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Background

« Computable analysis studies computation over
topological spaces, by giving

- Type two theory of Effectivity

- Domain representations

 Their approaches are to track computation by
over “symbolic” spaces.

]' Baire sp., Scott domains, ... \

The principle: Computable =



Our Proposal

 Tracked by stable map.

conerence S;D. W
 Topological sp.

X ~Y

* Qur principle: Computable = Stable [Berry '78]

Using instead of Scott-domains coherence spaces [Girard '86].
« BTW, two morphisms coexists in coherence spaces:

stable & maps.
* A new question then arrises:

What are Computations in Topology?
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Resource-Sensitivity

Imagine:
99 there's no resource-conciousness

It 1sn't easy to do

Nothing to comsume or lose for
And no modalities too

Imagine all the people

Living life in Intuitionistic Logic ...



Resource-Sensitivity

EX. In Intuitionistic Logic,

(A—B)r(A—C)— (A—BAC) IStrue.

Substitute:

* A:=“to pay ¥400” EN
» B:=“to get a pack of cigarettes”

:= “to get a cup of cake” “

a person in the
Intuitionistic Logic world
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Resource-Sensitivity

EX. In Intuitionistic Logic,

Substitute:

* A:=“to pay ¥400”

* B:=“to get a pack of cigarettes”
* C:=“to get a cup of cake”

Paradox



Resource-Sensitivity

EX. In Intuitionistic Logic,

(A—B)A(A—C)—(A—BAC)

Substitute:

* A:=“to pay ¥400”

* B:=“to get a pack of ugarettes
. C:=“to getacup of cake”

A is used twice.

Lack of conciousness to comsume assumptions !

13



Resource-Sensitivity

EX. In Logic,
(A—-B)®(A—-C)—~(A-B®C) is false.

| New conjunction/ implication
Because: In LL, we must use the assumption exactly once in
the proof.

Coherence Spaces are proposed as a denotational semantics
which reflects this property.

Via the Curry-Howard isomorphism,
they are also a model of resource-sensitive computations of linear

function programs.
14



Main Result from CCA’'15

Representations based on
coherence spaces have an
interesting feature:

for every real funcitons, we
have shown that

\ CCA

BEAE

MEUI UNIVERSITY

‘ Twelfth International Conference on Computability and Complexity in Analysis

July 12-15, 2015, Tokyo, Japan

Rainbow Bridge, Tokyo (Photo by Rupert Holzl)

Scope

The conference is concerned with the theory of computability and complexity over realvalued data.

Computability and complexity theory are two central areas of research in mathematical logic and theoretical computer science. Computability theory is the study of the limitations and abilities of
computers in principle. Computational complexity theory provides a framework for understanding the cost of solving computational problems, as measured by the requirement for resources
such as time and space. The classical approach in these areas is to consider algorithms as operating on finite strings of symbols from a finite alphabet. Such strings may represent various
discrete objects such as integers or algebraic expressions, but cannot represent general real or complex numbers, unless they are rounded.

Most mathematical models in physics and engineering, however, are based on the real number concept. Thus, a ;ompmab\hty theory and a complexity theory over the real numbers and over

» stably realizable < continuous

. realizable &

continuous.

Let us emphasize that these correspondences hold for real functions.
Next step: generalize them to a wider class. 15



l. Review: Coherent Spaces
ll. Coherence as Uniformity
ll. Linear Admissibility

V. Concluding Comments

16



Coherence Spaces

Def. A X = (X, ©) is areflexive graph:

« acountable set of X with

* asymmetric reflexive. binary rel. Z on X

Write x ~y iff xCcy and x zy (

A is a set of tokens which are
pairwise coherent.
An is a set of tokens in which

every pair is not coherent.

« X  :the set of all cliuges.
* Xrin :the set of all finite cliques.

