Continuity in constructive analysis

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Aim:

Constructive analysis, with constructions \sim good algorithms.

The modulus of continuity ω is an indispensable part of the definition of a continuous function on a compact interval, although sometimes it is not mentioned explicitly. In the same way, the moduli of continuity of the restrictions of f to each compact subinterval are indispensable parts of the definition of a continuous function f on a general interval.
A continuous function $f : (X, \rho, Q) \rightarrow (Y, \sigma, R)$ for separable metric spaces is given by

$$h: Q \rightarrow \mathbb{N} \rightarrow R$$

approximating map

plus $\alpha, \omega, \gamma, \delta$ depending on w, r (center and radius of a ball):

α: $Q \rightarrow \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \rightarrow \mathbb{N}$ such that $(h(u, n))_n$ (for $\rho(u, w) \leq \frac{1}{2r}$) is a Cauchy sequence with modulus $\alpha_{w, r}(p)$;

a modulus ω: $Q \rightarrow \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ of (uniform) continuity, such that for $n \geq \alpha_{w, r}(p)$ and $\rho(u, w), \rho(v, w) \leq \frac{1}{2r}$

$$\rho(u, v) \leq \frac{2}{2\omega_{w, r}(p)} \rightarrow \sigma(h(u, n), h(v, n)) \leq \frac{1}{2p};$$

maps γ: $Q \rightarrow \mathbb{Z}^+ \rightarrow R$, δ: $Q \rightarrow \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ such that $\gamma(w, r)$ and $\delta(w, r)$ are center and radius of a ball containing all $h(u, n)$ (for $\rho(u, w) \leq \frac{1}{2r}$):

$$\rho(u, w) \leq \frac{1}{2r} \rightarrow \sigma(h(u, n), \gamma(w, r)) \leq \frac{1}{2\delta(w, r)}.$$

$\alpha, \omega, \gamma, \delta$ are required to have monotonicity properties.

f given by type-1 data only.
A continuous function $f : (X, \rho, Q) \to (Y, \sigma, R)$ for separable metric spaces is given by

$$h : Q \to \mathbb{N} \to R$$

approximating map

plus $\alpha, \omega, \gamma, \delta$ depending on w, r (center and radius of a ball):

- $\alpha : Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \to \mathbb{N}$ such that $(h(u, n))_n$ (for $\rho(u, w) \leq \frac{1}{2r}$) is a Cauchy sequence with modulus $\alpha_{w,r}(p)$;

- a modulus $\omega : Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \to \mathbb{Z}^+$ of (uniform) continuity, such that for $n \geq \alpha_{w,r}(p)$ and $\rho(u, w), \rho(v, w) \leq \frac{1}{2r}$
 $$\rho(u, v) \leq \frac{2}{2\omega_{w,r}(p)} \to \sigma(h(u, n), h(v, n)) \leq \frac{1}{2p};$$

- maps $\gamma : Q \to \mathbb{Z}^+ \to R$, $\delta : Q \to \mathbb{Z}^+ \to \mathbb{Z}^+$ such that $\gamma(w, r)$ and $\delta(w, r)$ are center and radius of a ball containing all $h(u, n)$ (for $\rho(u, w) \leq \frac{1}{2r}$):
 $$\rho(u, w) \leq \frac{1}{2r} \to \sigma(h(u, n), \gamma(w, r)) \leq \frac{1}{2\delta(w,r)}.$$

$\alpha, \omega, \gamma, \delta$ are required to have monotonicity properties.

f given by type-1 data only.
A continuous function \(f : (X, \rho, Q) \rightarrow (Y, \sigma, R) \) for separable metric spaces is given by

\[
h : Q \rightarrow \mathbb{N} \rightarrow R \quad \text{approximating map}
\]

plus \(\alpha, \omega, \gamma, \delta \) depending on \(w, r \) (center and radius of a ball):

- \(\alpha : Q \rightarrow \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \rightarrow \mathbb{N} \) such that \((h(u, n))_n\) (for \(\rho(u, w) \leq \frac{1}{2r} \)) is a Cauchy sequence with modulus \(\alpha_{w,r}(p) \);
- a modulus \(\omega : Q \rightarrow \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \) of (uniform) continuity, such that for \(n \geq \alpha_{w,r}(p) \) and \(\rho(u, w), \rho(v, w) \leq \frac{1}{2r} \)
 \[
 \rho(u, v) \leq \frac{2}{2\omega_{w,r}(p)} \rightarrow \sigma(h(u, n), h(v, n)) \leq \frac{1}{2p};
 \]
- maps \(\gamma : Q \rightarrow \mathbb{Z}^+ \rightarrow R, \delta : Q \rightarrow \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \) such that \(\gamma(w, r) \) and \(\delta(w, r) \) are center and radius of a ball containing all \(h(u, n) \) (for \(\rho(u, w) \leq \frac{1}{2r} \)):
 \[
 \rho(u, w) \leq \frac{1}{2r} \rightarrow \sigma(h(u, n), \gamma(w, r)) \leq \frac{1}{2\delta(w,r)}.
 \]

\(\alpha, \omega, \gamma, \delta \) are required to have monotonicity properties.

\(f \) given by type-1 data only.
A continuous function $f: (X, \rho, Q) \to (Y, \sigma, R)$ for separable metric spaces is given by

$$h: Q \to \mathbb{N} \to R$$

approximating map

plus $\alpha, \omega, \gamma, \delta$ depending on w, r (center and radius of a ball):

- $\alpha: Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \to \mathbb{N}$ such that $(h(u, n))_n$ (for $\rho(u, w) \leq \frac{1}{2r}$) is a Cauchy sequence with modulus $\alpha_{w,r}(p)$;
- a modulus $\omega: Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \to \mathbb{Z}^+$ of (uniform) continuity, such that for $n \geq \alpha_{w,r}(p)$ and $\rho(u, w), \rho(v, w) \leq \frac{1}{2r}$

$$\rho(u, v) \leq \frac{2}{2\omega_{w,r}(p)} \to \sigma(h(u, n), h(v, n)) \leq \frac{1}{2p};$$

- maps $\gamma: Q \to \mathbb{Z}^+ \to R$, $\delta: Q \to \mathbb{Z}^+ \to \mathbb{Z}^+$ such that $\gamma(w, r)$ and $\delta(w, r)$ are center and radius of a ball containing all $h(u, n)$ (for $\rho(u, w) \leq \frac{1}{2r}$):

$$\rho(u, w) \leq \frac{1}{2r} \to \sigma(h(u, n), \gamma(w, r)) \leq \frac{1}{2\delta(w, r)}.$$

$\alpha, \omega, \gamma, \delta$ are required to have monotonicity properties.

