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Infinite games

Gale-Stewart game G(X ), where X (⊆ Aω) is a winning set for player I

Determinacy

With the usual convention, C-Det denotes that “A Gale-Stewart game
G(X ) is determined (one of the two players has a winning strategy), if
X is contained in the class C”.

ω-languages accepted by automata

L(M), where M is some kind of automata

Question

If the winning sets are effectively given, i.e., winning sets are accepted by
some kind of automata, how is the determinacy strength of such games?
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Pushdown automata on infinite words (ω-PDA)

 

  
ia… … 1a
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Infinite 
input tape 

Stack 

top 

Finite control     

  

A run on a1...an... is an infinite sequence of configurations:

(qin,⊥)
a1 or ε−−−−→ (q1, γ1)...

an or ε−−−−→ (qs , γs)
an+1 or ε−−−−−→ ...

An infinite word a1...an... ∈ Aω is accepted by a Büchi pushdown
automaton if there exists a run visiting a state in F infinitely many times.
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Visibly Pushdown Automata

I For (1-stack) visibly pushdown automata (2VPA), the alphabet A is
partitioned into Push, Pop, Int. The transitions are as follows.
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I For 2-stack visibly pushdown automata (2VPA), the alphabet A is
partitioned into Push1, Pop1, Push2, Pop2, Int.

Example

Given A = ({a}, {a}, {b}, {b}, ∅), the language {(ab)nanb
n| n ∈ N}, is recognized

by a deterministic 2-stack visibly pushdown automaton (2DVPA).
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Determinacy strength of infinite games in deterministic
2-stack visibly ω-languages
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Recall undecidability results of games in some ω-languages

Effectively 
determined  

REGω: ω-regular lang. (FA)

CFLω: context free ω-lang. (PDA)

DCFLω: deterministic CFLω(DPDA)

VPLω: visibly pushd. ω-lang. (VPA)

BTMω: ω-lang. by Büchi Turing
machine

Note that these languages are defined
with Büchi or Muller condition.
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Question

How about other acceptance conditions of lower levels?

In this talk

we concentrates on determinacy strength of infinite games specified by
nondeterministic pushdown automata and variants of it with various
acceptance conditions, e.g., safety, reachability, co-Büchi conditions.
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Acceptance conditions of infinite words

Safety (or Π1) accepance condition

L(M) = {α ∈ Σω|there is a run r = (qi , γi )i≥1 of M on α

such that ∀i , qi ∈ F}.

Reachability (or Σ1) acceptance condition

L(M) = {α ∈ Σω|there is a run r = (qi , γi )i≥1 of M on α

such that ∃i , qi ∈ F}.

Let Inf(r) be the set of states that are visited infinite many times during
the run r .

Co-Büchi (or Σ2) acceptance condition

L(M) = {α ∈ Σω|there is a run r = (qi , γi )i≥1 of M on α

such that Inf(r) ⊆ F}.
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Acceptance conditions of infinite words (continued)

(Σ1 ∧ Π1) acceptance condition

There exist Fr , Fs⊂ Q,

L(M) = {α ∈ Σω|there is a run r = (qi , γi )i≥1 of M on α

such that ∃i , qi ∈ Fr ∧ ∀i , qi ∈ Fs}.

(Σ1 ∨ Π1) acceptance condition

There exist Fr , Fs⊂ Q,

L(M) = {α ∈ Σω|there is a run r = (qi , γi )i≥1 of M on α

such that ∃i , qi ∈ Fr ∨ ∀i , qi ∈ Fs}.
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Acceptance conditions of infinite words (continued)

∆2 acceptance condition

There exist Fb, Fc⊂ Q,

L(M) = {α ∈ Σω|there is a run r of M on α such that Inf(r) ∩ Fb 6= ∅}

= {α ∈ Σω|there is a run r of M on α such that Inf(r) ⊂ Fc}.
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Various acceptance conditions of ω-2DVPA

I We denote the ω-languages accepted by ω-2DVPA with different
acceptance conditions as follows.

I ω-languages accepted by deterministic Turing machines with safety
(resp., reachabiliy, co-Büchi, Büchi) condition is the collection of all
arithmetical Π0

1-sets (respectively, Σ0
1-sets, Σ0

2-sets, Π0
2-sets).

