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Indicators

What is indicator?
It is introduced by Kirby and Paris in 1970’s, and the
general frame work is given by Kaye.
It is used to prove the independence of the
Paris-Harrington principle from PA.
A tool to study cuts of nonstandard models of arithmetic.

Indicators are useful to analyze the proof-theoretic strength
of combinatorial statements in arithmetic.
Note that most theorems in this talk are more or less folklores (in
the field of nonstandard models of arithmetic).
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Nonstandard models of arithmetic

In this talk we will mainly use the base system EFA = I∆0 + exp or
RCA∗0, which consists of I∆0

0 + exp plus ∆0
1-comprehension, and

models we will consider will be countable nonstandard.
Let M |= EFA.

I ⊆ M is said to be a cut (abbr. I ⊆e M) if a < b ∈ I → a ∈ I and
I is closed under addition + and multiplication ·.
Cod(M) = {X ⊆ M | X is M-finite}, where M-finite set is a set
coded by an element in M (by means of the usual binary
coding).

for Z ∈ Cod(M), |Z | denotes the internal cardinality of Z in M.

for I ⊆e M, Cod(M/I) := {X ∩ I | X ∈ Cod(M)}.

Proposition

If I ⊆e M, then I is a Σ0-elementary substructure of M.
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Cuts

There are several important types of cuts.

Theorem (exponentially closed cut, Simpson/Smith)

Let M |= EFA, and let I ⊊e M. Then the following are equivalent.
1 (I,Cod(M/I)) |= WKL∗0.
2 I is closed under exp.

Theorem (semi-regular cut)

Let M |= EFA, and let I ⊊e M. Then the following are equivalent.
1 (I,Cod(M/I)) |= WKL0.
2 I is semi-regular, i.e., if X ∈ Cod(M) and |X | ∈ I, then X ∩ I is

bounded in I.

These combinatorial characterization of cuts play key roles in the
definition of indicators.
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Indicators

Let T be a theory of second-order arithmetic.
A Σ0-definable function Y : [M]2 → M is said to be an indicator for
T ⊇ WKL∗0 if

Y(x, y) ≤ y,
if x′ ≤ x < y ≤ y′, then Y(x, y) ≤ Y(x′, y′),
Y(x, y) > ω if and only if there exists a cut I ⊆e M such that
x ∈ I < y and (I,Cod(M/I)) |= T.
(Here, Y(x, y) > ω means that Y(x, y) > n for any standard natural
number n.)

Example

Y(x, y) = max{n : expn(x) ≤ y} is an indicator for WKL∗0.

Y(x, y) = max{n :any f [[x, y]]n → 2 has a homogeneous set
Z ⊆ [x, y] such that |Z | > min Z}

is an indicator for ACA0.
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Basic properties of indicators

Theorem
If Y is an indicator for a theory T, then for any n ∈ ω,

T ⊢ ∀x∃yY(x, y) ≥ n.

Theorem

If Y is an indicator for a theory T, then, T is a Π0
2-conservative

extension of EFA + {∀x∃yY(x, y) ≥ n | n ∈ ω}.

Let FY
n (x) = min{y | Y(x, y) ≥ n}.

Theorem

If Y is an indicator for a theory T and T ⊢ ∀x∃yθ(x, y) for some
Σ1-formula θ, then, there exists n ∈ ω such that

T ⊢ ∀x∃y < FY
n (x)θ(x, y).
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Let Fk be the k-th fast-growing function.

Example

Y(x, y) = max{k : Fk (x) < y} is an indicator for WKL0.

Thus, we have
WKL0 ⊢ ∀x∃yFk (x) < y for any k ∈ ω,
if WKL0 ⊢ ∀x∃yθ(x, y) then there exists some k ∈ ω such that
WKL0 ⊢ ∀x∃y < Fk (x)θ(x, y),
the proof-theoretic strength of WKL0 is the same as the
totality of all primitive recursive functions.

