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TTE: Computable Real Numbers

Computable Real Number

A real number is called computable if it can be approximated up to
any desired precision.

x

0n dn

dn rational approximations

|dn − x | ≤ 2−n.
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TTE: Computable Real Functions

Computable Real Function

A function f : [0, 1] → R is called computable if the values f (x) can be
approximated up to any desired precision.

f

0m dm

Notes

closed under composition

multidimensional functions:
several input oracles and
outputs.

Computable functions are
continuous.
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Generalization

Representation

A representation for a set X is a partial surjective function
ρ : B → X , that is, objects are encoded by string functions.

B F //

α
��

B
β
��

X
f
// Y

Oracle ϕ

r ϕ(r)

F

q F (ϕ)(q)
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Representation for Real Numbers

Example

Define a ρR-name of x ∈ R by letting ρR(0n) encode some d ∈ D
such that |d − x | ≤ 2−n.

x ∈ R

0n 2−n approx. of x

5

(ρ
|[0,1]
R , ρR)-computable

Oracle ϕ

r ϕ(r)

F

q F (ϕ)(q)

Computable Function

f

0m dm
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Representation for Functions

Example

Define a δ�-name of a function f ∈ C [0, 1] as a pair < µ, φ > where

φ is such that |φ(d , 0n)− f (d)| ≤ 2−n for all d ∈ D ∩ [0, 1]

µ encodes the modulus of continuity (in unary)

6

Modulus of Continuity

|x − y | ≤ 2−µ(n) ⇒ |f (x)− f (y)| ≤ 2−n
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Example
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Type-2 Complexity Theory

Let Σ∗∗ be the set of length-monotone string-functions

Define |ϕ| : N→ N by |ϕ| (|u|) = |ϕ(u)|
Bound running time by second order polynomials P(|ϕ|)(|x |)
Can define complexity classes FP2, #P2 and FPSPACE2

Can also define complexity classes P2, NP2 and PSPACE2 by
considering functions ϕ : Σ∗∗ → (Σ∗ → {0, 1})

7

Second Order Polynomials

Defined inductively by

1 P(L, n) := m, for m ∈ N
2 P(L, n) := n

3 P,Q second order polynomials ⇒ P + Q, P · Q
4 P a second order polynomial ⇒ L(P)

Example: P(L, n) = 2L(L(L(n) · L(n) + 2L(n)) + 2) + n + 10
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Example

Function Application

The function Apply : C [0, 1] × [0, 1] → R, (f , x) 7→ f (x) is

([δ�, ρ
|[0,1]
R ], ρR)−FL computable.

11

f ∈ C [0, 1]

0m 0µ(m) d 0n q

x ∈ R

0n d
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Example

Function Application

The function Apply : C [0, 1] × [0, 1] → R, (f , x) 7→ f (x) is

([δ�, ρ
|[0,1]
R ], ρR)−FL computable.

Similarly, Applyc : C [0, 1] × [0, 1] → [0, 1] (f , x) 7→ f c(x) is

([δ�, ρ
|[0,1]
R ], ρR)−FL computable for constant c ∈ N using a stack

of size 2c + 1.

11

f ∈ C [0, 1]

0m 0µ(m) d 0n q

x ∈ R

0n d



Some Results from Real Complexity Theory

Fact

For general polynomial time computable functions, many important
operators have been shown to be computationally hard.
For example

Polynomial time computable functions may have non
computable derivatives. (Ko 1983)

Parametric maximization is NP-hard. (Ko/Friedman (1982))

Integration is #P-hard. (Friedman (1984))

12



Analytic Function

An analytic function is a function locally given by a complex power series.

Definition (Analytic Function)

f : D → C, D ⊆ C is analytic if for any x0 ∈ D the Taylor-series

T (x) :=
∞∑
n=0

an(x − x0)n

converges to f (x) for x in a neighborhood of x0.

Theorem (Pour-El, Richards, Ko, Friedman, Müller (1987/1989))

f is (polytime) computable iff (am)m∈N is.

From that polynomial time computability of the derivative and the
anti-derivative of a function follows immediately.

13

Computable Sequence

(am)m∈N is computable if there is a machine that on
input 1n, 1m outputs a rational approximation dn,m
with |dn,m − am| ≤ 2−n
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Representation for Analytic Functions

How to represent analytic functions?

Theorem (Müller (1995))

The evaluation operator ((am)m∈N, x)→ f (x) is not computable.

Lemma

Let f : B(0, 1)→ R be analytic and (an)n∈N its power series around 0.
Then there exist k,A ∈ N such that

1
k
√

2 is a lower bound on the radius of convergence

2 |an| ≤ A · 2−
n
k

14
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How to represent analytic functions?

Representation 1

A function ϕ ∈ Σ∗∗ is a name for a power series (ak)k∈N iff it is a
concatenation of the following

1 An integer A encoded in binary

2 An integer k encoded in unary

3 A name for a sequence (ak)k∈N

Such that |an| ≤ A · 2−
n
k for all n ∈ N.

15



How to represent analytic functions?

Representation 2

A (length-monotone) function ϕ : Σ∗ → Σ∗ is a name for an analytic
function f : B̄(0, 1)→ R iff it is a concatenation of the following

1 An integer A encoded in binary,

2 An integer k encoded in unary,

3 A name for the function f

Such that f extends analytically to B(0, k
√

2) and |f (z)| ≤ A for all
z ∈ B(0, k

√
2)

16



Analytic Functions and Computational Complexity

Theorem (Kawamura, Rösnick, Müller, Ziegler (2013))

With the previous two representations the following operations can be
performed in polynomial time

1 evaluation

2 addition and multiplication

3 differentiation and anti-differentiation

4 parametric maximization

Further, when identifying an analytic function with its power series, the
operators that compute one representation from the other are
polynomial-time computable.

