (A, )sen < is a countable pseudo-base for X. To see
this, fix any x € X and open U C X containing x. Assume (x;);c,, is a sequence of elements of X converging to x.
Since ¢ is a Y-indexing of a basis for X, there is p € Y such that x € ¢(p) C U. Since ¢(p) is open, there is j € w
such that (x;);>; € ¢(p). The set K = {x} U {x;}i>; is a compact subset of X, hence Ox = {0 € O(X) | K C O} is
a Scott-open subset of O(X). Clearly ¢(p) € Ok, so the continuity of ¢ implies there is 0 € w<“ such that ¢ C p
and ¢(q) € Ok for every g € Y satisfying o C g. Therefore, x € K C A, C U, and it follows that (A, ),c<w is a
countable pseudo-base for X.

6.2. Classifying Y-based spaces

For any qcbg-space Y, let Based(Y) denote the class of Y-based qcbg-spaces. For a class S of qcbg-spaces, let
Based(S) = |Jyg Based(Y).

Theorem 6.6 induces some natural classifications of qcbg-spaces. For example, one can relate to any family of
pointclasses I' the classes Based(I'(N)) and Based(QCBg(T")).

Proposition 6.8. For any family of pointclasses T, the classes Based(T'(N')) and Based(QCBy(T")) coincide.

Proof. One direction is obvious, since I'( ') C QCBg(T"). For the other direction, let X € Based(QCBo(T")), then
X is Y-based for some Y € QCBy(T"). Choose an admissible representation § : D — Y of Y such that EQ(J) €
T'(N), so in particular D € T'(\). Since Y is a continuous image of D, Y € Based(I'(N')) by Lemma 6.2. O

Thus, the classical hierarchies of subsets of the Baire space induce the corresponding hierarchies of qcby-spaces,
in particular the “hyperprojective base-hierarchy” Based(X! (N)); we simplify the notation to Based(X!)) and
relate this hierarchy to the admissible representations d,, : D, — N{«) of the continuous functionals of countable
types (see Subsection 2.5).

Proposition 6.9. For any a < w;, Based(D,+1) = Based(I1!)) = Based(Z! ,,) = Based(N{« + 1)). For any

limit ordinal X\ < wy, Based(D») = Based((II. ,)s) = Based(X)) = Based(N(\)).

Proof. Since D, € II} (N) by Proposition 2.10, Based(D+1) C Based(IL.). The inclusion Based(II.) C
Based(X!, ) is obvious. The inclusion Based(X! ) C Based(N(« + 1)) follows from Lemma 6.2, because, by
Proposition 2.11, any non-empty X! | | -set is a continuous image of N{(« + 1). The inclusion Based(N(a + 1)) C
Based (D) follows again from Lemma 6.2, because N(« + 1) is a continuous image of Dy 1.

The second assertion is proved in the same way. O

By Theorem 6.3, any space from Based(Y) topologically embeds into O(Y). A principal question is: for which
qcbo-spaces Y do we have that the space O(Y) is Y-based? Clearly, this is equivalent to saying that Based(Y) is
the class of spaces topologically embeddable into O(Y). Unfortunately, the assertion does not hold for all Y:

Example 6.2. The space O(Q) is not Q-based. Suppose the contrary. Since Q is a continuous image of w, O(Q)
would be w-based (i.e., countably based) by Lemma 6.2. But by Proposition 4.3 this would imply that Q is locally
compact, a contradiction.

Nevertheless, the assertion O(Y) € Based(Y) might hold for some natural spaces Y, in particular a positive
answer to the following problem would clarify the nature of the hierarchy {Based(II},)} considerably:
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Problem 6.1. Does the assertion O(D,,) € Based(D,,) hold for all o < w;?

If the answer is positive, Based(D,,) would coincide with the class of spaces topologically embeddable into
O(D,,). For o = 0 the assertion holds because O(w) is homeomorphic to Pw. For o = 1 the assertion is also
true, we will prove this in the next subsection. For o > 2 we still do not know the answer. This is an obstacle
to answering the principal question on the non-collapse of the introduced hierarchy {Based(D,)}o<w,- By the
non-collapse property we mean that the inclusion Based(D,,) C Based(Dg) is proper for each oo < 8 < wy.

Although the non-collapse property is currently open, we can prove some slightly weaker version of this prop-
erty. The next result (along with the assertion O(D;) € Based(D,)) implies, in particular, that Based(Do) &
Based(Dy).

Proposition 6.10. For any o <w;, O(Dg+1) € Based(D,). For any limit ordinal X <w;, O(D)) ¢

Based(@,, ., Da)-

Proof. For the first assertion, by Theorem 6.3 it suffices to show that O(D,) does not embed topologically into
O(D,,). Suppose the contrary, then EQ(mp_,,) <w EQ(mp_) by Lemma 3.3. Since N\ D41 <w EQ(7p,,,) by
Lemma 4.5, N'\ Dos1 <w EQ(7p, ). Since EQ(mp,_) € ITI. (N) by Theorem 4.8, we have N \ Doy € ITL (N).
This contradicts Proposition 2.10.