Once you find an indicator for a theory T, one can characterize its
Π0

2-part.

Theorem
Any consistent recursive theory T ⊇ WKL∗0 (or first-order theory
extending EFA) has an indicator.
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Set indicators

One can generalize indicators to capture wider class of formulas.

Let T be a theory of second-order arithmetic.
A Σ0-definable function Y : Cod(M)→ M is said to be a set
indicator for T ⊇ WKL∗0 if

Y(F) ≤ max F,

if F ⊆ F ′, then Y(F) ≤ Y(F ′),

Y(F) > ω if and only if there exists a cut I ⊆e M such that
min F ∈ I < max F and (I,Cod(M/I)) |= T, and F ∩ I is
unbounded in I.

Note that if Y is a set indicator, then Y ′(x, y) = Y([x, y]) is an
indicator function.

Example

Y(F) = max{m : F is ωm-large} is an indicator for WKL0.
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Basic properties of indicators (review)

Theorem
If Y is an indicator for a theory T, then for any n ∈ ω,

T ⊢ ∀x∃yY(x, y) ≥ n.

Theorem

If Y is an indicator for a theory T, then, T is a Π0
2-conservative

extension of EFA + {∀x∃yY(x, y) ≥ n | n ∈ ω}.

Let FY
n (x) = min{y | Y(x, y) ≥ n}.

Theorem

If Y is an indicator for a theory T and T ⊢ ∀x∃yθ(x, y) for some
Σ1-formula θ, then, there exists n ∈ ω such that

T ⊢ ∀x∃y < FY
n (x)θ(x, y).
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Basic properties of set indicators

Theorem
If Y is a set indicator for a theory T, then for any n ∈ ω,

T ⊢ ∀X ⊆inf N∃F ⊆fin X(Y(F) ≥ n).

Theorem

If Y is a set indicator for a theory T, then, T is a Π̃0
3-conservative

extension of RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(Y(F) ≥ n) | n ∈ ω}.

Here, a Π̃0
3-formula is of the form ∀Xψ(X) where ψ is Π0

3.

Theorem
If Y is a set indicator for a theory T and
T ⊢ ∀X ⊆inf N∃F ⊆fin Xθ(F) for some Σ1-formula θ, then, there
exists n ∈ ω such that

T ⊢ ∀Z ⊆fin N(Y(Z) ≥ n → ∃F ⊆ Z θ(F)).
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Example

Y(F) = max{m : F is ωm-large} is an indicator for WKL0.

Thus,

all the Π̃0
3-consequences of WKL0 can be captured by

ωm-largeness notion.

Question
Is there a canonical way to find indicators?
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Ramsey-like statements

Definition (Ramsey-like formulas)

A Ramsey-like-Π1
2-formula is a Π1

2-formula of the form

(∀f : [N]n → k)(∃Y)(Y is infinite ∧Ψ(f ,Y))

where Ψ(f ,Y) is of the form (∀G ⊆fin Y)Ψ0(f ↾ [[0,max G]N]
n,G)

such that Ψ0 is a ∆0
0-formula.

In particular, RTn
k is a Ramsey-like-Π1

2-statement
where Ψ(f ,Y) is the formula “Y is homogeneous for f ”.

Theorem

Any restricted Π1
2-formula of the form ∀X∃YΘ(X ,Y) where Θ is a

Σ0
3-formula is equivalent to a Ramsey-like formula over WKL0.

Note that this theorem can be proved by a canonical syntactical
calculation.
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Density

Definition (EFA, Density notion)

Given a Ramsey-like formula
Γ = (∀f : [N]n → k)(∃Y)(Y is infinite ∧Ψ(f ,Y)),

Z ⊆fin N is said to be 0-dense(Γ) if |Z |,min Z > 2,
Z ⊆fin N is said to be (m + 1)-dense(Γ) if

(for any n, k < min Z and) for any f : [[0,max Z ]]n → k , there is
an m-dense(Γ) set Y ⊆ Z such that Ψ(f ,Y) holds, and,
for any partition Z0 ⊔ · · · ⊔ Zℓ−1 = Z such that
ℓ ≤ Z0 < · · · < Zℓ−1, one of Zi ’s is m-dense(Γ).