f given by type-1 data only.
A continuous function \(f : (X, \rho, Q) \to (Y, \sigma, R) \) for separable metric spaces is given by

\[
h : Q \to \mathbb{N} \to R
\]

approximating map

plus \(\alpha, \omega, \gamma, \delta \) depending on \(w, r \) (center and radius of a ball):

1. \(\alpha : Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \to \mathbb{N} \) such that \((h(u, n))_n \) (for \(\rho(u, w) \leq \frac{1}{2r} \)) is a Cauchy sequence with modulus \(\alpha_{w,r}(p) \);
2. a modulus \(\omega : Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \to \mathbb{Z}^+ \) of (uniform) continuity, such that for \(n \geq \alpha_{w,r}(p) \) and \(\rho(u, w), \rho(v, w) \leq \frac{1}{2r} \)

\[
\rho(u, v) \leq \frac{2}{2\omega_{w,r}(p)} \to \sigma(h(u, n), h(v, n)) \leq \frac{1}{2^p};
\]
3. maps \(\gamma : Q \to \mathbb{Z}^+ \to R \), \(\delta : Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \) such that \(\gamma(w, r) \)
and \(\delta(w, r) \) are center and radius of a ball containing all \(h(u, n) \) (for \(\rho(u, w) \leq \frac{1}{2r} \)):

\[
\rho(u, w) \leq \frac{1}{2r} \to \sigma(h(u, n), \gamma(w, r)) \leq \frac{1}{2\delta(w,r)}.
\]

\(\alpha, \omega, \gamma, \delta \) are required to have monotonicity properties.

\(f \) given by type-1 data only.
A continuous function $f: (X, \rho, Q) \to (Y, \sigma, R)$ for separable metric spaces is given by

$$h: Q \to \mathbb{N} \to R \quad \text{approximating map}$$

plus $\alpha, \omega, \gamma, \delta$ depending on w, r (center and radius of a ball):

- $\alpha: Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \to \mathbb{N}$ such that $(h(u, n))_n$ (for $\rho(u, w) \leq \frac{1}{2r}$) is a Cauchy sequence with modulus $\alpha_{w, r}(p)$;
- a modulus $\omega: Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \to \mathbb{Z}^+$ of (uniform) continuity, such that for $n \geq \alpha_{w, r}(p)$ and $\rho(u, w), \rho(v, w) \leq \frac{1}{2r}$

$$\rho(u, v) \leq \frac{2}{2\omega_{w, r}(p)} \to \sigma(h(u, n), h(v, n)) \leq \frac{1}{2^p};$$

- maps $\gamma: Q \to \mathbb{Z}^+ \to \mathbb{R}$, $\delta: Q \to \mathbb{Z}^+ \to \mathbb{Z}^+$ such that $\gamma(w, r)$ and $\delta(w, r)$ are center and radius of a ball containing all $h(u, n)$ (for $\rho(u, w) \leq \frac{1}{2r}$):

$$\rho(u, w) \leq \frac{1}{2r} \to \sigma(h(u, n), \gamma(w, r)) \leq \frac{1}{2^\delta(w, r)}.$$

$\alpha, \omega, \gamma, \delta$ are required to have monotonicity properties.

f given by type-1 data only.
A continuous function $f : (X, \rho, Q) \to (Y, \sigma, R)$ for separable metric spaces is given by

$$h : Q \to \mathbb{N} \to R$$

approximating map

plus $\alpha, \omega, \gamma, \delta$ depending on w, r (center and radius of a ball):

- $\alpha : Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \to \mathbb{N}$ such that $(h(u, n))_n$ (for $\rho(u, w) \leq \frac{1}{2r}$) is a Cauchy sequence with modulus $\alpha_{w,r}(p)$;

- a modulus $\omega : Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \to \mathbb{Z}^+$ of (uniform) continuity, such that for $n \geq \alpha_{w,r}(p)$ and $\rho(u, w), \rho(v, w) \leq \frac{1}{2r}$

$$\rho(u, v) \leq \frac{2}{2\omega_{w,r}(p)} \to \sigma(h(u, n), h(v, n)) \leq \frac{1}{2p};$$

- maps $\gamma : Q \to \mathbb{Z}^+ \to R$, $\delta : Q \to \mathbb{Z}^+ \to \mathbb{Z}^+$ such that $\gamma(w, r)$ and $\delta(w, r)$ are center and radius of a ball containing all $h(u, n)$ (for $\rho(u, w) \leq \frac{1}{2r}$):

$$\rho(u, w) \leq \frac{1}{2r} \to \sigma(h(u, n), \gamma(w, r)) \leq \frac{1}{2\delta(w,r)}.$$

$\alpha, \omega, \gamma, \delta$ are required to have monotonicity properties.

f given by type-1 data only.
A continuous function $f: (X, \rho, Q) \to (Y, \sigma, R)$ for separable metric spaces is given by

$$h: Q \to \mathbb{N} \to R$$

approximating map

plus $\alpha, \omega, \gamma, \delta$ depending on w, r (center and radius of a ball):

- $\alpha: Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \to \mathbb{N}$ such that $(h(u, n))_n$ (for $\rho(u, w) \leq \frac{1}{2r}$) is a Cauchy sequence with modulus $\alpha_{w,r}(p)$;

- a modulus $\omega: Q \to \mathbb{Z}^+ \to \mathbb{Z}^+ \to \mathbb{Z}^+$ of (uniform) continuity, such that for $n \geq \alpha_{w,r}(p)$ and $\rho(u, w), \rho(v, w) \leq \frac{1}{2r}$

$$\rho(u, v) \leq \frac{2}{2\omega_{w,r}(p)} \to \sigma(h(u, n), h(v, n)) \leq \frac{1}{2^p};$$

- maps $\gamma: Q \to \mathbb{Z}^+ \to R$, $\delta: Q \to \mathbb{Z}^+ \to \mathbb{Z}^+$ such that $\gamma(w, r)$ and $\delta(w, r)$ are center and radius of a ball containing all $h(u, n)$ (for $\rho(u, w) \leq \frac{1}{2r}$):

$$\rho(u, w) \leq \frac{1}{2r} \to \sigma(h(u, n), \gamma(w, r)) \leq \frac{1}{2\delta(w,r)}. $$

$\alpha, \omega, \gamma, \delta$ are required to have monotonicity properties.

f given by type-1 data only.
Example: Inverse map \((0, \infty) \rightarrow \mathbb{R}\)

Let \(0 < c < d\), and \(q\) be minimal such that \(\frac{1}{2q} \leq c\). Then \(\text{inv}\) is given by