Acceptance conditions Subclass of 2DVPLω

Reachability 2DVPLω(Σ1) ⊆ Σ0
1

Safety 2DVPLω(Π1) ⊆ Π0
1

Co-Büchi 2DVPLω(Σ2) ⊆ Σ0
2

Büchi 2DVPLω(Π2) ⊆ Π0
2

Similarly, by 2DVPLω(C) we denote the ω-languages accepted by
deterministic 2-stack visibly pushdown automata with an acceptance
condition C.
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Theorem

There exists an infinite game in 2DVPLω(Σ1 ∧Π1) with only Σ0
1-hard

winning strategies.

Proof.

I Let R be a universal 2-counter automaton.

I We construct a game GR such that the halting problem of R is
computable in any winning strategies of player II, while player I has
no winning strategy, and moreover the winning set for player II is
accepted by a deterministic 2-stack visibly pushdown automaton with
a Σ1 ∨Π1 acceptance condition.
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Recall 2-counter automata

X A 2-counter automaton can be seen as a restricted 2-stack pushdown
automaton with just one symbol for each stack: the number of the
symbols in a stack is expresses as a nonnegative integer in a counter.

X The input is a natural number m which is initially store in one of the
counter.

X By the current state and the tests results on whether each counter is
zero or not, the automaton goes to next state and do operations on
the two counters by increasing the counter(s) by 1, or decreasing the
counter(s) by 1 if the counter is not zero.

X It is known that a (deterministic) 2-counter automaton, is equivalent
to a Turing machine. Thus the halting problem for a certain
(universal deterministic) 2-counter automaton is Σ0

1-complete.
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Recall 2-counter automata (continued)

• A configuration (q,m, n) of a 2-counter automaton R is coded as
qambn, where q ∈ Q, and m, n are non-negative integers in the two
counters.

• A run for a natural number m on R:
qinam0bn0 7→R q1am1bn1 7→R q2am2bn2 7→R · · · , where qin is the
initial state, and m0 = m, n0 = 0.

• A run is halting if it reaches a halting configuration.

• A natural number m ∈ L(R) iff there exists a run on m such that
qinambn0 7→R q1am1bn1 7→R · · · 7→R qsams bns , where n0 = 0 and qs is
a halting state.
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Back to the proof: construct a game GR

Let R be a universal 2-counter automaton.

I wins  

II wins  

II wins  
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Construct a game GR

I wins  

II wins  

II wins  

II wins  

I wins  

I wins  

W. Li (Tohohu University) Determ. streng. of infin. games in ω-lang. 18 / 39



If player II says “no”, how does she challenge?

Player II wants to makes sure

(1) the sequence of configurations provided by player I is a sequence of the form
qambn and connected by B,

(2) it starts with the initial configuration,

(3) any two consecutive configurations constitute a valid transition of R, and

(4) the sequence of configurations is ended with a halting configuration.

The conditions (1), (2) and (4) are easy to check with Σ1 conditions (i.e., player I
lose with Π1). In the following we explain how player II challenges if she thinks
player I cheated by disobeying the above rule (3).

1 1min{ , }( $) ( $) * i i i im n m mcb a q b a q

I 

II 

0 ( )?m L R

Yes/No 

0 0 1
0 1


 i i im n m n m

i iq a b q a b q a b

Challenge
with a witness:

Check!

Such a play can be checked by a deterministic 2-stack visibly pushdown

automaton.
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Assume player II has a winning strategy σ, then

L(R) = {m : player II follows her winning strategy σ and answers “yes”

to m in the game GR in 2DVPLω(Σ1 ∧Π1)}.

Since the halting problem of R is Σ0
1-complete, any winning strategy for

player II is Σ0
1-hard.
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Corollary

The determinacy of games in 2DVPLω(Σ1 ∧Π1) with an oracle implies
ACA0. In fact, they are equivalent to each other over RCA0.

Sketch.

• We use a 2-counter automaton R with an oracle function f : N→ N,
denoted as Rf . m0 ∈ L(Rf ) iff there exists a run on m s.t.

q0am0 bn0 B q1am1 bn1 B · · ·B qsams bns ,

where n0 = f (m0) and qs is halting.

• The game GRf

1 1min{ , }( $) ( $) * i i i im n m mcb a q b a q

I 

II 

0 ( )?m L R

Yes/No 

0 0 1( )
0 1

i i im f m m n m
i iq a b q a b q a b

 

Challenge
with a witness:

Check! 

• Such a play can be checked by a deterministic 2-stack visibly pushdown
automaton with an oracle tape, in which the oracle tape is read-only,
non-real-time and in the form 1f (0)01f (1)01f (2) · · · .
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Corollary

For any n, there exists an infinite game in 2DVPLω(B(Σ1)) with only
Σ0
n-hard winning strategies.

