Proof-theoretic strength and indicator arguments

Keita Yokoyama

Japan Advanced Institute of Science and Technology

September 16, 2016

Indicators

What is indicator?

- It is introduced by Kirby and Paris in 1970's, and the general frame work is given by Kaye.
- It is used to prove the independence of the Paris-Harrington principle from PA.
- A tool to study cuts of nonstandard models of arithmetic.

Indicators are useful to analyze the proof-theoretic strength of combinatorial statements in arithmetic.

Note that most theorems in this talk are more or less folklores (in the field of nonstandard models of arithmetic).

Nonstandard models of arithmetic

In this talk we will mainly use the base system $\text{EFA} = I\Delta_0 + \exp \operatorname{or} \text{RCA}_0^*$, which consists of $I\Delta_0^0 + \exp \operatorname{plus} \Delta_1^0$ -comprehension, and models we will consider will be countable nonstandard. Let $M \models \text{EFA}$.

- *I* ⊆ *M* is said to be a cut (abbr. *I* ⊆_{*e*} *M*) if *a* < *b* ∈ *I* → *a* ∈ *I* and *I* is closed under addition + and multiplication .
- Cod(M) = {X ⊆ M | X is M-finite}, where M-finite set is a set coded by an element in M (by means of the usual binary coding).
- for $Z \in \text{Cod}(M)$, |Z| denotes the internal cardinality of Z in M.
- for $I \subseteq_e M$, $\operatorname{Cod}(M/I) := \{X \cap I \mid X \in \operatorname{Cod}(M)\}.$

Proposition

If $I \subseteq_e M$, then I is a Σ_0 -elementary substructure of M.

Cuts

There are several important types of cuts.

Theorem (exponentially closed cut, Simpson/Smith)

Let $M \models EFA$, and let $I \subsetneq_e M$. Then the following are equivalent.

$$(I, \operatorname{Cod}(M/I)) \models \mathsf{WKL}_0^*.$$

I is closed under exp.

Theorem (semi-regular cut)

Let $M \models EFA$, and let $I \subsetneq_e M$. Then the following are equivalent.

 $(I, \operatorname{Cod}(M/I)) \models \mathsf{WKL}_0.$

② I is semi-regular, i.e., if $X \in Cod(M)$ and $|X| \in I$, then $X \cap I$ is bounded in I.

These combinatorial characterization of cuts play key roles in the definition of indicators.

Preliminaries Indicators Indicators Generalization

Indicators

Let T be a theory of second-order arithmetic.

A Σ_0 -definable function $Y : [M]^2 \to M$ is said to be an *indicator* for $T \supseteq WKL_0^*$ if

- $Y(x, y) \leq y$,
- if $x' \le x < y \le y'$, then $Y(x, y) \le Y(x', y')$,
- $Y(x, y) > \omega$ if and only if there exists a cut $I \subseteq_e M$ such that $x \in I < y$ and $(I, \operatorname{Cod}(M/I)) \models T$. (Here, $Y(x, y) > \omega$ means that Y(x, y) > n for any standard natural

(Here, $Y(x, y) > \omega$ means that Y(x, y) > n for any standard natural number *n*.)

Example

- Y(x, y) = max{n : expⁿ(x) ≤ y} is an indicator for WKL₀^{*}.
- $Y(x, y) = \max\{n : \text{any } f[[x, y]]^n \to 2 \text{ has a homogeneous set}$ $Z \subseteq [x, y] \text{ such that } |Z| > \min Z\}$

is an indicator for ACA₀.

Preliminaries Indicators Indicators Generalization

Basic properties of indicators

Theorem

If Y is an indicator for a theory T, then for any $n \in \omega$,

 $T \vdash \forall x \exists y Y(x, y) \geq n.$

Theorem

If Y is an indicator for a theory T, then, T is a Π_2^0 -conservative extension of EFA + { $\forall x \exists y Y(x, y) \ge n \mid n \in \omega$ }.

Let
$$F_n^Y(x) = \min\{y \mid Y(x, y) \ge n\}.$$

Theorem

If Y is an indicator for a theory T and $T \vdash \forall x \exists y \theta(x, y)$ for some Σ_1 -formula θ , then, there exists $n \in \omega$ such that $T \vdash \forall x \exists y < F_n^Y(x) \theta(x, y)$.

Preliminaries Indicators Indicators Generalization

Let F_k be the *k*-th fast-growing function.

Example

• $Y(x, y) = \max\{k : F_k(x) < y\}$ is an indicator for WKL₀.

Thus, we have

- WKL₀ $\vdash \forall x \exists y F_k(x) < y$ for any $k \in \omega$,
- if WKL₀ $\vdash \forall x \exists y \theta(x, y)$ then there exists some $k \in \omega$ such that WKL₀ $\vdash \forall x \exists y < F_k(x) \theta(x, y)$,
- the proof-theoretic strength of WKL₀ is the same as the totality of all primitive recursive functions.

Once you find an indicator for a theory T, one can characterize its Π_{2}^{0} -part.