- the approximating map \(h(a, n) := \frac{1}{a}\)
- the Cauchy modulus \(\alpha(c, d, p) := 0\)
- the modulus \(\omega(c, d, p) := p + 2q + 1\) of uniform continuity, for

\[
|a - b| \leq \frac{1}{2p + 2q} \rightarrow \left| \frac{1}{a} - \frac{1}{b} \right| = \left| \frac{b - a}{ab} \right| \leq \frac{1}{2p},
\]

because \(ab \geq \frac{1}{2^{2q}}\)

- the center \(\gamma(c, d) := \frac{c}{c^2 - d^2}\) and radius \(\delta(c, d) := \frac{d}{c^2 - d^2}\) of a ball containing all \(\frac{1}{a}\) for \(|a - c| \leq d\).
Example: Inverse map $(0, \infty) \to \mathbb{R}$

Let $0 < c < d$, and q be minimal such that $\frac{1}{2q} \leq c$. Then inv is given by

- the approximating map $h(a, n) := \frac{1}{a}$
- the Cauchy modulus $\alpha(c, d, p) := 0$
- the modulus $\omega(c, d, p) := p + 2q + 1$ of uniform continuity, for

$$|a - b| \leq \frac{1}{2p+2q} \to \left| \frac{1}{a} - \frac{1}{b} \right| = \left| \frac{b - a}{ab} \right| \leq \frac{1}{2p},$$

because $ab \geq \frac{1}{2^{2q}}$

- the center $\gamma(c, d) := \frac{c}{c^2 - d^2}$ and radius $\delta(c, d) := \frac{d}{c^2 - d^2}$ of a ball containing all $\frac{1}{a}$ for $|a - c| \leq d$.
Example: Inverse map $(0, \infty) \to \mathbb{R}$

Let $0 < c < d$, and q be minimal such that $\frac{1}{2q} \leq c$. Then inv is given by

- the approximating map $h(a, n) := \frac{1}{a}$
- the Cauchy modulus $\alpha(c, d, p) := 0$
- the modulus $\omega(c, d, p) := p + 2q + 1$ of uniform continuity, for

\[|a - b| \leq \frac{1}{2p+2q} \to \frac{1}{a} - \frac{1}{b} = \frac{b - a}{ab} \leq \frac{1}{2p}, \]

because $ab \geq \frac{1}{2^2q}$

- the center $\gamma(c, d) := \frac{c}{c^2-d^2}$ and radius $\delta(c, d) := \frac{d}{c^2-d^2}$ of a ball containing all $\frac{1}{a}$ for $|a - c| \leq d$.

Example: Inverse map \((0, \infty) \to \mathbb{R}\)

Let \(0 < c < d\), and \(q\) be minimal such that \(\frac{1}{2q} \leq c\). Then \(\text{inv}\) is given by

- the approximating map \(h(a, n) := \frac{1}{a}\)
- the Cauchy modulus \(\alpha(c, d, p) := 0\)
- the modulus \(\omega(c, d, p) := p + 2q + 1\) of uniform continuity, for

\[|a - b| \leq \frac{1}{2^p + 2q} \implies \left| \frac{1}{a} - \frac{1}{b} \right| = \left| \frac{b - a}{ab} \right| \leq \frac{1}{2^p},\]

because \(ab \geq \frac{1}{2^{2q}}\)

- the center \(\gamma(c, d) := \frac{c}{c^2 - d^2}\) and radius \(\delta(c, d) := \frac{d}{c^2 - d^2}\) of a ball containing all \(\frac{1}{a}\) for \(|a - c| \leq d\).
Example: Inverse map $$(0, \infty) \to \mathbb{R}$$

Let $$0 < c < d$$, and $$q$$ be minimal such that $$\frac{1}{2q} \leq c$$. Then inv is given by

- the approximating map $$h(a, n) := \frac{1}{a}$$
- the Cauchy modulus $$\alpha(c, d, p) := 0$$
- the modulus $$\omega(c, d, p) := p + 2q + 1$$ of uniform continuity, for

$$|a - b| \leq \frac{1}{2p+2q} \to \frac{1}{a} - \frac{1}{b} = \frac{b - a}{ab} \leq \frac{1}{2p},$$

because $$ab \geq \frac{1}{2^{2q}}$$

- the center $$\gamma(c, d) := \frac{c}{c^2 - d^2}$$ and radius $$\delta(c, d) := \frac{d}{c^2 - d^2}$$ of a ball containing all $$\frac{1}{a}$$ for $$|a - c| \leq d$$.

Example: Inverse map \((0, \infty) \to \mathbb{R}\)

Let \(0 < c < d\), and \(q\) be minimal such that \(\frac{1}{2q} \leq c\). Then \(\text{inv}\) is given by

- the approximating map \(h(a, n) := \frac{1}{a}\)
- the Cauchy modulus \(\alpha(c, d, p) := 0\)
- the modulus \(\omega(c, d, p) := p + 2q + 1\) of uniform continuity, for

\[
|a - b| \leq \frac{1}{2p+2q} \to \left|\frac{1}{a} - \frac{1}{b}\right| = \left|\frac{b - a}{ab}\right| \leq \frac{1}{2p},
\]

because \(ab \geq \frac{1}{2^{2q}}\)

- the center \(\gamma(c, d) := \frac{c}{c^2 - d^2}\) and radius \(\delta(c, d) := \frac{d}{c^2 - d^2}\) of a ball containing all \(\frac{1}{a}\) for \(|a - c| \leq d\).
Example: Inverse map \((0, \infty) \to \mathbb{R}\)

Let \(0 < c < d\), and \(q\) be minimal such that \(\frac{1}{2q} \leq c\). Then inv is given by

- the approximating map \(h(a, n) := \frac{1}{a}\)
- the Cauchy modulus \(\alpha(c, d, p) := 0\)
- the modulus \(\omega(c, d, p) := p + 2q + 1\) of uniform continuity, for

\[
|a - b| \leq \frac{1}{2p+2q} \to \left| \frac{1}{a} - \frac{1}{b} \right| = \left| \frac{b-a}{ab} \right| \leq \frac{1}{2p},
\]

because \(ab \geq \frac{1}{2^{2q}}\)

- the center \(\gamma(c, d) := \frac{c}{c^2-d^2}\) and radius \(\delta(c, d) := \frac{d}{c^2-d^2}\) of a ball containing all \(\frac{1}{a}\) for \(|a - c| \leq d\).
Application \(f(x) \) must (and can) be defined separately, since the approximating map operates on approximations only.

\(f(x) \) is independent from \(w, r \).