I The brief idea is as follows. Take the case n = 3 as an example. Let
A be any Σ0

3 set. Then there is a 2-counter automaton R such that
m0 ∈ A if and only if

∃m1∀m2(R halts on m = 2m03m15m2).

We can construct game starts with player I by asking m0 in A or not.
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Theorem

The determinacy of games in 2DVPLω(Π1) implies Σ0
1-SP.

Proof.

I Let R1 and R2 be two 2-counter automata such that
L(R1)

⋂
L(R2) = ∅.

I Player I has a sequence of m’s, and for each m, he chooses i such
that Ri does not halt with m.

I Player II may challenge player I’s choice i at any m.

 

II 
c

m
1221 i

Ri  does not 

halt with m. 
Player II challenges
at this i. 

Player I II 
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I Then player I defends by producing an infinite sequence of
configurations of Ri on m, q0am0bn0 B q1am1bn1 · · · , where m0 = m
and n0 = 0.

 

II 

0 0 s1 1
0 1

m n m n m

m
1221 a b a b a    ms

icq q q c

Ri  does not 

halt with m. 
Player II challenges
at this i. 

Player I 

Player I defends by providing a sequence 
of configurations of iR  on m. 

Player II may also challenge 
at a transition if she thinks 
Player I has cheated. 

II 

I While player I is producing a sequence of configurations, player II may
challenge at any point she thinks player cheated.

I Player I’s winning set is accepted by a 2DVPA(Π1). Assume that
player I has a winning strategy σ, then the desired separating set is
X = {m : player I follows σ and picks R2 for m}.

Corollary

The determinacy of the games in 2DVPLω(Π1) with an oracle is
equivalent to WKL0 over RCA0.
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Theorem

The determinacy of 2DVPLω(∆2) implies the determinacy of ∆0
1 games in

ωω, which is equivalent to ATR0.

I We mimic the proof of ∆0
2-Det(in 2ω)→∆0

1-Det(in ωω) in [NMT07] 1.

I By using their coding technique, we write α̃ ∈ ωω for the unique
sequence coded by α ∈ 2ω. Note that not all sequences in 2ω code a
sequence in ωω.

1T. Nemoto , M.Y. Ould MedSalem, K. Tanaka. Infinite games in the Cantor
space and subsystems of second order arithmetic. MLQ, 2007, 53(3): 226-236.
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I Then, a play α̃ in ∆0
1 game in ωω can be translated into a play α in

2ω and α is winning for player 0 (resp. player 1) iff

(a) α̃ is a winning play (resp. α̃ is not a winning play) in the ∆0
1 game in

ωω while both players obey the rules to produce a play α, or

(b) while they are producing α, player 1 (resp. player 0) breaks the rules.
[a Σ0

2 statement]

which constitutes a Σ0
2 winning set for player 0 (resp. player 1). Thus

the game is ∆0
2 in 2ω.

Note that the increase in complexity of winning condition is mainly
due to the complexity of the coding rules that we follow.
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I Now we convert this ∆0
1 game in ωω to a 2DVPLω(∆2) using the

coding rules given by the above ∆0
2 game in 2ω.

• The coding rule does not need any modification for 2DVPLω(∆2).
So, for simplicity, the players are assumed to obey this rule and we
just treat the above case (a).

• Given a ∆0
1 game, there exist two 2-counter automata R0 and R1

such that

s is a winning play ↔ ∃n ]s[n] ∈ L(R0)↔ ¬∃n ]s[n] ∈ L(R1),

where ]s[n] denotes a code of the initial n-segment of s.
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We construct a game GR1,R2 as follows.

• When a player produces a finite sequence α[n] in the ∆0
2 game in 2ω

such that ]α̃[n] ∈ L(Ri )(i ∈ {0, 1}) , player i in the game GR0,R1

starts providing a sequence of configurations of Ri on ]α̃[n], which
player i claims to halt in finite steps.

• While player i is making such a sequence of configuration of Ri on
]α̃[n], the player 1− i may challenge at any point.

• We can see that the winning set for player 0 in the constructed game
GR1,R2 is in 2DVPLω(∆2). Moreover, if player i has a winning
strategy in 2DVPLω(∆2), then player i also has a winning strategy in
the original ∆0

1 game in ωω.
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Corollary

The determinacy of games 2DVPLω(Σ2) is equivalent to ATR0 over RCA0.