* Xmax :the set of all maximal cliques.

s

17




Example: Cauchy Sequences

Let D = Z x N. Each member of ol e Dg
[) is identified with the 220 —12 020 412t 42/2!
® ® ® ° ° D1

n
aS (m, n) E D ~ m/2 . 74/22_3/22_2/22_1/220/22 +1/22+2/22+3/22+4/22
For each x := (m, n)e D, define —— e o o0 0o o o o o D>

* den(x):=n
* Dp:={xeD:den(x)=n}
" [x]:=[(m-1)/2";(m+1)/2"]

Ex. Define a coherence space R
R:=(D, <) for
a5 —1 +1

X~y <= den(x)#den(y)and [X]n|y]# T
«— den(x) #den(y) and |x —y|<27denx) . p-denly)

Maximal cliques = (rapidly converging) Cauchy sequences

Xn —Xm| <2 "+2™™ foreveryn,me N

Realization of Real Numbers
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Example: Cauchy Sequences

| classified by “colors”

Let D = Z x N. Each member of -1/2° 0/2° +1./2° Do
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Coherence as Topology

The set X of cliques is ordered by &,
endowed with the generated by
the upper sets of finite cliques:

ta:= {bex:bga} (a e Xgin)

* Coherence spaces are very simplified domains

 Compact Elements = finite cliques

Finite Cliques induce Topology

24



Stable & Linear Maps

Def. A function F: X —Y is stableifitis € -monotone and satisfies
Vae X, VyeY,

Fla)sy = 3! ag<fina. minimal s.t. F(ag) sy

[Collection of resources]

Model of computations in which the amount of resources to be used is

Def. A function F: X —Y is ifitis & -monotone and satisfies
Vae X, VyeY,
Fla)sy = dxea.uniques.t. F({x})sy

Model of computations in which resources are used

Stable & Linear Maps are Resource-Sensitive.

25



Girard’s Formula

: Model of Intuit. Logic

Two closed structures of coherence spaces:

 The category Sthl of coh. spaces and stable maps is

- X =Y :thecoherence space for stable maps.

« The category Lin of coh. spaces and linear maps is
- X —oY :thecoherence space for maps.

They are combined by introducing the “of course” modality:

X = (Xfin, <) naturally definedby q~p — agubeX-:

™. x—-vYvy IX oY

Linear Decompostion of Cartesian closed Structure.



|. Review: Coherent Spaces
Il. Coherence as Uniformity
ll. Linear Admissibility

V. Concluding Comments
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Review: Uniform Space

* Auniform spaceis a set with a
a collection of coverings of the set.

- Each uniform cover is considered to be
consisting of balls of the

- They are partially ordered by the
refinement relation and form a filter.

 They also induce a topology in the
“vertical” way.

- The balls surrounding each point form
a neighborhood filter, which generates
the

« Every uniformizable space has the finest
uniformity: the uniform space.

Uniform Covers are given horizontally

28
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Review: Uniform Space

A uniform space is a set with a

a collection of coverings of the set.
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Review: Uniform Space

A uniform space is a set with a
a collection of coverings of the set.

- Each uniform cover is considered to be

consisting of balls of the @

- They are partially ordered by the G
refinement relation and form a filter. :

They also induce a topology in the

“vyertical” way neighbourhood filter

- The balls surrounding each point form
a neighborhood filter, which generates
the

Every uniformizable space has the finest
uniformity: the uniform space.

Neighbors are given vertically

31



Review: Uniform Space

* Auniform spaceis a set with a
a collection of coverings of the set.

- Each uniform cover is considered to be
consisting of balls of the @

- They are partially ordered by the G
refinement relation and form a filter. :

« They alsoinduce a topology in the
“vertical” way.

- The balls surrounding each point form
a neighborhood filter, which generates
the

« Every uniformizable space has the finest
uniformity: the uniform space.

Th. Let X5, be the fine space compatible with a topological space X .
f: X > Y is continuous < f : Xfine — Y is uniformly continuous

32

We’ve seen that situation!



Girard’s Formula

: Model of Intuit. Logic

Two closed structures of coherence spaces:

 The category Sthl of coh. spaces and stable maps is

- X =Y :thecoherence space for stable maps.

« The category Lin of coh. spaces and linear maps is
- X —oY :thecoherence space for maps.

They are combined by introducing the “of course” modality:

X = (Xfin, <) naturally definedby q~p — agubeX-:

™. x—-vYvy IX oY

Linear Decompostion of Cartesian closed Structure. 3



Coherence as Uniformity

Recall: 1 x:={aeX:a>x} foreachtoken xeX
Incoherence implies disjointness: —(XCy) = 1 Xnly=J
A of Xmax is an anticlique which induces the disjoint covering.

Condition: a coherence space X = (X, C) is if every

token can be extended to a partition:
vxeX. Jae X+. xea and ZyEaTYQXmax

Prop. g/(max ~ 1 X max (homeomorphic.)
N\

a la :={ap : ap Sfin a} - Coh. Sp. for anticliques |

Th. 1) Partitions of X;,ax form a subbasis for a uniformity.

