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This talk

» Brief history of confluence of A-calculus

- parallel reduction and Z theorem

- Compositional Z:a new confluence proof

» simpler proof of A + permutation rules

-+ L property for Church-Rosser theorem

* quantitative analysis



History of Confluence of A



Ap

 Terms

M,N ::=x | Ax.M | MN

Reduction rules

(AXM)N —5  Mx:=N]



History of Confluence of Ag

» Church and Rosser (1936) “Some Properties of Conversion™

* residuals of redexes

- Tait and Martin-Lof (192?)

» parallel reduction
» Takahashi (1995) “Parallel Reduction in A-Calculus”

- maximum parallel reduction

» Dehornoy and van Oostrom (2008)

« / theorem



Z theorem
[Dehornoy&van Oostrom 2008]

If we find a mapping (-)” s.t.

then the reduction system is confluent
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» Takahashi's maximum parallel reduction is Z

(Ax.M)* ;)\ .M
(AX.M)N)* = M*[x := N*
(I\/I\I) = M*N (M is not abst.)




Confluence of Ag by Z

» Takahashi's maximum parallel reduction is Z

X" = x
(Ax.M)* = Ax.M
(AX.M)N)* = M*[x := N*
(I\/I\I) = M*N (M is not abst.)
* Key lemmas
M —* M* (i)

M*[x := N*| =" (M|x := N)* (i)
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Confluence of Ag by Z

* Proof of the base case

()\X._IE/l)N > M|x = N]|

Y Y
M*[x := N*| (M|[x := NJ)*

* Key lemmas

M —* M* (i)
M*[x := N*| =" (M|x:= NJ|)* (i)



Confluence of Ag by Z

* Proof of the base case

(Ax.M)N > M|x := N]
T o T
M*[X .= N*] """ (“)>> (M[X .= N])*

* Key lemmas

M —* M* (i)
M*[x := N*| =" (M|x:= NJ|)* (i)
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Permutative conversion

» for natural deduction with v and 3 [Prawitz 1965}

» exchanges order of elimination rules

» for normal proofs to have good properties
such as the subformula property

* makes confluence proofs much harder

[Ando 2003]



Exchanging E-Rules

. P - Q1 - Q2 |
(FALVA, TAIEBC TAFB—-C ' R
[FB—C (V)FFB(E)
[+ C -
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3 (case P with x;—=Q | x2—Q2)R

Exchangi

P[xi.Q1,x2.Q2]R

;P D Q1 Qo
r-A;VA, TLAJFB—=>C T A,FB—>C . ' R
[FB—C (V)FFB(E)
[ C -
1T
) 1T
| §Q1 R éQz R
EP [V A;FB—C FI—B(E ) [ AbFB — C FI—B(E )
M- A VA, A FC - A FC - ~
[ F C (Ev) M

P[x1.QIR, x2.Q2R]
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* Terms and eliminators
M,N ::=x | Ax.M | t1M | 1o,M | Me
e := M | [x1.N1, x2.Ny|
» Reduction rules
(AX-M)N  —5  M|x:=N]
(tiM)[x1.N1,%x2.N2]  —5  Ni[xj := M]
M[x1.N1,x2.Nole  —1  M|x1.Nie, x2.Noe]
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* Terms and eliminators
M,N ::=x | Ax.M | t1M | 1o,M | Me
e := M | [x1.N1, x2.Ny|
» Reduction rules
(AX-M)N  —5  M|x:=N]
(tiM)[x1.N1,%x2.N2]  —5  Ni[xj := M]
M[x1.N1,x2.Nole  —1  M|x1.Nie, x2.Noe]

left associative . .
(M[x1.N1,x2.N2])e permutative conversion

uniform representation

of elimination for @ and v




Agm, for simplicity

 Terms and eliminators

M,N ::=x | Ax.M | :M | Me
e ;=M | [x.N]

« Reduction rules

(AXM)N —5  M[x:=N
(tM)[x.N] —3 Nx:=M
M{x.Nle —, M|x.Ne




Where are difficulties!?

* Parallel reduction for TT-reduction

* Maximum complete development for
the combination of B- and TT-reductions



Parallel reduction for 11!

x[y.y[z.z][w.w]
/ \

x[y.y|z.z]|[w.w] x[y.y]|z.z|w.w]]



Parallel reduction for 11!