Application is compatible with equality on real numbers:

\[
x = y \rightarrow f(x) = f(y).
\]

\(f \) has \(\omega \) as a modulus of uniform continuity:

\[
|x - y| \leq \frac{1}{2\omega(p)} \rightarrow |f(x) - f(y)| \leq \frac{1}{2^p}.
\]

Composition can be defined.
Application $f(x)$ must (and can) be defined separately, since the approximating map operates on approximations only.

- $f(x)$ is independent from w, r.

- Application is compatible with equality on real numbers:

 $$x = y \rightarrow f(x) = f(y).$$

- f has ω as a modulus of uniform continuity:

 $$|x - y| \leq \frac{1}{2\omega(p)} \rightarrow |f(x) - f(y)| \leq \frac{1}{2^p}.$$

- Composition can be defined.
Application $f(x)$ must (and can) be defined separately, since the approximating map operates on approximations only.

$f(x)$ is independent from w, r.

Application is compatible with equality on real numbers:

$$x = y \rightarrow f(x) = f(y).$$

f has ω as a modulus of uniform continuity:

$$|x - y| \leq \frac{1}{2\omega(p)} \rightarrow |f(x) - f(y)| \leq \frac{1}{2^p}.$$

Composition can be defined.
Application \(f(x) \) must (and can) be defined separately, since the approximating map operates on approximations only.

\(f(x) \) is independent from \(w, r \).

Application is compatible with equality on real numbers:

\[x = y \rightarrow f(x) = f(y). \]

\(f \) has \(\omega \) as a modulus of uniform continuity:

\[|x - y| \leq \frac{1}{2\omega(p)} \rightarrow |f(x) - f(y)| \leq \frac{1}{2^p}. \]

Composition can be defined.
Application $f(x)$ must (and can) be defined separately, since the approximating map operates on approximations only.

- $f(x)$ is independent from w, r.
- Application is compatible with equality on real numbers:
 \[x = y \rightarrow f(x) = f(y). \]

- f has ω as a modulus of uniform continuity:
 \[|x - y| \leq \frac{1}{2\omega(p)} \rightarrow |f(x) - f(y)| \leq \frac{1}{2^p}. \]

Composition can be defined.
Theorem. Every totally bounded set $A \subseteq \mathbb{R}$ has an infimum y.

Proof. Given $\varepsilon = \frac{1}{2^p}$, let $a_0 < a_1 < \cdots < a_{n-1}$ be an ε-net:
\[\forall x \in A \exists i < n (|x - a_i| < \varepsilon) . \]
Let $b_p = \min \{ a_i \mid i < n \}$. $y := \lim p b_p$.

Corollary. $\inf_{x \in [a, b]} f(x)$ exists, for $f : [a, b] \rightarrow \mathbb{R}$ continuous.

Proof. Given ε, pick $a = a_0 < a_1 < \cdots < a_{n-1} = b$ s.t. $a_{i+1} - a_i < \omega(\varepsilon)$. Then $f(a_0), f(a_1), \ldots, f(a_{n-1})$ is an ε-net for f’s range.

Many $f(a_i)$ need to be computed.

Aim: Get x with $f(x) = \inf_{y \in [a, b]} f(y)$ and a better algorithm, assuming convexity.
Algorithms in constructive proofs?

Theorem. Every totally bounded set \(A \subseteq \mathbb{R} \) has an infimum \(y \).

Proof.

Given \(\varepsilon = \frac{1}{2^p} \), let \(a_0 < a_1 < \cdots < a_{n-1} \) be an \(\varepsilon \)-net:
\[
\forall x \in A \exists i < n (|x - a_i| < \varepsilon).
\]
Let \(b_p = \min \{ a_i \mid i < n \} \). \(y := \lim_{p} b_p \).

Corollary. \(\inf_{x \in [a, b]} f(x) \) exists, for \(f : [a, b] \rightarrow \mathbb{R} \) continuous.

Proof.

Given \(\varepsilon \), pick \(a = a_0 < a_1 < \cdots < a_{n-1} = b \) s.t. \(a_{i+1} - a_i < \omega(\varepsilon) \).
Then \(f(a_0), f(a_1), \ldots, f(a_{n-1}) \) is an \(\varepsilon \)-net for \(f \)'s range.

Many \(f(a_i) \) need to be computed.

Aim: Get \(x \) with \(f(x) = \inf_{y \in [a, b]} f(y) \) and a better algorithm, assuming convexity.
Theorem. Every totally bounded set $A \subseteq \mathbb{R}$ has an infimum y.

Proof.
Given $\varepsilon = \frac{1}{2^p}$, let $a_0 < a_1 < \cdots < a_{n-1}$ be an ε-net:
$\forall x \in A \exists i < n(|x - a_i| < \varepsilon)$. Let $b_p = \min\{a_i \mid i < n\}$. $y := \lim_p b_p$. \qed

Corollary. $\inf_{x \in [a, b]} f(x)$ exists, for $f : [a, b] \rightarrow \mathbb{R}$ continuous.

Proof.
Given ε, pick $a = a_0 < a_1 < \cdots < a_{n-1} = b$ s.t. $a_{i+1} - a_i < \omega(\varepsilon)$. Then $f(a_0), f(a_1), \ldots, f(a_{n-1})$ is an ε-net for f’s range. \qed

Many $f(a_i)$ need to be computed.

Aim: Get x with $f(x) = \inf_{y \in [a, b]} f(y)$ and a better algorithm, assuming convexity.
Theorem. Every totally bounded set $A \subseteq \mathbb{R}$ has an infimum y.

Proof.
Given $\varepsilon = \frac{1}{2^p}$, let $a_0 < a_1 < \cdots < a_{n-1}$ be an ε-net:
$\forall x \in A \exists i < n(|x - a_i| < \varepsilon)$. Let $b_p = \min\{ a_i \mid i < n \}$. $y := \lim_p b_p$.

Corollary. $\inf_{x \in [a, b]} f(x)$ exists, for $f : [a, b] \rightarrow \mathbb{R}$ continuous.

Proof.
Given ε, pick $a = a_0 < a_1 < \cdots < a_{n-1} = b$ s.t. $a_{i+1} - a_i < \omega(\varepsilon)$. Then $f(a_0), f(a_1), \ldots, f(a_{n-1})$ is an ε-net for f's range.

Many $f(a_i)$ need to be computed.

Aim: Get x with $f(x) = \inf_{y \in [a, b]} f(y)$ and a better algorithm, assuming convexity.
Theorem. Every totally bounded set $A \subseteq \mathbb{R}$ has an infimum y.