Now we turn to the second assertion. Suppose for a contradiction that O(Dy) € Based(P,, . Da). Let
(can), be an injective sequence consisting of all non-zero ordinals below A. Define the subspace Y of A by
Y :=J, Er, where E, := {qg € N'| q(0) = n,1(q) € Dy, } and t(g) := (¢(1),q(2),- ). Since Y is homeomorphic
to P, .\ Da» O(Dy) € Based(Y), hence O(D,) topologically embeds into O(Y). By Lemma 3.3, EQ(7p, ) <w
EQ(my). It suffices to show that EQ(ry) € (£L,)5(N), because this implies EQ(wry) € X} (N) by Proposition
2.5, hence also EQ(7p, ) € £} (N) which contradicts Corollary 4.9.

Using the notation of Section 4.3, we have

my(p) =Y Nawr(p) = | JE: N ar(p)) = | 7z, (p)

Since Ey,Ey,--- are pairwise disjoint, my(p) = my(q) iff Vn(ng,(p) = 7, )) In other words, EQ(ry) =
N, EQ(wg,). Since E, € I}, (N) for each n < w, EQ(mg,) € IT}, ., (N') € XL, (N) by Proposition 2.5, hence
EQ(my) € (2L ,)5(N). This completes the proof. O

To deduce from the last proposition the announced weak version of the non-collapse property, we also need the
following relation between the hyperprojective hierarchy of qcbg-spaces and the hierarchy {Based(D,,)} which is
interesting in its own right:

Proposition 6.11. For any o < wi, QCBo(I1)) C Based(Dy+2) = Based(N{a + 2)) = Based(I1! , ).

Proof. Let X € QCBy(I1},). By Proposition 2.8, O(X) 2 S¥ € QCBy(I1.,,). Let 3 : B — O(X) be an admissible
representation of O(X) with B, EQ(3) € I1! , | (N). Since B € X! ,,(N) and B # 0, by Proposition 2.11 there is a
continuous surjection f from D, 4, onto B. Then §f is a continuous surjection f from D4, onto O(X). Therefore,
X € Based(Do+2) = Based(N{« + 2)) = Based (11!, ) by Proposition 6.9. O

Conversely, we have Based(IL},) £ QCBo(IL}) for all ordinals «,f < wj, because Dgyy € Based(w) \
QCBy(TT}) by Proposition 2.10.
The second item of the next corollary is the announced weak version of the non-collapse property.

Corollary 6.12. (1) Forany o < wy, O(D,), O(N(«a)) € Based(D,+2) = Based(N{« + 2)).
(2) For any o < wy, the inclusion Based(D,,) C Based(Dq+3) is proper.

Proof. (1) By Theorem 4.8, O(D,,), O(N{a)) € QCBg(II.,), hence the assertion follows from Proposition 6.11.

(2) By Proposition 6.10 we have O(Dgy+1) € Based(Dy). By (1), O(Dg+1) € Based(D,+3), hence
Based(D+3) € Based(D,,).

O
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Problem 6.2. For which a < w; can the inclusion from Proposition 6.11 be improved to QCBy(IT.) C
Based(D.1) or even to QCBy(I1},) C Based(D,)?

Remark 6.1. One can try to weaken the notion of Y-based space in order to obtain the desired property that O(Y)
is Y-based (in the weakened sense) for any qcbg-space Y. E.g., one could say that X is weakly Y-subbased if there
is a continuous function ¢ : ¥ — O(X) such that ¢(Y) is a subbase of X. For this modification, we would obtain
essentially the same results as above. Nevertheless, a deeper modification (considered in Section 7 below) will be
sufficient to settle the analogues of the open questions above for the sequential embeddings in place of topological
embeddings.

6.3. N -Based spaces

Here we obtain some additional information on the class Based(N') = Based(D;) of N/-based qcbg-spaces. This
class seems to be important since it includes natural non-countably based spaces that are relatively simple.
First we state an interesting property of quasi-Polish spaces.

Proposition 6.13. If X is quasi-Polish then O(X) is N -based.

Proof. By Corollary 5.4, the space K(X) of saturated compact subsets of X with the upper Vietoris topology is
quasi-Polish, hence there is a total admissible representation v : N' — K(X) of K£(X). Define 7 : N' — OO(X) by
v(p) ={U € O(X) | v(p) C U}. By Proposition 5.1,  is continuous. Since X is consonant by Proposition 4.2,
p(N) is a base of O(X). Hence, O(X) is N -based. O

For metrizable spaces X € CBy(IT}) we have the following complete characterization of when O(X) is \-based.

Proposition 6.14. Let X € CBo(I1}) be metrizable. Then O(X) is N -based if and only if X is Polish.

Proof. It only remains to show that if X € CBo(I1}) is not Polish, then O(X) is not N/-based. Note that for any
such space X, Corollary 5.5 implies that Ky, (X) & CBo(X1).