/X[y-y] z.2] [W-W]\
X|y-ylz-z]][w.w] X[y-y][z.z|w.w]]

x|y.y|z.z] [WW]] W



Parallel reduction for 11!

x[y.y|z.z|[w.w]

these steps must be Xly.y]|z.z|w.w]]
considered as "

one-step parallel red.

yylzalfww] 2

lyylz.2lww]




Parallel reduction for 11!

x[y.y|z.z|[w.w]

@y-y[Z-:Z]H

|

v

xly-ylz.zjlw.wl]

W.W]| these steps must be x|y.y||z.zlw.w]]

considered as )
one-step parallel red.

T

We can avoid parallel reduction by Z

- Xly-y[z.zlw.w]]




Z for 11!

e

/X[y'y”Z‘ZHWQ>> N *
X|y-ylz-z]][w.w] X[y-y][z.z|w.w]]
x|y.y|z.z] [WW]] W



Z for 11!

yylzzlww] | M7 N

x[y.y][z.z|w.w]]

we have to do TT
completely

y ylzzlw.w]]



Z for BT11?

* A nalve definition

(AX.M)* = Ax.M
(tM)* = (M*
(A.-M)N)* = M*[x := N
((tM)[x.N])* = N*|[x := M™]
(Me)* = M*@Qe" (otherwise)
(M[x.N|)@e = M|[x.NQe]
M@e = Me (otherwise)




Z for BT11?

* A nalve definition

(AX.M)* = Ax.M
(tM)* = ' M*
(A.-M)N)* = M*[x := N
((tM)[x.N])* = N*|[x := M™]
(Me)* = M*@Qe" (otherwise)
(M[x.N|)@e = M|[x.NQe]
M@e = Me (otherwise)

is not Z



X

X

(Ax.M)* ;)\X.I\/I
LM) = (M"*
(e )[ )" = N [x := M7
* Monotonicity fails (Me)” = M"@e” _ (otherwise)

(t(xly-y))|z-zlw =7 (e(X]y-y]))[z-zw]
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- Monotonicity fails
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permutation is applied

to the result of

- Monotonicity fails

(t(x]y-y]))[z.Z]

(
(
(

X

(e(x]y-y.

(e(x]y-y.

y-yw| -
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permutation is applied

to the result of

- Monotonicity fails

(t(x]y-y]))[z.Z]

((e(xly-y]))I
((e(xly-y]))I
(

Xly.y])@Qw
X|Y.yW| o

z.Z

z.Z

((e(Xly-y]))[z-zw])"
= (zw)*|z == xy.y]]
= x[y.y|w

* We want to consider functions for TT and
separately (and adapt Z to their composition)



Compositional Z



Z and weak Z
V] > N

(-) is Z for — iff

M* s N*



Z and weak Z
M

(-) is Z for — iff

>_N

(-)"is weakly Z for = by — iff



Compositional Z
[N&Fujita'l 5]

. Let—b:—”u—bz

If mappings (-)' and (-)? satisfying following,

* (+)'is Z for —)
+ if M = N, then M2 5™ N2

+ M! =" M!2 holds for any M

) (')|2 IS Weakly Z for — b)’ —

then the composition ()% is Z for —



Compositional Z

2

M - N M - N
s

ML s N

v y

M2 s N1Z MLZ2 . > N 12



Compositional Z

Z for |
1 2
M - N M - N
3
ML s N
\ ¥

ML2 s N2 MLZ2 . > N 12



Compositional Z

Z for | weak Z for 2
1 2
M > N M > N
3
ML s N
Y ¥
ML2 s N2 MLZ2 . > N 12




Confluence of BT
by compositional £

XP — X XB — X
(Ax.M)" = Ax.MP (Ax.M)B = Ax.MP
(M)F = MP (M)B = 1 MB
(Me)” = MP@e”  (Ax.M)N)B = MB[x := NP
((tM)[x.N])® = NB[x := MP
(Me)® = MPe®  (otherwise)

The mappings (- )P and (- ) satisfies the conditions
of the compositional Z for = and —g
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Applications

A with permutative conversion TTand B
AU with permutative conversion  TTHJ and f
extensional A N and

A with explicit subst. x and f3

subst. propagation

Compositional Z enables us to prove confluence
by dividing reduction system into two parts




Church-Rosser via Z



Confluence vs Church-Rosser
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Confluence vs Church-Rosser

* In many textbooks, CR is shown as a
corollary of confluence

* In fact, they are equivalent in almost all of
rewriting systems

* How can we prove CR directly!?