Proof.
Given $\varepsilon = \frac{1}{2^p}$, let $a_0 < a_1 < \cdots < a_{n-1}$ be an ε-net:
$\forall x \in A \exists i < n(|x - a_i| < \varepsilon)$. Let $b_p = \min\{a_i | i < n\}$. $y := \lim_{p \to \infty} b_p$.

Corollary. $\inf_{x \in [a, b]} f(x)$ exists, for $f : [a, b] \to \mathbb{R}$ continuous.

Proof.
Given ε, pick $a = a_0 < a_1 < \cdots < a_{n-1} = b$ s.t. $a_{i+1} - a_i < \omega(\varepsilon)$. Then $f(a_0), f(a_1), \ldots, f(a_{n-1})$ is an ε-net for f’s range.

Many $f(a_i)$ need to be computed.

Aim: Get x with $f(x) = \inf_{y \in [a, b]} f(y)$ and a better algorithm, assuming convexity.
Theorem. Every totally bounded set $A \subseteq \mathbb{R}$ has an infimum y.

Proof.

Given $\varepsilon = \frac{1}{2^p}$, let $a_0 < a_1 < \cdots < a_{n-1}$ be an ε-net:
$\forall x \in A \exists i < n(|x - a_i| < \varepsilon)$. Let $b_p = \min\{a_i \mid i < n\}$. $y := \lim_p b_p$.

Corollary. $\inf_{x \in [a, b]} f(x)$ exists, for $f : [a, b] \to \mathbb{R}$ continuous.

Proof.

Given ε, pick $a = a_0 < a_1 < \cdots < a_{n-1} = b$ s.t. $a_{i+1} - a_i < \omega(\varepsilon)$.

Then $f(a_0), f(a_1), \ldots, f(a_{n-1})$ is an ε-net for f’s range.

Many $f(a_i)$ need to be computed.

Aim: Get x with $f(x) = \inf_{y \in [a, b]} f(y)$ and a better algorithm, assuming convexity.
Intermediate value theorem

Let $a < b$ be rationals. If $f : [a, b] \rightarrow \mathbb{R}$ is continuous with $f(a) \leq 0 \leq f(b)$, and with a uniform modulus of increase

$$\frac{1}{2^p} < d - c \rightarrow \frac{1}{2^p+q} < f(d) - f(c),$$

then we can find $x \in [a, b]$ such that $f(x) = 0$.

Proof (trisection method).

1. **Approximate Splitting Principle.** Let x, y, z be given with $x < y$. Then $z \leq y$ or $x \leq z$.

2. **IVTaux.** Assume $a \leq c < d \leq b$, say $\frac{1}{2^p} < d - c$, and $f(c) \leq 0 \leq f(d)$. Construct c_1, d_1 with $d_1 - c_1 = \frac{2}{3}(d - c)$, such that $a \leq c \leq c_1 < d_1 \leq d \leq b$ and $f(c_1) \leq 0 \leq f(d_1)$.

3. **IVTcds.** Iterate the step $c, d \mapsto c_1, d_1$ in IVTaux.

Let $x = (c_n)_n$ and $y = (d_n)_n$ with the obvious modulus. As f is continuous, $f(x) = 0 = f(y)$ for the real number $x = y$.

\[\square \]
Intermediate value theorem

Let \(a < b \) be rationals. If \(f : [a, b] \rightarrow \mathbb{R} \) is continuous with \(f(a) \leq 0 \leq f(b) \), and with a uniform modulus of increase

\[
\frac{1}{2^p} < d - c \rightarrow \frac{1}{2^{p+q}} < f(d) - f(c),
\]

then we can find \(x \in [a, b] \) such that \(f(x) = 0 \).

Proof (trisection method).

1. Approximate Splitting Principle. Let \(x, y, z \) be given with \(x < y \). Then \(z \leq y \) or \(x \leq z \).

2. IVTAux. Assume \(a \leq c < d \leq b \), say \(\frac{1}{2^p} < d - c \), and \(f(c) \leq 0 \leq f(d) \). Construct \(c_1, d_1 \) with \(d_1 - c_1 = \frac{2}{3}(d - c) \), such that \(a \leq c \leq c_1 < d_1 \leq d \leq b \) and \(f(c_1) \leq 0 \leq f(d_1) \).

3. IVTcds. Iterate the step \(c, d \mapsto c_1, d_1 \) in IVTAux.

Let \(x = (c_n)_n \) and \(y = (d_n)_n \) with the obvious modulus. As \(f \) is continuous, \(f(x) = 0 = f(y) \) for the real number \(x = y \).
Intermediate value theorem

Let $a < b$ be rationals. If $f : [a, b] \rightarrow \mathbb{R}$ is continuous with $f(a) \leq 0 \leq f(b)$, and with a uniform modulus of increase

$$\frac{1}{2^p} < d - c \Rightarrow \frac{1}{2^p + q} < f(d) - f(c),$$

then we can find $x \in [a, b]$ such that $f(x) = 0$.

Proof (trisection method).

1. **Approximate Splitting Principle.** Let x, y, z be given with $x < y$. Then $z \leq y$ or $x \leq z$.

2. **IVTAux.** Assume $a \leq c < d \leq b$, say $\frac{1}{2^p} < d - c$, and $f(c) \leq 0 \leq f(d)$. Construct c_1, d_1 with $d_1 - c_1 = \frac{2}{3}(d - c)$, such that $a \leq c \leq c_1 < d_1 \leq d \leq b$ and $f(c_1) \leq 0 \leq f(d_1)$.

3. **IVTcds.** Iterate the step $c, d \mapsto c_1, d_1$ in IVTAux.

Let $x = (c_n)_n$ and $y = (d_n)_n$ with the obvious modulus. As f is continuous, $f(x) = 0 = f(y)$ for the real number $x = y$.

7 / 12
Intermediate value theorem

Let \(a < b \) be rationals. If \(f : [a, b] \to \mathbb{R} \) is continuous with \(f(a) \leq 0 \leq f(b) \), and with a uniform modulus of increase

\[
\frac{1}{2^p} < d - c \to \frac{1}{2^{p+q}} < f(d) - f(c),
\]

then we can find \(x \in [a, b] \) such that \(f(x) = 0 \).

Proof (trisection method).

1. **Approximate Splitting Principle.** Let \(x, y, z \) be given with \(x < y \). Then \(z \leq y \) or \(x \leq z \).

2. **IVTaux.** Assume \(a \leq c < d \leq b \), say \(\frac{1}{2^p} < d - c \), and \(f(c) \leq 0 \leq f(d) \). Construct \(c_1, d_1 \) with \(d_1 - c_1 = \frac{2}{3}(d - c) \), such that \(a \leq c \leq c_1 < d_1 \leq d \leq b \) and \(f(c_1) \leq 0 \leq f(d_1) \).