Assume for a contradiction that ¢: N” — O(O(X)) is a N-indexing of a basis for O(X). Then the function
¥ : N¥ — O(O(X)) mapping p € N*“ to |, ¢(f(i)) is continuous and it is a surjection because O(X) is hered-
itarily Lindelof. The subset A of N that gets mapped by ¢* to ) is closed, hence there is a continuous f: N — N
such that range(f) = N\ A. Clearly g := ¢“ of is a continuous surjection from N onto O(O(X)) \ {0}.

From Theorem 3.1 in [23] we know that r: H + ((H) is a continuous retraction from O(O(X)) \ {0}
to Kup(X). Then the composition r o g is a continuous surjection from N to Kup(X), contradicting KCyp(X) ¢
CBo()). O

Corollary 6.15. A gcby-space is N-based if, and only if, it embeds topologically in O(N). Furthermore,
Based(w) & Based(N') and Based(Dy) S Based (D).

Proof. Theorem 6.3 implies the only-if-part. The if-part follows from the fact that O(N) is N-based by Propo-
sition 6.13. Since the space O(N) is not countably based by Proposition 4.6, it is in Based(N') \ Based(w) =
Based (D) \ Based(Dy). O

The last corollary shows that the role of O(A/) in the class Based (/') is in a sense similar to the role of O(w) =
Pw in the class of countably based spaces. It seems instructive to continue this analogy and investigate, for instance,
the analogue of Proposition 2.7(2) for the class Based (/). Probably, this is more complicated than for cby spaces,
because in [25] the injectivity property of Pw was of principal importance while O(N) is not injective. Indeed, it
follows from Theorem 2.12 in [24] (see also Theorem 3.8 in Chapter II of [9]) that the space O(X) is injective iff
the complete lattice (O(X); C) is continuous iff the space X is core-compact. In particular, the space O(N/) is not
injective.
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Example 6.3. Another example of a \/-based space is the Gruenhage-Streicher space X, which was shown in [10]
to be a qcbg-space whose sobrification is not sequential. The underlying set of X is w X w and a basis for the
topology of X is given by the collection of all sets of the form U(x, &) := {x} U {(i,j) € w?|i > x; and j > £(i)},
where x = (x1,x2) € X and ¢: w — w. Therefore, the function ¢: w? x ' — O(X), defined as ¢(x, &) = U(x, €),
will be a w? x N-indexing of a basis for X provided we can show that ¢ is sequentially continuous. Towards this
end, we fix a sequence (&,), converging to £, in V. For each i € w there are only finitely many n € w such that
€0 (i) # &4 (i), hence for each k € w there is a function f; : w — w such that fi (i) = max{,({) | n > k}. Then for
any x € X we have that the infinite intersection (), #(x,&,) is equal to U(x, fi), hence is an open subset of X.
Furthermore, it is easily verified that ¢ (x, oo ) € Uge,, U(x.fk). It follows from Proposition 4.1(3) that (¢(x, &,))n
converges to ¢(x, &) in O(X), which completes the proof that ¢ is sequentially continuous. We conclude that X
is \/-based because w? x A is a continuous image of N

7. Sequentially Y-based spaces

In this section we consider some modifications of the notion of Y-based spaces from the previous section which
are more suitable to the nature of sequential spaces (in particular, qcbg-spaces). This will be sufficient to settle the
analogues of the open questions in Subsection 6.2 for the sequential embeddings in place of topological embed-
dings.

7.1. Basic facts

One could define several modifications of the notion of Y-based space. For instance, for qcbg-spaces X, P we
could say that a function ¢: P — O(X) is a P-indexed sequential basis for X, if ¢ is continuous and range(¢) is
a subbasis for a topology 7 on X such that the sequentialisation of 7 is the Scott topology in O(X). Under this
definition, some interesting facts may be established, e.g., one can show that for any « < w; the space N{a + 1)
has an N(«a)-indexed sequential basis (see Corollary 7.10).

In this paper, we also consider the following deeper modification:

Definition 7.1. Let X, P be sequential spaces.

(1) We call a collection B of open subsets of X a sequential basis for X, if I3 is a subbase of a topology 7 on the
set X such that the sequentialisation of 7 is equal to O(X).

(2) A function ¢: P — O(X) is called a P-indexed sequential basis for X, if ¢ is continuous and its range rng(¢)
is a sequential basis for X.

(3) For a function ¢: P — O(X), we define B to consist of all intersections of the form (), .. ¢(p,), where
(Pn)n converges to po. in P. -

(4) A function ¢: P — O(X) is called a P-indexed generating system for X, if ¢ is continuous and By is a
sequential basis for X.

(5) X is called sequentially P-based, if there is a P-indexed generating system for X.

Note that by Proposition 4.1(3) the elements of 3, are open in X, if ¢ is continuous, because (¢(p,)), converges
t0 ¢(po) in O(X).

Now we study for which spaces P the existence of a P-indexed generating system implies the existence of a
P-indexed sequential basis.