Proof.

By the above theorem,

2DVPLω(Σ2)-Det→ 2DVPLω(∆2)-Det→ ATR0.

By [NMT07],

ATR0 → Σ0
2-Det in 2ω → 2DVPLω(Σ2)-Det.
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Determinacy strength of infinite games in pushdown
ω-languages
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I We treat ω-languages accepted by nondeterministic ω-PDA with
different acceptance conditions.

Accepting conditions Subclass of (r -)PDLω2

Reachability (r -)PDLω(Σ1)

Safety (r -)PDLω(Π1)

Co-Büchi (r -)PDLω(Σ2)

Büchi (r -)PDLω(Π2)

Recall:

I PDLω(Π2)= CFLω.

I DPDLω(Π2) ( DPDLω(B(Σ2)) = DCFLω.

I PDLω(Π1) (respectively, PDLω(Σ1), PDLω(Σ2), PDLω(Π2)) is a
subclass of arithmetical Π0

1 (respectively, Σ0
1, Σ0

2, Σ1
1) class.

2The symbol r denotes the real-time case.
W. Li (Tohohu University) Determ. streng. of infin. games in ω-lang. 31 / 39



Intuitively...

• A play in an infinite game in 2DVPLω:

   
Reading head 

To be compared by two stack, which is 
provoked by a challenge of the other player in 
the game. 

1
{ }( $) ( $) *0 0 i i i+1 i+1 i i i+1m ,ma b a b a bcb a b a

min
0 i i

m n m n m m nq q q q q   

• A play in an infinite game in PDLω:

   Reading head 

Has been compared due to the nondeterminism 
of the pushdown automata.

1
0 0 i i i+1a b a b a b0 i i

m n m n mq q q  
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Theorem

The determinacy of games in r-PDLω(Σ1) implies Σ0
1-SP.

Sketch.

c

I

II

1   2   1   1 … i 

Player II challenges at this i and provides a finite 

sequence of configurations of the corresponding m on Ri. 

Some error occurs 

1
0 0 S S S+11 1

S S+1
m n m n mm na b a b a b a b   

in
q q q q

Instead of checking by a challenge of player II, a pushdown automaton itself can
nondeterministically check whether player I makes a mistake or not.

Remark
Safety condition is not the complement of reachability condition for
nondeterministic pushdown languages.

Corollary

The determinacy of the games in r-PDLω(Σ1) with an oracle is equivalent to
WKL0 over RCA0.
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Theorem

RCA0 ` PDLω(Π1)-Det.

Proof idea

I Assume a pushdown automaton M with a Π1 acceptance condition.
We can construct a pushdown game GP such that

• if there exists a computable winning strategy σ for player i in
G(L(M)), then there exists a winning strategy σ′ for player i in GP
which is computable from σ, and vice versa.

I From Walukiewicz (1996, 2001), we can show that there is a winning
strategy in GP and it is computable.

Note that a pushdown game is played on an infinite graph, which is
generated by a pushdown process.
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Theorem

r -PDLω(Σ2)-Det ← ATR 0 → 2DVPLω(Σ2)-Det↔ 2DVPLω(Π2)-Det
↓ ↑ ↓

r -PDLω(∆2)-Det → ∆0
1-Det← 2DVPLω(∆2)-Det

r-PDLω(Σ1 ∧Π1)-Det ↔ ACA 0 ↔ 2DVPLω(Σ1 ∧Π1)-Det

r-PDLω(Σ1)-Det ↔ WKL 0 ↔ 2DVPLω(Σ1)-Det↔ 2DVPLω(Π1)-Det

Corollary

For an acceptance condition C ∈ {Σ1,Σ1 ∧Π1,∆2,Σ2},

r -PDLω(C)-Det↔ PDLω(C)-Det.
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Determinacy strength of infinite games in 1-counter
ω-languages

We can easily observe that all the arguments about pushdown automata,
in fact, replaced by (nondeterministic) 1-counter automata, namely
pushdown automata that can check whether the counter is zero or not
with only one stack symbol.

Theorem

For an acceptance condition C ∈ {Σ1,Σ1 ∧Π1,∆2,Σ2},

r -CLω(C)-Det↔ CLω(C)-Det↔ PDLω(C)-Det.
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Ongoing and future works

I Study the quantitative analysis of concurrent games in pushdown
ω-languages.

I Investigate the determinacy strength of the Blackwell-type games in
ω-languages, and its relation to probabilistic automata and other
stochastic systems.
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Thank you!
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