2) Partitions of 1 X, form a basis for a uniformity.

3) Both uniformities induce the Scott topology as the uniform topologies.
)

4) The induced uniformity on 1 x,,, is fine.

Anticliques induce Uniformity

34



Cauchy Sequences Again

Ex. Define a coherence space 0/2° e Do
R:=(D, ©) for _221 12 0t 4120 42721
. ® ° ® ® ® -4
as: ~4/22-3/22-2/22.1/220/22 1122 +3/2214/22
— e e . e o o o o o D>
X~y < den(x)#den(y)and [x]n][y]#J
X<y <= den(x)=den(y)or[x]nly]=Y
(incoherence)
Each D, is a partition of Ry »
because a maximal clique must
contain “all colors”. R
There are no other partitions
consisting of “several colors”.
* In any partition, spotlights of colors must project sets by the

second condition of the incoherence.
* This is impossible essentially due to Sierpinski's theorem.
* The partitions then generate the uniformity compatible with the real line, the

representation is a map. 35



Linear = Uniform Continuous

Recall that
Th. X—-Y = IX oY

Th. f: X - Y is continuous < f : Xfine — Y is uniformly continuous

We then combine these results.
Assume that F Preserves maximality of cliques.

Th. Every map F: X — Y is

respect to the uniformities induced by partitions.

Cor. Every stable map F: X — Y is continuous.

(although it is a reinvention of the wheel...)

with

36



|. Review: Coherent Spaces
ll. Coherence as Uniformity
ll. Linear Admissibility

V. Concluding Comments
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Standard Representations

Let X be a Hausdorff uniform space
with a countable basis {Un}nen
consisting of countable coverings.

Fact. Such a space is known to be
separable metrizable.

Def. The

of X is given by the coherence
space B = (B, ) defined by
B={(nU):neN,Uel,} and

(n,U)~(m,V) < n#mandUnV # g

Each Maximal clique of B specifies at mostone point. 5



Linear Admissibility

Standard representation does not depend on the choice of basis {Un }neN :

This generalizes to the notion of admissibility. B1

An ldea. A representation Y 2, Xis
if
1. for every uniform cover U/ of X there exists a X

uniform cover of Y4, Which refines 74, and“[ uniform cont.

2. for every subspace Xo and its representation
X Y, x, satisfying (1) the inclusion map is X
tracked by some linear map F -

F

Y

A naive idea is to mimic Admissibility in TTE,
but it doesn’t work!! Xo




Linear Admissibility

Standard representation does not depend on the choice of basis {U/n}neN :

This generalizes to the notion of admissibility. B,

B>

An lde representation Y -2 is linear

admissib
1. for every

uniform cove
2. for every subs

of X there exists a
i C h re fi nes Z/{ , an d 71

0 and its representation
) the inclusion map is

X 1 Xo satisfyi
tracked by so

A naive 4
but i

aistomimicA
esn’t work!!

issibility in TTE,

Xo X

Y P
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Linear Admissibility

Standard representation does not depend on the choice of basis {Un }neN :

This generalizes to the notion of admissibility. B1

B>

Def. A representation Y 2 Xis
if
1. for every uniform cover U/ of X there exists a X

of Y,,qx Which refines [/, and [ uniform cont.
2. for every subspace Xo and its representation

X Y, x, satisfying (1) the inclusion map is X " Y
tracked by some linear map F .
Th. (1) Every continuous mapsis Y p
then realizable w.r.t. linear ;
admissible representations. Xo X

(2) Every standard representation is linear
admissible.



Chain-Connectedness

Def. Auniform space X = (X, u)
is if
Vx,yeX. VU e u. 3Uq, ..., Unpel.

s.t. xeU1, ye U, and
UinUi;1 # ¢ for every i < n.

Atypical example: () (thoughit
is totally disconnected)

In particular, every two members
of a uniform cover is “chainly
connected”

42
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Chain-Connectedness

Def. Auniform space X = (X, u)
is if
vx,yeX.VUeu. U1, ..., U eld.

s.t. xeU1, ye U, and
UinUi;1 # ¢ for every i < n.