Lemma 7.2. Let P be a sequential space such that there is a continuous surjection from P onto PN>. Then any
sequential space X is sequentially P-based if, and only if, X has a P-indexed sequential basis.

Proof. From right to left, the assertion is trivial, so let X be sequentially P-based. Let ¢: P — O(X) be an P-
indexed generating system for X and let S: P — PN be a continuous surjection. We define ¢’: P — O(X) by

¢'(p):= [ (Sp)(n).

n<oo

Then ¢’ is continuous by the cartesian closedness of Seq and by Proposition 4.1(3). Since the range of S contains
exactly all convergent sequences (p,),<co Of P, we have rng(¢') = B,. Thus ¢’ is a continuous P-indexing of a
sequential basis for X. O
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Lemma 2.13 shows that the spaces N{a) and N(<\) fulfill the requirement of Lemma 7.2. We obtain:

Corollary 7.3. (1) For any o < wy, a sequential space X is sequentially N{«)-based if, and only if, there is an
N(«)-indexed sequential basis for X.
(2) For any limit ordinal \ < wy, a sequential space X is sequentially N(<\)-based if, and only if, there is an
N(<\)-indexed sequential basis for X.

Although Definition 7.1 is very technical, it is justified by several nice properties the main of which is the
following theorem:

Theorem 7.4. Let X and P be sequential Ty-spaces. Then X is sequentially P-based if, and only if, X embeds
sequentially into O(P).

Proof. Let X be sequentially P-based via the P-indexed generating system ¢: P — O(X). We define the function
e: X — O(P) by e(x) := {p € P|x € ¢(p)}. Identifying opens of X and P with their characteristic functions in S
or S” (see Subsection 4.1), we can view e as a function to S” given by e(x)(p) = ¢(p)(x). Hence e is continuous
by the cartesian closedness of Seq.

To show the injectivity of e, let x and z be distinct elements of X. Since X is Tj, we can assume without loss
of generality that there is open U C X containing x, but not z. Then the constant sequence (z), does not converge
to x in X. Therefore there is some set B € By containing x, but not z. Furthermore there is a convergent sequence
(Pn)n<oo of P with B = (1, @(p»). This implies that there is some 1y € Ny, with p,,, € e(x) \ e(z). Hence e is
injective.

Now let (x,), be a sequence that does not converge to x., in X. Then there exists an open set B € B, withxo, € B
and x, ¢ B for infinitely many n € w. Hence there is a convergent sequence (P )m<oo With B = (1), . &(pm). We
choose a strictly increasing function ¢: w — w with x,(,) ¢ B and a sequence (m,), in No such that x,,) ¢
¢(pm,) for all n € w. If there is some k € N, such that k occurs infinitely often in (m,),, then we set m, := k and
choose a strictly increasing function ¢: w — w with my(,) = k = me. Otherwise (m,), converges to 0o in Ny;
in this case we choose m := oo and let ¢ be the identity on N. In both cases we have p,,,, (n) & e(x,y(n)) for all
n € w,butp,,, € e(xs). Since (pm,, )a converges to p,, . in P, this implies that (e(xyy(n)))n does not converge
to (X0 ) in O(P). By Definition 3.1, e is a sequential embedding of X into O(P).

For the other direction, assume that e is a sequential embedding of X into O(P). We define ¢: P — O(X) by
¢(p) := {x € X|p € e(x)}. An analogous argument as above yields that ¢ is continuous.
Let (x,), be a sequence that does not converge to x, in X. By assumption, (cf(e(x,))), does not converge to
cf(e(xx)) in S. So there is a convergent sequence (p,),<~o in P such that (¢f(e(x,))(pa))n does not converge to
cf (e(xs0))(Xoo) in S. Hence poo € e(xoo) and there is some strictly increasing : w — w with py,) ¢ e(x, () for
all n. Moreover, as e(x) is open, there is some ng with p,(,) € e(xo) for all n > ng. As (py(n))n>n, cOnverges to
Poo in P, the set B := ¢(poc) N[5, #(Py(n)) is an element of By, by Proposition 4.1(3). By the construction we
have xo, € B and x,,(y) ¢ B for all n > ny. Hence (x,), does not converge to x, w.r.t. to the topology induced on
X by By as a subbase, thus it does not converge in X. Therefore X is sequentially P-based. g

Theorem 7.4 solves in the positive the “sequential analogue” of the question “is O(P) € Based(P) for each P?”
discussed in the previous section. It has several nice corollaries including the following:

Corollary 7.5. Let X, P, S be sequential Ty-spaces.

(1) The space O(P) is sequentially P-based.
(2) Let X be sequentially P-based and P be a quotient of Z. Then X is sequentially Z-based.

Proof. (1) Immediate by Theorem 7.4.
(2) By Lemma 3.2, the space O(P) = S’ sequentially embeds into O(Z) = S?. By Theorem 7.4, X sequentially
embeds into O(P), hence also in O(Z). By Theorem 7.4, X is sequentially Z-based.
O

For any sequential space P we of course have Based(P) C SBased(P). An interesting question is “for which P
this inclusion is proper?” It is proper at least for some P. From Corollary 7.5 and Example 6.2 it follows that the
space O(Q) is sequentially Q-based, but not Q-based. This example can be improved to the following:
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Proposition 7.6. The space O(Q) is sequentially N -based, but not N-based.