3. **IVTcds.** Iterate the step \(c, d \mapsto c_1, d_1 \) in IVTaux.

Let \(x = (c_n)_n \) and \(y = (d_n)_n \) with the obvious modulus. As \(f \) is continuous, \(f(x) = 0 = f(y) \) for the real number \(x = y \).
Intermediate value theorem

Let $a < b$ be rationals. If $f : [a, b] \to \mathbb{R}$ is continuous with $f(a) \leq 0 \leq f(b)$, and with a uniform modulus of increase

\[
\frac{1}{2^p} < d - c \rightarrow \frac{1}{2^{p+q}} < f(d) - f(c),
\]

then we can find $x \in [a, b]$ such that $f(x) = 0$.

Proof (trisection method).

1. **Approximate Splitting Principle.** Let x, y, z be given with $x < y$. Then $z \leq y$ or $x \leq z$.

2. **IVTAux.** Assume $a \leq c < d \leq b$, say $\frac{1}{2^p} < d - c$, and $f(c) \leq 0 \leq f(d)$. Construct c_1, d_1 with $d_1 - c_1 = \frac{2}{3}(d - c)$, such that $a \leq c \leq c_1 < d_1 \leq d \leq b$ and $f(c_1) \leq 0 \leq f(d_1)$.

3. **IVTcds.** Iterate the step $c, d \mapsto c_1, d_1$ in IVTAux.

Let $x = (c_n)_n$ and $y = (d_n)_n$ with the obvious modulus. As f is continuous, $f(x) = 0 = f(y)$ for the real number $x = y$.

\[7/12\]
Intermediate value theorem

Let \(a < b \) be rationals. If \(f : [a, b] \rightarrow \mathbb{R} \) is continuous with
\[f(a) \leq 0 \leq f(b), \]
and with a uniform modulus of increase
\[\frac{1}{2^p} < d - c \rightarrow \frac{1}{2^{p+q}} < f(d) - f(c), \]
then we can find \(x \in [a, b] \) such that \(f(x) = 0 \).

Proof (trisection method).

1. **Approximate Splitting Principle.** Let \(x, y, z \) be given with
\(x < y \). Then \(z \leq y \) or \(x \leq z \).

2. **IVTAux.** Assume \(a \leq c < d \leq b \), say \(\frac{1}{2^p} < d - c \), and
\(f(c) \leq 0 \leq f(d) \). Construct \(c_1, d_1 \) with
\(d_1 - c_1 = \frac{2}{3}(d - c) \),
such that \(a \leq c \leq c_1 < d_1 \leq d \leq b \) and
\(f(c_1) \leq 0 \leq f(d_1) \).

3. **IVTcds.** Iterate the step \(c, d \mapsto c_1, d_1 \) in IVTAux.

Let \(x = (c_n)_n \) and \(y = (d_n)_n \) with the obvious modulus. As \(f \) is
continuous, \(f(x) = 0 = f(y) \) for the real number \(x = y \).
[k0]
left((cDC rat@@rat)(1@2)
 ([n1]
 (cId rat@@rat=>rat@@rat)
 ([cd3]
 [let cd4
 ((2#3)*left cd3+(1#3)*right cd3@
 (1#3)*left cd3+(2#3)*right cd3)
 [if (0<=(left cd4*left cd4-2+
 (right cd4*right cd4-2))/2)
 (left cd3@right cd4)
 (left cd4@right cd3)])])
 (IntToNat(2*k0)))

where cDC is a form of the recursion operator.
Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

- View a formula A as a computational problem, of type $\tau(A)$, the type of a potential solution or “realizer” of A.
- Example: $\forall_n \exists m > n \text{Prime}(m)$ has type $\mathbb{N} \rightarrow \mathbb{N}$.

Express this view as invariance under relizability axioms

$$\text{Inv}_A : A \leftrightarrow \exists z (z \text{ r } A).$$

Consequences are choice and independence of premise (Troelstra):

$$\forall x \exists y A(y) \rightarrow \exists f \forall x A(fx)$$
for A n.c.

$$(A \rightarrow \exists x B) \rightarrow \exists x (A \rightarrow B)$$
for A, B n.c.

All these are realized by identities.
Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

- View a formula A as a computational problem, of type $\tau(A)$, the type of a potential solution or “realizer” of A.

- Example: $\forall_n \exists_{m>n} \text{Prime}(m)$ has type $\mathbb{N} \rightarrow \mathbb{N}$.

Express this view as invariance under realizability axioms

$$\text{Inv}_A : A \leftrightarrow \exists_z (z \, r \, A).$$

Consequences are choice and independence of premise (Troelstra):

$$\forall_x \exists_y A(y) \rightarrow \exists_f \forall_x A(fx)$$

for A n.c.

$$(A \rightarrow \exists_x B) \rightarrow \exists_x (A \rightarrow B)$$

for A, B n.c.

All these are realized by identities.
Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

- View a formula A as a computational problem, of type $\tau(A)$, the type of a potential solution or “realizer” of A.
- Example: $\forall_n \exists_{m \succ n} \text{Prime}(m)$ has type $\mathbb{N} \to \mathbb{N}$.

Express this view as invariance under realizability axioms

$$\text{Inv}_A : A \leftrightarrow \exists_z(z \text{ r } A).$$

Consequences are choice and independence of premise (Troelstra):

$$\forall_x \exists_y A(y) \rightarrow \exists_f \forall_x A(fx) \quad \text{for } A \text{ n.c.}$$

$$(A \rightarrow \exists_x B) \rightarrow \exists_x (A \rightarrow B) \quad \text{for } A, B \text{ n.c.}$$

All these are realized by identities.
View a formula A as a computational problem, of type $\tau(A)$, the type of a potential solution or “realizer” of A.

Example: $\forall n \exists m > n \text{Prime}(m)$ has type $\mathbb{N} \to \mathbb{N}$.

Express this view as invariance under realizability axioms

$$\text{Inv}_A : A \leftrightarrow \exists z (z \text{ r } A).$$

Consequences are choice and independence of premise (Troelstra):

$$\forall x \exists y A(y) \to \exists f \forall x A(fx)$$

for A n.c.

$$(A \to \exists x B) \to \exists x (A \to B)$$

for A, B n.c.

All these are realized by identities.
Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

- View a formula A as a computational problem, of type $\tau(A)$, the type of a potential solution or “realizer” of A.
- Example: $\forall n \exists m > n \text{Prime}(m)$ has type $\mathbb{N} \rightarrow \mathbb{N}$.