Theorem

Any consistent recursive theory $T \supseteq WKL_0^*$ (or first-order theory extending EFA) has an indicator.

One can generalize indicators to capture wider class of formulas.

Let *T* be a theory of second-order arithmetic. A Σ_0 -definable function $Y : \operatorname{Cod}(M) \to M$ is said to be a *set indicator* for $T \supseteq \operatorname{WKL}_0^*$ if

- $Y(F) \leq \max F$,
- if $F \subseteq F'$, then $Y(F) \leq Y(F')$,
- Y(F) > ω if and only if there exists a cut I ⊆_e M such that min F ∈ I < max F and (I, Cod(M/I)) ⊨ T, and F ∩ I is unbounded in I.

Note that if Y is a set indicator, then Y'(x, y) = Y([x, y]) is an indicator function.

Example

Y(F) = max{m : F is ω^m-large} is an indicator for WKL₀.

Basic properties of indicators (review)

Theorem

If Y is an indicator for a theory T, then for any $n \in \omega$,

 $T \vdash \forall x \exists y Y(x, y) \geq n.$

Theorem

If Y is an indicator for a theory T, then, T is a Π_2^0 -conservative extension of EFA + { $\forall x \exists y Y(x, y) \ge n \mid n \in \omega$ }.

Let
$$F_n^Y(x) = \min\{y \mid Y(x, y) \ge n\}.$$

Theorem

If Y is an indicator for a theory T and $T \vdash \forall x \exists y \theta(x, y)$ for some Σ_1 -formula θ , then, there exists $n \in \omega$ such that $T \vdash \forall x \exists y < F_n^Y(x) \theta(x, y)$.

Basic properties of set indicators

Theorem

If Y is a set indicator for a theory T, then for any $n \in \omega$,

 $T \vdash \forall X \subseteq_{\inf} \mathbb{N} \exists F \subseteq_{\inf} X(Y(F) \ge n).$

Theorem

If Y is a set indicator for a theory T, then, T is a $\tilde{\Pi}_3^0$ -conservative extension of $\operatorname{RCA}_0^* + \{ \forall X \subseteq_{\inf} \mathbb{N} \exists F \subseteq_{\operatorname{fin}} X(Y(F) \ge n) \mid n \in \omega \}.$

Here, a $\tilde{\Pi}_3^0$ -formula is of the form $\forall X\psi(X)$ where ψ is Π_3^0 .

Theorem

If Y is a set indicator for a theory T and $T \vdash \forall X \subseteq_{inf} \mathbb{N} \exists F \subseteq_{fin} X\theta(F)$ for some Σ_1 -formula θ , then, there exists $n \in \omega$ such that

 $T \vdash \forall Z \subseteq_{\text{fin}} \mathbb{N}(Y(Z) \ge n \to \exists F \subseteq Z \, \theta(F)).$

Example

Y(F) = max{m : F is ω^m-large} is an indicator for WKL₀.

Thus,

• all the $\tilde{\Pi}_3^0$ -consequences of WKL₀ can be captured by ω^m -largeness notion.

Question

Is there a canonical way to find indicators?

Indicators Generalization

Ramsey-like statements

Definition (Ramsey-like formulas)

A Ramsey-like- Π_2^1 -formula is a Π_2^1 -formula of the form $(\forall f : [\mathbb{N}]^n \to k)(\exists Y)(Y \text{ is infinite } \land \Psi(f, Y))$ where $\Psi(f, Y)$ is of the form $(\forall G \subseteq_{\text{fin}} Y)\Psi_0(f \upharpoonright [[0, \max G]_{\mathbb{N}}]^n, G)$ such that Ψ_0 is a Δ_0^0 -formula.

 In particular, RTⁿ_k is a Ramsey-like-Π¹₂-statement where Ψ(f, Y) is the formula "Y is homogeneous for f".

Theorem

Any restricted Π_2^1 -formula of the form $\forall X \exists Y \Theta(X, Y)$ where Θ is a Σ_3^0 -formula is equivalent to a Ramsey-like formula over WKL₀.

Note that this theorem can be proved by a canonical syntactical calculation.

Density

Definition (EFA, Density notion)

Given a Ramsey-like formula

$$\bar{f} = (\forall f : [\mathbb{N}]^n \to k)(\exists Y)(Y \text{ is infinite } \land \Psi(f, Y)),$$

- $Z \subseteq_{\text{fin}} \mathbb{N}$ is said to be 0-*dense*(Γ) if |Z|, min Z > 2,
- $Z \subseteq_{\text{fin}} \mathbb{N}$ is said to be (m + 1)-dense(Γ) if
 - (for any n, k < min Z and) for any f : [[0, max Z]]ⁿ → k, there is an m-dense(Γ) set Y ⊆ Z such that Ψ(f, Y) holds, and,
 - for any partition $Z_0 \sqcup \cdots \sqcup Z_{\ell-1} = Z$ such that $\ell \le Z_0 < \cdots < Z_{\ell-1}$, one of Z_i 's is *m*-dense(Γ).