Proof. O(Q) is sequentially Q-based by the first part of Corollary 7.5. Since Q is a quotient of N [16], O(Q) is
sequentially A/-based by the second part of Corollary 7.5. On the other hand, O(Q) is not A/-based by Proposition
6.14. O

We now show how to construct generating systems for countable products and function spaces (formed in Seq).

Proposition 7.7. Let X;, P; be sequential Ty-spaces such that X; is sequentially P;-based for i € w. Then the
sequential product [ .. X; is sequentially (€D, ., P;)-based.

icw iCw

Proof. Let ¢;: P; — O(X;) be a P;-indexed generating system for X;. We define ¢oc: Py, Px — O([] Xi) by

iEw

Goo(k,p) := {x € []X; | x(k) € ¢x(p)}

iCw

for all k € w, p € Py. Since Seq is cartesian closed and has all countable limits and colimits, ¢, is continuous.
Now let (x,), be a sequence that does not converge to x, in Hiew X;. Then there is some k € w and some open
set B € By, such that (x,(k)), does not converge to xo (k) in Xy, xo0 (k) € B and x,(k) ¢ B for infinitely many
n. Choose some convergent sequence (P )m<oo in Pr wWith B =", . ®x(Pm). Then (k, py)m<oo is a convergent
sequence of the coproduct P, P;. Thus the set B’ := [, - ., oo (k, pi) is an element of By__ . The construction
yields xo, € B’ and x, ¢ B’ for infinitely many n. So By__ is a sequential basis for [ [,y X;. We conclude that the
product [ ], X; formed in Seq is sequentially (5, ,, Px)-based. O

iCw

Proposition 7.8. Let X, Y, P be sequential Ty-spaces such that Y is sequentially P-based. Then YX is sequentially
(P x X)-based.

Proof. By Theorem 7.4, there exists a sequential embedding e: ¥ — S of Y into S”. We define a function
E: YX — SPX by E(f)(p,x) := e(f(x))(p). By cartesian closedness of Seq the function E is continuous. As e
is injective, E is injective as well. Now let (f;),<oo be a sequence of functions in Y* such that (E(f,)), con-
verges to E(fs, ) in SP*X. To show that (f,), converges continuously to fs, let (x,), converge to X in X. If (p,),
converges t0 poo in P, then (e(fy(x4))(Pn))n = (E(fn) (PnsXn) ) n converges to E(foo ) (Pocs Xoo) = €(foo (Xo0)) (Poc)s
hence (e(f,(x,)), converges to e(foo (Xo0)) in SP. Since e embeds Y sequentially into S¥, (f,(x,)), converges to
foo(xXso) in Y. Thus (f,), converges to fx, in ¥*. We conclude that YX sequentially embeds into O(P x X). By
Theorem 7.4, YX is sequentially (P x X)-based. O

We can slightly improve this proposition to the following corollary.

Corollary 7.9. Let X, Y, P, S be sequential Ty-spaces such that Y is sequentially P-based and X is a quotient of S.
Then YX is sequentially (P x S)-based.

Proof. By Proposition 7.8, Y* is sequentially (P x X)-based. Since in Seq the product of two quotient maps is a
quotient map (see [27]), P x X is a quotient of P x S. By Corollary 7.5, Y* is also sequentially (P x S)-based. [J

From Proposition 7.8 we obtain the following nice property of the spaces of functionals:

Corollary 7.10. For any o < wy, the space N{a + 1) is sequentially N(«)-based. For any limit ordinal \ < wy,
the space N(\) is sequentially N(<\)-based.

Proof. By Proposition 7.8, N{(« + 1) is sequentially (w x N{a))-based. Since w x N{«) = N(«) by Proposi-
tion 2.12, N{(« + 1) is sequentially N{«a)-based. The same argument proves also the second assertion because
WA =2 N(A) and w x N(<\) = N(<\). O
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7.2. Classifying sequentially Y-based spaces

For any qcby-space Y, let SBased(Y) denote the class of sequentially Y-based qcby-spaces. For a class S of qcby-
spaces Y, let SBased(S) = | Jy s SBased(Y). Obviously, Based(Y) C SBased(Y) for each qcbo-space Y.
Theorem 7.4 induces some natural classifications of qcbg-spaces. For example, one can relate to any family of
pointclasses I' the classes SBased(I'(N)) and SBased(QCBy(T")).
The next assertion is proved just as its analogue Proposition 6.8, using Corollary 7.5.

Proposition 7.11. For any family of pointclasses T, the classes SBased(T'(N')) and SBased(QCBy(T")) coincide.