Atypical example: () (thoughit
is totally disconnected)

P 4
“"Q"\“
B PN

AP e )

PERIER
7

KO\ a B
’\N\
A "'x.(L'A'\‘ LH

In particular, every two members
of a uniform cover is “chainly
connected”
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Chain-Connectedness

Def. Auniform space X = (X, u)
is if
Vx,yeX.vUeu. Uq,..., Unpel.

s.t. xeU1, ye U, and
UinUi;1 # ¢ for every i < n.

Atypical example: () (thoughit
is totally disconnected)

In particular, every two members
of a uniform cover is “chainly
connected”
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Principal Lemma

Suppose that X is achain-connected separable metrizable space
and that {{n }nen is a uniform basis consiting of coverings.

N.B. Every uniform space has a basis of open coverings.

Lem. The standard representation is @

a topologically and open ‘”‘

map. v

« Topological openness is immediate from
the assumption.

. openness is essentially due to
“one-coloredness” of partitions.

46



Principal Lemma

Suppose that X is achain-connected separable metrizable space
and that {{n }nen is a uniform basis consiting of coverings.

N.B. Every uniform space has a basis of open coverings.

Lem. The standard representation is @

a topologically and open ‘”‘

map. v

« Topological openness is immediate from
the assumption.

. openness is essentially due to
“one-coloredness” of partitions.

47



Principal Lemma

Suppose that X is achain-connected separable metrizable space
and that {{n }nen is a uniform basis consiting of coverings.

N.B. Every uniform space has a basis of open coverings.

Lem. The standard representation is
a topologically and open
map.

« Topological openness is immediate from
the assumption.

. openness is essentially due to
“one-coloredness” of partitions.

48



Principal Lemma

Suppose that X is achain-connected separable metrizable space
and that {{n }nen is a uniform basis consiting of coverings.

N.B. Every uniform space has a basis of open coverings.

Lem. The standard representation is
a topologically and open
map.

« Topological openness is immediate from
the assumption.

. openness is essentially due to
“one-coloredness” of partitions.

49



Principal Lemma
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Main Result

Let X and Y be separable metrizable uniform spaces

with linear admissible representations, and f: X—>Y |

Recall: every separable metrizable space has the
, hence has linear admissible representations.

Th. If X is chain-connected,
 f :stably realizable & itis continuous.
« f: realizable & it is continuous.

Cor. If f: X — Y islinearly realizable then it is uniformly
continuous on each chain-connected component.
Conversely, every uniformly continuous function is linearly

realizable. To complete the corollary, we need to reduce the
components by identifying some of them.

51
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ll. Coherence as Uniformity
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V. Concluding Comments
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Towards Linear Realizability

A linear combinatory algebra (LCA) U, is defined from the
“universal coherence space”.

Coherent Representations = Modest Sets over Uy,
Mod(U,,) is a model of linear logic.

I'm essentially a realist...but still a bit a dreamer

* solimagine there's a kind of “Linear Analysis” as the
decomposition of Computable Analysis.

- An analogy of the discovery of Linear Logic.

- Every mathematical space has “admissible”
representations in some sense, and functions are all

linearly computable...
53



Towards Complexity in Analysis

« |t seems hopeless that the category of [inear admissible representations
is monoidal closed because function spaces are not separable metrizable.
« Nonetheless, | still believe that linearity is strongly related to uniform
structures because:
Th (Férée-Gomaa-Hoyrup' 13). For anyreal functional F:C[0,1] >R

The following are equivalent:

e F is computable by a polynomial time machine doing only
one oracle query
o Vf, F(f) = ¢(f(a)) where: 1 linear in our terminology
o a € Poly(R)
o ¢ € Poly(R — R)
e ¢ is uniformly continuous

J

Fis “uniformly continuous” w.r.t. a kind of uniformity on C[0,1]:
If-gl<e < 3acl0,1]. f(a)-g(a)| <€
We can explain this phenomenon in our model:

I—-R)* = I®R*
Uniformity on C[0,1] a pointin [0,1] & a uniformity of R

54



P0ssible Way: Quasi-Uniformity

In some sense, separable metrisability of linear admissible
representations seems inevitable:

- Because of countability of coherence spaces.

« We must have a countable basis of countable coverings.

But... the Hausdorff property seems not necessary.

 just used for well-definedness of the representation.
The use of non-Hausdorff metric seems a possible answer.

Every second-countable T,-space is separable quasi-
metrizable.

- Itis very likely that they have the standard representations

for quasi-uniform spaces. _
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