Express this view as invariance under relizability axioms

$$\text{Inv}_A : A \leftrightarrow \exists z (z \text{ r } A).$$

Consequences are choice and independence of premise (Troelstra):

$$\forall x \exists y A(y) \rightarrow \exists f \forall x A(fx) \quad \text{for } A \text{ n.c.}$$

$$(A \rightarrow \exists x B) \rightarrow \exists x (A \rightarrow B) \quad \text{for } A, B \text{ n.c.}$$

All these are realized by identities.
Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

- View a formula A as a computational problem, of type $\tau(A)$, the type of a potential solution or “realizer” of A.

- Example: $\forall_n \exists_{m>n} \text{Prime}(m)$ has type $\mathbb{N} \to \mathbb{N}$.

Express this view as invariance under realizability axioms

$$\text{Inv}_A : A \leftrightarrow \exists_z (z \text{ r } A).$$

Consequences are choice and independence of premise (Troelstra):

$$\forall_x \exists_y A(y) \rightarrow \exists_f \forall_x A(fx) \quad \text{for } A \text{ n.c.}$$

$$(A \rightarrow \exists_x B) \rightarrow \exists_x (A \rightarrow B) \quad \text{for } A, B \text{ n.c.}$$

All these are realized by identities.
Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

- View a formula A as a computational problem, of type $\tau(A)$, the type of a potential solution or “realizer” of A.
- Example: $\forall n \exists m > n \text{Prime}(m)$ has type $\mathbb{N} \rightarrow \mathbb{N}$.

Express this view as invariance under relizability axioms

$$\text{Inv}_A : A \leftrightarrow \exists z (z \mathfrak{r} A).$$

Consequences are choice and independence of premise (Troelstra):

$$\forall x \exists y A(y) \rightarrow \exists f \forall x A(fx) \quad \text{for } A \text{ n.c.}$$

$$A \rightarrow \exists x B \rightarrow \exists x (A \rightarrow B) \quad \text{for } A, B \text{ n.c.}$$

All these are realized by identities.
Derivatives

Let \(f, g : I \to \mathbb{R} \) be continuous. \(g \) is called derivative of \(f \) with modulus \(\delta_f : \mathbb{Z}^+ \to \mathbb{N} \) of differentiability if for \(x, y \in I \) with \(x < y \),

\[
y \leq x + \frac{1}{2\delta_f(p)} \rightarrow |f(y) - f(x) - g(x)(y - x)| \leq \frac{1}{2^p}(y - x).
\]

A bound on the derivative of \(f \) serves as a Lipschitz constant of \(f \):

Lemma (BoundSlope)

Let \(f : I \to \mathbb{R} \) be continuous with derivative \(f' \). Assume that \(f' \) is bounded by \(M \) on \(I \). Then for \(x, y \in I \) with \(x < y \),

\[
|f(y) - f(x)| \leq M(y - x).
\]
Derivatives

Let $f, g: I \to \mathbb{R}$ be continuous. g is called derivative of f with modulus $\delta_f: \mathbb{Z}^+ \to \mathbb{N}$ of differentiability if for $x, y \in I$ with $x < y$,

$$y \leq x + \frac{1}{2\delta_f(p)} \Rightarrow |f(y) - f(x) - g(x)(y - x)| \leq \frac{1}{2p}(y - x).$$

A bound on the derivative of f serves as a Lipschitz constant of f:

Lemma (BoundSlope)

Let $f: I \to \mathbb{R}$ be continuous with derivative f'. Assume that f' is bounded by M on I. Then for $x, y \in I$ with $x < y$,

$$|f(y) - f(x)| \leq M(y - x).$$
Let $f, g : I \to \mathbb{R}$ be continuous. g is called derivative of f with modulus $\delta_f : \mathbb{Z}^+ \to \mathbb{N}$ of differentiability if for $x, y \in I$ with $x < y$,

$$y \leq x + \frac{1}{2\delta_f(p)} \to |f(y) - f(x) - g(x)(y - x)| \leq \frac{1}{2p}(y - x).$$

A bound on the derivative of f serves as a Lipschitz constant of f:

Lemma (BoundSlope)

Let $f : I \to \mathbb{R}$ be continuous with derivative f'. Assume that f' is bounded by M on I. Then for $x, y \in I$ with $x < y$,

$$|f(y) - f(x)| \leq M(y - x).$$
Let $f, g : I \to \mathbb{R}$ be continuous. g is called derivative of f with modulus $\delta_f : \mathbb{Z}^+ \to \mathbb{N}$ of differentiability if for $x, y \in I$ with $x < y$,

$$y \leq x + \frac{1}{2\delta_f(p)} \Rightarrow |f(y) - f(x) - g(x)(y - x)| \leq \frac{1}{2p} (y - x).$$

A bound on the derivative of f serves as a Lipschitz constant of f:

Lemma (BoundSlope)

Let $f : I \to \mathbb{R}$ be continuous with derivative f'. Assume that f' is bounded by M on I. Then for $x, y \in I$ with $x < y$,

$$|f(y) - f(x)| \leq M(y - x).$$
Infimum of a convex function

Let \(f, f': [a, b] \to \mathbb{R} \) (\(a < b \)) be continuous and \(f' \) derivative of \(f \). Assume that \(f \) is strictly convex with witness \(q \), in the sense that \(f'(a) < 0 < f'(b) \) and

\[
\frac{1}{2p} < d - c \to \frac{1}{2p+q} < f'(d) - f'(c).
\]

Then we can find \(x \in (a, b) \) such that \(f(x) = \inf_{y \in [a,b]} f(y) \).

Proof.

- To obtain \(x \), apply the intermediate value theorem to \(f' \).
- To prove \(\forall y \in [a,b] (f(x) \leq f(y)) \) (this is “non-computational”, i.e., a Harrop formula) one can use the standard arguments in classical analysis (Rolle’s theorem, mean value theorem). □
Infimum of a convex function

Let $f, f' : [a, b] \to \mathbb{R} \ (a < b)$ be continuous and f' derivative of f. Assume that f is strictly convex with witness q, in the sense that $f'(a) < 0 < f'(b)$ and

$$\frac{1}{2p} < d - c \to \frac{1}{2p+q} < f'(d) - f'(c).$$

Then we can find $x \in (a, b)$ such that $f(x) = \inf_{y \in [a, b]} f(y)$.

Proof.

- To obtain x, apply the intermediate value theorem to f'.
- To prove $\forall_{y \in [a, b]} (f(x) \leq f(y))$ (this is “non-computational”, i.e., a Harrop formula) one can use the standard arguments in classical analysis (Rolle’s theorem, mean value theorem). \qed
Infimum of a convex function

Let $f, f' : [a, b] \to \mathbb{R} \ (a < b)$ be continuous and f' derivative of f. Assume that f is strictly convex with witness q, in the sense that $f'(a) < 0 < f'(b)$ and

$$\frac{1}{2p} < d - c \to \frac{1}{2p+q} < f'(d) - f'(c).$$

Then we can find $x \in (a, b)$ such that $f(x) = \inf_{y \in [a,b]} f(y)$.