Thus, the classical hierarchies of subsets of the Baire space induce the corresponding hierarchies of qcby-
spaces, in particular the “hyperprojective sequential-based-hierarchy” SBased(X!, (N')); we simplify the notation
to SBased(X!)) and relate this hierarchy to the admissible representations d,, : D,, — N{a) of the continuous func-
tionals from Subsection 2.5.

The next assertion is proved just as its analogue Proposition 6.9, using Corollary 7.5 (in fact, one needs the
additional observation that any non-empty X! -set is not only a continuous image, but even a quotient of N{«); this
follows from the proof of Theorem 7.2 in [25]).

Proposition 7.12. For any o < wy, SBased(Dy+1) = SBased(I1.) = SBased(X!,,,) = SBased(N{« + 1)). For

any limit ordinal X\ < wy, SBased(D) = SBased((II\ ,)s) = SBased (X)) = SBased(N(\)).

Next we solve the principal question on the non-collapse property of the hierarchy {SBased(D )} o<, - Remem-
ber that the corresponding result for the hierarchy {Based(D,,)} remained open.

Proposition 7.13. The hierarchy {SBased(D,)} does not collapse, i.e. SBased(D,) & SBased(Dg) for all a <
B < wi. More precisely, SBased(D,) G SBased(Dq+1) for each o < w and SBased(P,,_, Do) G SBased(D))
for each limit ordinal \ < wy.

Proof. By Theorem 7.4 and Corollary 7.5, it suffices to show that O(D,.;) does not sequentially embed into
O(D,) and O(D)) does not sequentially embed into SBased (€D, ., Do) This is checked just in the same way as

in the proof of Proposition 6.10. g

The next fact shows that the class SBased(N') is rather rich.

Proposition 7.14. Let X be a qcby-space having a total admissible representation &: N — X. Then O(X) embeds
sequentially into O(N).

Proof. By Lemma 3.2, £~ : O(X) — O(N) is a sequential embedding. O

Problem 7.1. As we know from Example 6.2 and Theorem 7.4, Based(Q) & SBased(Q) and Based(N') &
SBased(N'). We would like to know for which sequential spaces X Based(X) G SBased(X). In particular, we guess
that Based(D) G SBased(D,,) for all non-zero ordinals o < wy and SBased(@,, ., Do) S SBased(@,, . 5 Do)
for all limit ordinals A < w;. Good possible witnesses seem to be the spaces N{« + 1) and N(\) respectively (see

Corollary 7.10).

7.3. Functionals of countable types in the hierarchy {SBased(D,)}

As we know from Proposition 7.13, the spaces O(D,,) are natural witnesses for the non-collapse property of the
hierarchy {SBased(D,,)}. Here we show that the spaces N{«) provide other natural witnesses for this property.
Given a qcby-space X, we let Ox denote the constantly zero function Ax € X.0 in wX.

Lemma 7.15. Let X be a qchy-space, Y C N, f: X — Y a continuous function, and A = Y \ f(X) the complement
of the range of f. Then there is a continuous function g: Y — (wx )w such that g(y) is a sequence in w* converging
to Ox if and only if y € A.
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Proof. Fory € Y and n € w we let Ty[n] denote the clopen subset of Y of elements that agree with y in the first n
places. Define g: ¥ — (w¥)” as g(y)(n)(x) = 0 if f(x) ¢t y[n] and g(y)(n)(x) = 1, otherwise. The continuity of
g follows from the continuity of f and the fact that 1y[n] is clopen.

If y & A, then there is x € X such that f(x) = y. It follows that g(y)(n)(x) = 1 for all n € w, hence g(y) does not
converge to Ox.

Conversely, let y € A be given and assume (x,),c. converges to X, in X. Clearly, f(x) # y hence there is
nop € w such that f(x,) €1y[ng]. The continuity of f and the convergence of (x,), to xo imply there is n; € w
such that f(x,) €1 ylno] for all n > ny, hence g(y)(n)(x,) = 0 for all n > ngy + ny. It follows that g(y) converges to
Ox. O

The next result shows that Corollary 7.10 is in a sense optimal.

Theorem 7.16. (1) Forany a < wy, N(a + 2) ¢ SBased(N(a)).
(2) For any limit ordinal A < wy, N(\ + 1) ¢ SBased(N{<\)).
(3) For any limit ordinal X < wy, N(\) ¢ U, ., SBased(N(a)).

Proof. (1) Fix a set Ae€II!  (NV)\ X!, ,(NV). By Proposition 2.11, there is a continuous function
f: N{a + 1) = N such that A equals the complement of the range of f. From Lemma 7.15 (with N{a + 1) in
place of X) we obtain a continuous g: A" — (N(a + 2))“ such that g(y) is a sequence in N(« + 2) converging
t0 On(a+1y if and only if y € A.

Now assume for a contradiction that N(« + 2) € SBased(N(«)). Since N(«) is a quotient of D, Lemma
7.3 implies there is continuous ¢: Do — O(N(a + 2)) such that the range of ¢ is a sequential basis for
N{a + 2). It follows that

yEA < Yx € N.[(x € Do AOnjasry € 6(x)) = V°.8(y)(n) € ¢(x)] .