Note that "*Z* is *m*-dense(Γ)" can be expressed by a Δ_0 -formula.

Put $Y_{\Gamma}(F) := \max\{m \mid F \text{ is } m \text{-dense}(\Gamma)\}.$

Theorem

 Y_{Γ} is a set indicator for WKL₀ + Γ .

Characterizing proof-theoretic strength by indicators

One can characterize the proof-theoretic strength of a finite restricted Π_2^1 -theory $T \supseteq WKL_0$ as follows.

- Find a Ramsey-like formula Γ such that $T \leftrightarrow WKL_0 + \Gamma$.
- Then, *m*-dense(Γ) sets capture $\tilde{\Pi}_3^0$ -part of *T*.
- In particular, the provably recursive functions of *T* are $\{F_m \mid F_m(x) = \min\{y \mid [x, y] \text{ is } m\text{-dense}(\Gamma)\}\}.$

Actually, one can generalize the above argument for infinite theories.

One can also replace the base theory WKL_0 with other systems, e.g., WKL_0^* or ACA_0 .

Indicators Generalization

Density with the base ACA₀

Definition (EFA, Density notion with the base ACA₀)

Given a Ramsey-like formula

$$\overline{} = (\forall f : [\mathbb{N}]^n \to k)(\exists Y)(\forall \text{ is infinite } \land \Psi(f, Y)),$$

- $Z \subseteq_{\text{fin}} \mathbb{N}$ is said to be 0-*dense*'(Γ) if |Z| > 4, min Z > 2,
- $Z \subseteq_{\text{fin}} \mathbb{N}$ is said to be (m + 1)-dense' (Γ) if
 - (for any n, k < min Z and) for any f : [[0, max Z]]ⁿ → k, there is an m-dense'(Γ) set Y ⊆ Z such that Ψ(f, Y) holds, and,
 - for any partition f : [Z]³ → ℓ such that ℓ < min Z there is an m-dense'(Γ) set Y ⊆ Z which is f-homogeneous.

Put $Y'_{\Gamma}(F) := \max\{m \mid F \text{ is } m \text{-dense'}(\Gamma)\}.$

Theorem

 Y'_{Γ} is a set indicator for ACA₀ + Γ .

With ACA₀, one can always characterize the Π_1^1 -part of Γ .

Indicators Generalization

Density with the base WKL₀*

Definition (EFA, Density notion with the base WKL₀^{*})

Given a Ramsey-like formula

- $\Gamma = (\forall f : [\mathbb{N}]^n \to k)(\exists Y)(Y \text{ is infinite } \land \Psi(f, Y)),$
- $Z \subseteq_{\text{fin}} \mathbb{N}$ is said to be 0-dense^{*}(Γ) if $Z \neq \emptyset$,
- $Z \subseteq_{\text{fin}} \mathbb{N}$ is said to be (m + 1)-dense^{*} (Γ) if
 - (for any n, k < min Z and) for any f : [[0, max Z]]ⁿ → k, there is an m-dense*(Γ) set Y ⊆ Z such that Ψ(f, Y) holds, and,
 - *Z* \ [0, exp(min Z)] is *m*-dense^{*}(Γ).

Put $Y^*_{\Gamma}(F) := \max\{m \mid F \text{ is } m \text{-dense}^*(\Gamma)\}.$

Theorem

 Y_{Γ}^* is a set indicator for WKL₀^{*} + Γ .

Preliminaries Indicators Indicators Generalization

Conservation results

- WKL₀^{*} + RT_kⁿ is a Π₃⁰-conservative extension of RCA₀^{*} + {∀X ⊆_{inf} ℕ ∃F ⊆_{fin} X(F is n-dense*(RT_kⁿ)) | n ∈ ω}.
 = RCA₀^{*}
- WKL₀ + RT₂² is a $\tilde{\Pi}_3^0$ -conservative extension of RCA₀^{*} + { $\forall X \subseteq_{inf} \mathbb{N} \exists F \subseteq_{fin} X(F \text{ is } n\text{-dense}(RT_2^2)) \mid n \in \omega$ }. = RCA₀
- ACA₀ + RT = ACA'₀ is a Π_1^1 -conservative extension of RCA₀^{*} + { $\forall X \subseteq_{inf} \mathbb{N} \exists F \subseteq_{fin} X(F \text{ is } n\text{-dense}(RT)) \mid n \in \omega$ }.
- ...

Question

Can indicator arguments be converted to proof-interpretation style conservation results?

Thank you!

- Richard Kaye, Models of Peano Arithmetic, Oxford University Press, 1991.
- Ludovic Patey and Y, The proof-theoretic strength of Ramsey's theorem for pairs and two colors, draft, available at http://arxiv.org/abs/1601.00050
- Y, On the strength of Ramsey's theorem without Σ₁-induction. Math. Log. Q., 59(1-2):108–111, 2013.

This work is partially supported by JSPS fellowship for research abroad, and JSPS Core-to-Core Program (A. Advanced Research Networks).