Proof.

- To obtain x, apply the intermediate value theorem to f'.
- To prove $\forall_{y \in [a,b]} (f(x) \leq f(y))$ (this is “non-computational”, i.e., a Harrop formula) one can use the standard arguments in classical analysis (Rolle’s theorem, mean value theorem). □
Infimum of a convex function

Let $f, f' : [a, b] \to \mathbb{R} \; (a < b)$ be continuous and f' derivative of f. Assume that f is strictly convex with witness q, in the sense that $f'(a) < 0 < f'(b)$ and

$$\frac{1}{2p} < d - c \to \frac{1}{2p+q} < f'(d) - f'(c).$$

Then we can find $x \in (a, b)$ such that $f(x) = \inf_{y \in [a, b]} f(y)$.

Proof.

- To obtain x, apply the intermediate value theorem to f'.
- To prove $\forall y \in [a, b] \; (f(x) \leq f(y))$ (this is “non-computational”, i.e., a Harrop formula) one can use the standard arguments in classical analysis (Rolle’s theorem, mean value theorem).
Conclusion

Aim: constructive analysis, with constructions \(\sim\) good algorithms. Then extract these algorithms from proofs (realizability).

- Use order locatedness: given \(c < d\), for all \(u\)

\[
\forall v \in V (c \leq \rho(u, v)) \lor \exists v \in V (\rho(u, v) \leq d).
\]

- Avoid total boundedness (existence of \(\varepsilon\)-nets).

Generally

- View constructive analysis as an extension of classical analysis.
- Formalize proofs in TCF (based on the Scott-Ershov model of partial continuous functionals), extract algorithms (in Minlog).
- Data are important (real number, continuous function \ldots).
- Low type levels: continuous \(f : \mathbb{R} \to \mathbb{R}\) determined by its values on the rationals \(\mathbb{Q}\).
Conclusion

Aim: constructive analysis, with constructions \sim good algorithms. Then extract these algorithms from proofs (realizability).

- Use order locatedness: given $c < d$, for all u

$$\forall v \in V (c \leq \rho(u, v)) \lor \exists v \in V (\rho(u, v) \leq d).$$

- Avoid total boundedness (existence of ε-nets).

Generally

- View constructive analysis as an extension of classical analysis.
- Formalize proofs in TCF (based on the Scott-Ershov model of partial continuous functionals), extract algorithms (in Minlog).
- Data are important (real number, continuous function \ldots).
- Low type levels: continuous $f : \mathbb{R} \to \mathbb{R}$ determined by its values on the rationals \mathbb{Q}.
Conclusion

Aim: constructive analysis, with constructions \sim good algorithms. Then extract these algorithms from proofs (realizability).

- Use order locatedness: given $c < d$, for all u

$$\forall v \in V (c \leq \rho(u, v)) \lor \exists v \in V (\rho(u, v) \leq d).$$

- Avoid total boundedness (existence of ε-nets).

Generally

- View constructive analysis as an extension of classical analysis.
- Formalize proofs in TCF (based on the Scott-Ershov model of partial continuous functionals), extract algorithms (in Minlog).
- Data are important (real number, continuous function . . .).
- Low type levels: continuous $f: \mathbb{R} \to \mathbb{R}$ determined by its values on the rationals \mathbb{Q}.
Conclusion

Aim: constructive analysis, with constructions \(\sim \) good algorithms. Then extract these algorithms from proofs (realizability).

- Use order locatedness: given \(c < d \), for all \(u \)

\[
\forall v \in V (c \leq \rho(u, v)) \lor \exists v \in V (\rho(u, v) \leq d).
\]

- Avoid total boundedness (existence of \(\varepsilon \)-nets).

Generally

- View constructive analysis as an extension of classical analysis.
- Formalize proofs in TCF (based on the Scott-Ershov model of partial continuous functionals), extract algorithms (in Minlog).
- Data are important (real number, continuous function \ldots).
- Low type levels: continuous \(f : \mathbb{R} \to \mathbb{R} \) determined by its values on the rationals \(\mathbb{Q} \).
Conclusion

Aim: constructive analysis, with constructions \sim good algorithms. Then extract these algorithms from proofs (realizability).

- Use order locatedness: given $c < d$, for all u

$$\forall v \in V (c \leq \rho(u, v)) \lor \exists v \in V (\rho(u, v) \leq d).$$

- Avoid total boundedness (existence of ε-nets).

Generally

- View constructive analysis as an extension of classical analysis.
- Formalize proofs in TCF (based on the Scott-Ershov model of partial continuous functionals), extract algorithms (in Minlog).
- Data are important (real number, continuous function \ldots).
- Low type levels: continuous $f : \mathbb{R} \rightarrow \mathbb{R}$ determined by its values on the rationals \mathbb{Q}.
Conclusion

Aim: constructive analysis, with constructions \(\sim\) good algorithms. Then extract these algorithms from proofs (realizability).

- Use order locatedness: given \(c < d\), for all \(u\)

\[
\forall v \in V (c \leq \rho(u, v)) \lor \exists v \in V (\rho(u, v) \leq d).
\]

- Avoid total boundedness (existence of \(\varepsilon\)-nets).

Generally

- View constructive analysis as an extension of classical analysis.
- Formalize proofs in TCF (based on the Scott-Ershov model of partial continuous functionals), extract algorithms (in Minlog).
- Data are important (real number, continuous function \ldots).
- Low type levels: continuous \(f : \mathbb{R} \rightarrow \mathbb{R}\) determined by its values on the rationals \(\mathbb{Q}\).
Conclusion

Aim: constructive analysis, with constructions \(~\) good algorithms. Then extract these algorithms from proofs (realizability).

- Use order locatedness: given \(c < d\), for all \(u\)

\[
\forall v \in V (c \leq \rho(u, v)) \lor \exists v \in V (\rho(u, v) \leq d).
\]

- Avoid total boundedness (existence of \(\varepsilon\)-nets).

Generally

- View constructive analysis as an extension of classical analysis.
- Formalize proofs in TCF (based on the Scott-Ershov model of partial continuous functionals), extract algorithms (in Minlog).
- Data are important (real number, continuous function \ldots).
- Low type levels: continuous \(f : \mathbb{R} \rightarrow \mathbb{R}\) determined by its values on the rationals \(\mathbb{Q}\).