Church-Rosser via Z

* Suppose

* (A,7): an ARS
. M':a Z function on A, and M" = n-fold of M’

+ Cross-Point Theorem [Fujita 2016]

- a constructive proof of CR

For M =a N, we can find a common reduct

decided by the numbers of = and < in the
conversion sequence




Main Lemma

MO = M]_ <
P
My
= #of 2 in My = M,

# of « in Mo = M,




Mo —

> M; <

g T o
MO

Main Lemma

# of = in Mo = M,
# of <« in Mo = M,




Cross-point theorem [Fujita' | 6]

MO > I — Mr - ° o o >. I\/ln
#1[0,r]*
M
r = #of = in Mo =M,
L SN
| = # of « in Mo =M, |\/|In*

I
MO

#l[Or] = #of «inMo... M;

#of = inM.... My =#r[rn]



Quantitative analysis via Z [Fujita'| 6]

* From a bound of steps in Z property,
we can give a bound of steps in CR

. Main lemma: M=a N = N —MnM=N mr

* where Main(M=N) is defined from
Rev, Mon and maximum term size in M=N

Mo N = N —Rev(M)M* M=——N

MorN = M —Mon(Mn) N* s
M oeosee N




Quantitative analysis via Z

M N
Mo N = N —Rev(M) M* g
MonN = M —Mon(Mn) N* 73
M* s N*
I\/IO >-...-< I\/lr< e o o >- I\/In
Main(M,=Mo) Main(M;=M,)




Quantitative analysis via Z

VI > N
M—> N = N —=Rev(M) M
MonN = M —Mon(Mn) N* 73
M* s N*
I\/IO == o o o = I\/lr-< o o o >I\/|n
Main(M,=Mo) Mai‘n‘(,M.;':‘Mn)
M#I[O,r]* For A, it is
r

non-elementary



Quantitative analysis via
compositional Z [Fujita&N'| 6]

From bounds of steps in compositional Z (given below),
we can give a bound Main(M=N) in CR

M= N = N —ReI(M)M —

M — EBval2([M]) M2 MLk ~ NL

M->o,N = N —Re2(M) MI2 M2 NP

M—o"N = M2 Mon(Min) NI2




Quantitative analysis via
compositional Z

Main(M=N) is defined as

Main(M<N) = |

Main(M—N) = RevI(|M|) + Eval2(|M'|)

Main(M—2N) = Rev2(|M|)

Main(M=P+Q) = Main(M=P) + |

Main(M=P—,Q) = Mon(n,Main(M=P)) + Eval2(n) + Revl(n)
Main(M=P—,Q) = Mon(n,Main(M=P)) + Rev2(n)

where n = maximum term size in M=N



Summary

» Confluence of A with permutative conversions
becomes much simpler with compositional Z

+ Compositional Z suggests (quasi-)modular proofs
of confluence

» Quantitative analysis for CR via Z
can be extended to compositional Z

* K. Nakazawa and K. Fujita. Compositional Z: confluence proofs for permutative conversion.
Studia Logica, to appear.

- K. Fujita and K. Nakazawa. Church-Rosser Theorem and Compositional Z-Property.
In Proceedings of 33rd JSSST, 2016
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“Simpler” proofs!?

- Easier to check?

- Easier to apply other calculi?

* Shorter formal proof? ...depending on logical system

« Easier to formalize! ...l believe so, but we should check it

“I feel that the new proofs (...) are
more beautiful than those we started with,
and this is my actual motivation.”

— [Pollack 1995]



A Classical Japanese Poem

composed by Sutoku-In ((RT&EFz) in 12th cent.

W2 B oD B A0 D
HNTHARIZ ElF &L ZFHS

(direct translation)

A stream of the river separates into two streams
dfter hitting the rock,
but it will become one stream again

(that is,)
although if | love someone but we cannot be together in this life,
| can be together with her in the next life

Japanese-English Bilingual Corpus of Wikipedia's Kyoto Articles
(National Institute of Information and Communications Technology)



A Classical Japanese Poem

composed by Sutoku-In ((RT&EFz) in 12th cent.

W2 A SICED 5 5D
HDNTHRIC ElZ L #FH5 confluence makes

us happy!

(direct translation)

A stream of the river separates into two streams
dfter hitting the rock,
but it will become one stream again

(that is,)
although if | love someone but we cannot be together in this life,
| can be together with her in the next life

Japanese-English Bilingual Corpus of Wikipedia's Kyoto Articles
(National Institute of Information and Communications Technology)