17
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Complexity of Ordinary Differential Equations

Theorem (Kawamura, 2010)

Consider the IVP

y ′(t) = f (t, y(t)) ; y(0) = 0.

There exists functions f : [0, 1]× [−1, 1]→ R and y : [0, 1]→ [−1, 1] as
above such that

1 f is Lipschitz-continuous and polynomial time computable

2 y is PSPACE-hard.

For analytic right-hand side y will again be analytic
and polynomial time computable.

18
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Analytic Functions and Small Complexity Classes

Consider functions complex analytic on the closed unit disc.

Representation 1

Integers A, k and the series sequence (ak)k∈N.
|an| ≤ A · 2−

n
k for all n ∈ N.

Representation 2

Integers A, k, and name for function f .
f extends analytically to B(0, k

√
2) and |f (z)| ≤ A for all z ∈ B(0, k

√
2)

Those two representations are logspace equivalent.

19



Representation 1 ⇒ Representation 2

Task

Given A, k s.t. |an| ≤ A · 2−
n
k for all n ∈ N.

Find A′, k ′ s.t. for all z ∈ B(0, k′√2) |f (z)| ≤ A′

Solution

Let k ′ = 2k and A′ = 4kA

Proof

For z ∈ B(0, k′√2) : f (z) =
∑∞

n=0 anz
n ≤ A

∑∞
n=0 2−

n
k · 2

n
2k ≤ 4Ak

20
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Representation 1 ⇒ Representation 2

Task

Compute a function name for f .

21

f ∈ C [0, 1]

0m 0µ(m) d 0n q
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Representation 1 ⇒ Representation 2

Task

Compute a function name for f .

Solution

We need to evaluate N ≈ n · k + log(A) terms of the sum.∑poly(n)
j=0 ajx

j is logspace computable.

21

f ∈ C [0, 1]

0m 0µ(m) d 0n q



Representation 1 ⇒ Representation 2

Task

Compute a function name for f .

Solution

We need to evaluate N ≈ n · k + log(A) terms of the sum.∑poly(n)
j=0 ajx

j is logspace computable.

Proof

The following is logspace computable

1 Addition and Multiplication of polynomially many n-bit integers

2 xm with precision polynomial in n for polynomial length m

3 Composition of constantly many logspace computable functions

21
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Representation 2 ⇒ Representation 1

Task

Given A, k s.t. for all z ∈ B(0, k′√2) |f (z)| ≤ A
Compute A′, k ′ such that |am| ≤ A · 2−

m
k for all m ∈ N.

Solution

We can just set A′ = A and k ′ = k .

Proof

By Cauchy’s integral formula |am| = f (m)(0)
m! ≤ A · 2−

n
k for all n ∈ N.
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Representation 2 ⇒ Representation 1

Task

Compute the coefficients for the power series around 0.

Solution

Approximate function by a polynomial

Differentiate this polynomial and evaluate at 0

Divide by factorial

Proof

Computing factorials and binomial coefficients of polynomial
size is logspace computable.

To get the coefficient am the function has to be evaluated at
2m + 1 equidistant points with polynomial precision (see
e.g.Müller).
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Further Operations

Logspace computable operations

Similarly, the following operations on analytic functions are com-
putable in logartihmic-space

1 Addition, Subtraction, Multiplication of two analytic functions

2 Computing the d-fold derivative

3 Computing the d-fold anti-derivative
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Multidimensional Analytic Functions

Multidimensional Power Series

∑
i∈N

∑
j∈N

ai ,jx
i
1x

j
2 =

∑
i∈N

bix
i
1

with bi :=
∑
j∈N

ai ,jx
j
2

Computing bi → evaluating an analytic function.

|ai ,j | ≤ A · 2−
i+j
k for all n ∈ N.

|bi | ≤
∑

j∈N |ai ,j | |x2|
j ≤ A2−

i
k
∑

j∈N 2−
j
k = A2−

j
k

k√2
k√2−1

≤ (2Ak)2−
i
k
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Multidimensional analytic functions

Representation

A function ϕ ∈ Σ∗∗ is a name for a d dimensional power series
(an1,...,nd )n1,...,nd∈N iff it is a concatenation of the following

1 An integer A encoded in binary

2 An integer k encoded in unary

3 A name for a sequence (ak)k∈N

Such that |an1,...,nd | ≤ A · 2−
n1+···+nd

k for all n ∈ N.

Note

Complexity of evaluation (and most other operations) is exponential
in the dimension!
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Open Problem: P-completeness

Kawamura and Ota also define the notions of reductions and completeness.

For example they give the following uniform version of a theorem by Ko

Theorem

For the set M of bijective functions in C [0, 1], define the δ�INV

representation by adding a modulus of continuity for the inverse function
to the δ� representation.
The function Inv : M → C [0, 1], Inv(f ) 7→ f −1 is
(δ�INV , δ�)-FP-complete.

Which operations on analytic functions are P-hard?

Initial Value Problem?

Maximization?
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Open Problem: P-completeness

Initial Value Problem

ẏ(t) = f (y(t)) ; y(0) = 0.

Power series

f [0](y) = y

f [k+1](y) =
1

k + 1
f (y)

d

dy
f [k](y)

Then

ak =
1

k!
y (k)(0) = f [k](0)

This can be used to get a recurrence relation that makes it possible
to compute the coefficients in polynomial time.
Can they also be computed without such a recurrence?
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Conclusion

Presented Kawamura and Ota’s model for logspace computability in
analysis.

In this model many operations on analytic functions are logspace
computable, when considering representations that have previously
been considered for polynomial time computability.

Open Problems: Parametrized Maximization, Ordinary Differential
Equations

Connection to parallelization in exact real arithmetic

Implementations
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