Note that “Z is m-dense(Γ)” can be expressed by a ∆0-formula.

Put YΓ(F) := max{m | F is m-dense(Γ)}.

Theorem
YΓ is a set indicator for WKL0 + Γ.
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Characterizing proof-theoretic strength by indicators

One can characterize the proof-theoretic strength of a finite
restricted Π1

2-theory T ⊇ WKL0 as follows.

Find a Ramsey-like formula Γ such that T ↔ WKL0 + Γ.

Then, m-dense(Γ) sets capture Π̃0
3-part of T.

In particular, the provably recursive functions of T are
{Fm | Fm(x) = min{y | [x, y] is m-dense(Γ)}}.

Actually, one can generalize the above argument for infinite
theories.

One can also replace the base theory WKL0 with other systems,
e.g., WKL∗0 or ACA0.
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Density with the base ACA0

Definition (EFA, Density notion with the base ACA0)

Given a Ramsey-like formula
Γ = (∀f : [N]n → k)(∃Y)(Y is infinite ∧Ψ(f ,Y)),

Z ⊆fin N is said to be 0-dense′(Γ) if |Z | > 4,min Z > 2,
Z ⊆fin N is said to be (m + 1)-dense′(Γ) if

(for any n, k < min Z and) for any f : [[0,max Z ]]n → k , there is
an m-dense′(Γ) set Y ⊆ Z such that Ψ(f ,Y) holds, and,
for any partition f : [Z ]3 → ℓ such that ℓ < min Z there is an
m-dense′(Γ) set Y ⊆ Z which is f -homogeneous.

Put Y ′Γ(F) := max{m | F is m-dense’(Γ)}.

Theorem
Y ′Γ is a set indicator for ACA0 + Γ.

With ACA0, one can always characterize the Π1
1-part of Γ.
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Density with the base WKL∗0

Definition (EFA, Density notion with the base WKL∗0)

Given a Ramsey-like formula
Γ = (∀f : [N]n → k)(∃Y)(Y is infinite ∧Ψ(f ,Y)),

Z ⊆fin N is said to be 0-dense∗(Γ) if Z , ∅,
Z ⊆fin N is said to be (m + 1)-dense∗(Γ) if

(for any n, k < min Z and) for any f : [[0,max Z ]]n → k , there is
an m-dense∗(Γ) set Y ⊆ Z such that Ψ(f ,Y) holds, and,
Z \ [0, exp(min Z)] is m-dense∗(Γ).

Put Y∗Γ(F) := max{m | F is m-dense∗(Γ)}.

Theorem
Y∗Γ is a set indicator for WKL∗0 + Γ.
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Conservation results

WKL∗0 + RTn
k is a Π̃0

3-conservative extension of
RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(F is n-dense∗(RTn

k )) | n ∈ ω}.
= RCA∗0.

WKL0 + RT2
2 is a Π̃0

3-conservative extension of
RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(F is n-dense(RT2

2)) | n ∈ ω}.
= RCA0.

ACA0 + RT = ACA′0 is a Π1
1-conservative extension of

RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(F is n-dense(RT)) | n ∈ ω}.
. . .

Question
Can indicator arguments be converted to proof-interpretation style
conservation results?
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Thank you!

Richard Kaye, Models of Peano Arithmetic, Oxford University Press,
1991.

Ludovic Patey and Y, The proof-theoretic strength of Ramsey’s
theorem for pairs and two colors, draft, available at
http://arxiv.org/abs/1601.00050

Y, On the strength of Ramsey’s theorem without Σ1-induction.
Math. Log. Q., 59(1-2):108–111, 2013.
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