First note that the set of open subsets of N(a + 2) containing Opq+1y is open in O(N(a + 2)), hence the
continuity of ¢ implies that Uy := {x € Dy, | Ona+1) € ¢(x)} is an open subset of D, hence Uy € X, (N) by
Proposition 2.10. Furthermore, for each n € w, the function h,: D, x N — S defined as h,(x,y) = T <
g(y)(n) € ¢(x) is continuous by cartesian closedness. It follows that

By := {(x.y) € Do x N'|¥g()(n) € 60} = [J () 1 (T)

kew n>k
isin 39(D, x N). Let B be a X9 subset of N x A such that By = BN (D, x N). Then
YEA <= VxeN.[x¢€ UV (x,y) € B],

hence A € IT!, (N), contradicting our choice of A.
(2) FixasetA € IT{ (NV) \ £} (V). As in (1) one can show that there exists a continuous g: A" — (N(\ + 1))*
such that g(y) is a sequence in N()\ + 1) converging to Oy, if and only if y € A.
Now assume for a contradiction that N(\ + 1) € SBased(N(<\)). As N(<)\) = P, ., N(ax) and N{(«)
is a quotient of D, for each o < A, Lemma 7.3 implies there is a continuous ¢: @, Do — O(N(X + 1))
such that the range of ¢ is a sequential basis for N(\ + 1). It follows that

yEA < Va < AVx € D,. [(Onp) € 0(x)) = V°.2(y)(n) € ¢(x)]

Then A =) C,,, where

a<
Co ={y|Vx €Dy Oy € d(x) = V°.2(y)(n) € d(x)}.

Since, by the same argument as in (1), C, € ITL, (V) for each v < X, A € (IIL)5(NV) C X}. A contra-
diction.

(3) Suppose the contrary: N(\) is sequentially N{«)-based for some o < A. By Theorem 7.4, N(\) embeds
sequentially in O(N(«)). Since @ + 2 < A\, N{« + 2) is aretract of N()) by Proposition 2.12. Then N{« + 2)
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embeds topologically in N(\), hence N{« + 2) embeds sequentially in N(\), hence N(« + 2) embeds sequen-
tially in O(N(«)), hence N(« + 2) is sequentially N(c)-based. Contradiction with (1).
O

The next immediate corollary of Theorem 7.16 and Corollary 7.10 shows that the spaces N{a) witness the
non-collapse property of the hierarchy {SBased(D,,)}.

Corollary 7.17. (1) Forany o < wy, N{aw + 2) € SBased(N{a + 1)) \ SBased(N(«)).
(2) For any limit ordinal A < wy, N(\ + 1) € SBased(N(\)) \ SBased(N{<\)).
(3) For any limit ordinal X < wy, N(\) € SBased(,, ., N(a)) \ U, SBased(N{(a)).

We also can deduce the following interesting corollary about the continuous functionals.

Corollary 7.18. Forall a < 8 < wy, N(f8) does not sequentially embed into N{c).

Proof. First we check by induction on « that N{(« + 1) does not be sequentially embed into N{«). For o = 0 this
is obvious. Let & = 7y + 1 be successor and suppose the contrary, so N(v + 2) sequentially embeds into N{y + 1).
Since N(vy + 1) is sequentially N(~y)-based by Corollary 7.10, it sequentially embeds in O(N(v)) by Theorem
7.4. Then N( + 2) sequentially embeds in O(N(~)), hence N(~y + 2} is sequentially N{~)-based by Theorem 7.4.
Contradiction with Theorem 7.16. Let v = A be limit and suppose the contrary, so N{X + 1) sequentially embeds
into N(\). Since N()\) is sequentially N(<\)-based by Corollary 7.10, it sequentially embeds in O(N(<\)) by
Theorem 7.4. Then N{\ + 1) sequentially embeds in O(N(<\)), hence N(\ + 1) is sequentially N(<\)-based by
Theorem 7.4. Contradiction with Theorem 7.16.

It remains to consider the case o+ 1 < 3. Suppose for a contradiction that N{3) sequentially embeds into
N(«). Since N{a + 1) embeds sequentially in N(3) by the proof of item (3) in Theorem 7.16, N{« + 1) embeds
sequentially in N{«). Contradiction with the previous paragraph. U

8. On universal spaces

In this section we discuss which classes of qcbg-spaces have and which do not have a universal space. This is of
interest because universal spaces are noticeable in several branches of set-theoretic topology.
We start with introducing the main notions of this section.

Definition 8.1. (1) Let S be a class of topological spaces. A space X is universal in S, if X € S and any space
from S embeds topologically in X.
(2) Let S be a class of sequential spaces. A space X is sequentially universal in S, if X € S and any space from
S embeds sequentially in X.

The first notion above is well-known in topology. For instance, Pw is universal in the class of cby-spaces (Propo-
sition 2.2), NV is universal in the class of zero-dimensional cby-spaces (Proposition 2.1), [0; 1] is universal in the
class of separable metrizable spaces [12], while the class of all topological spaces has no universal space. The
second notion is a “sequential version” of the first one which is natural when dealing with sequential (in particular,
qcby-) spaces.

Since Pw is universal in the class of cby-spaces and Y-based spaces are designed as a natural generalization of
countably based spaces, it is natural to ask for which ¥ C A the class of Y-based spaces has a universal space. At
least, from Theorem 6.3 we immediately obtain the following:

Corollary 8.2. Let Y C N be such that the space O(Y) is Y-based. Then O(Y) is universal in the class of Y-based
topological spaces. In particular, the space O(N') is universal in the class of N-based spaces.

For the sequential version, we similarly derive from Theorem 7.4 the following result:
Corollary 8.3. For any qcby-space Y, the qcby-space O(Y) is sequentially universal in SBased(Y).

It is still open whether or not Based(D,,) contains a universal space when o > 1. However, we see that each
level of the hierarchy {SBased(D,,)} contains a sequentially universal space O(D,,) with a total admissible repre-
sentation. The same applies to the hierarchies of cby-spaces in [25] (obviously, Pw is a universal space in CBq(T")
for each family of pointclasses I that contains IT9).
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For the hierarchies of qcbg-spaces in [25, 26] the situation is more complicated. Currently we do not know
which of the classes QCBg(T"), where I" is a level of the Borel or hyperprojective hierarchy, have a universal (or a
sequentially universal) space. Nevertheless, we can show that the class of all gcbg-spaces, as well as some natural
pointclasses related to the hyperprojective hierarchy qcbg-spaces, do not have universal spaces. Recall from [25, 26]
that QCBo(P) := |J,.,, QCBo (X)) and QCBy(HP) :=|J QCBy (X)) denote the classes of projective and of
hyperprojective qcbg-spaces, respectively.

a<wi]

Theorem 8.4. (1) There is no universal (nor a sequentially universal) gcby-space.
(2) For any limit ordinal \ < wy, there is no universal (nor a sequentially universal) space in QCBO(ELA).
(3) There is no universal (nor a sequentially universal) space in QCBq(P) (nor in QCBy(HP)).

Proof. (1) Suppose for a contradiction that X is a topologically (or sequentially) universal qcby-space. By
Theorem 6.6, X topologically embeds into O(Y) for some ¥ C N, hence O(Y) is also a universal qcby-
space. Since there are hypercontinuum many subsets of A/ and at most continuum many of them are Wadge
reducible to EQ(y), there is Z C N such that N\ Z €y EQ(7y). By Lemma 4.5(2), N'\ Z <y EQ(7z),
hence EQ(7z) £w EQ(my). By Lemma 3.3, there is no continuous injection of O(Z) into O(Y), hence the
qcbg-space O(Z) does not embed (topologically or sequentially) into O(Y). This contradicts the universality
of O(Y).

(2) Suppose for a contradiction that X is a topologically (or sequentially) universal space in QCBg (21< 1), so there
is an admissible representation § : ¥ — X of X such that EQ(5) € XL, (N). As above, the space O(Y) is also
universal in QCBo (XL ). Choose Z € XL | (V) such that N\ Z £y EQ(7y) (e.g. let Z be Wadge complete
in X!, where v < X\ satisfies EQ(my) € X!, (\V)). Repeating the argument from the previous paragraph, we
obtain a contradiction.

Item (3) follows from item (2) because QCBo(P) = QCBy(XL,) and QCBy(HP) is the union of the
classes QCBO(EI< ) where ) ranges over the limit countable ordinals.
O

9. Conclusion

We introduced and studied some hierarchies of qcbg-spaces which classify spaces by the complexity of their
bases. These hierarchies complement hierarchies from [25] and suggest some approaches to the problem of better
understanding the non-countably based qcbg-spaces. The new hierarchies are divided into two classes. The first
one is based on the purely topological notion of a Y-based space, this simple notion leads to complications in the
study of the related hierarchies and principal open questions. The second is based on a more complicated and less
intuitive notion of a sequentially Y-based space, but leads to an elegant theory and to solutions of some principal
questions.

We expect that notions and results of this paper will be of use in further understanding non-countably based
gcby-spaces. For example, the introduced hierarchies provide useful methods for determining whether or not a
given qcbyg-space can be topologically or sequentially embedded into another one. In particular, we used these
methods to show that if a < 8 then N{f3) can not be sequentially embedded into N{«). Furthermore, we were able
to solve (in the negative) the principal question on the existence of a universal qcby-space. This is a new indication
that gcbg-spaces are much harder than cby-spaces.

Corollary 6.7 shows that every qcbgp-space can be topologically embedded into one with a total admissible
representation, which might be interpreted as a kind of “completion” of the space. This observation can be refined
further if sequential embeddings are permitted, in which case we have shown that every space in SBased(D,,) can
be sequentially embedded into some space in SBased(D,,) with a total admissible representation (see the comments
after Corollary 8.3).
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