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Computable Real Function

A function f : [0,1] — R is called computable if the values f(x) can be
approximated up to any desired precision.

X

@ closed under composition

0" 4 + d @ multidimensional functions:
n .

several input oracles and

outputs.

f @ Computable functions are
continuous.
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Representation for Real Numbers

Define a pr-name of x € R by letting pr(0”) encode some d € D
such that |d — x| < 27",

xeR
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0" 27" approx. of x



[0,1] Numbers
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Representation for Functions

Define a d-name of a function f € C[0,1] as a pair < p, ¢ > where

e ¢ is such that |¢(d,0") — f(d)| < 27" for all d € DN [0, 1]

@ 1 encodes the modulus of continuity (in unary)
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Representation for Fu

Modulus of Continuity

Example

Ix —y| <27 = |f(x) — f(y)| < 27"

Define a d-name of a function £ € C[0, 1] as a pair < u, ¢ > where

@ ¢ is such that |¢(d,0") — f(d)| < 27" forall d € DN 0, 1]

@ 1 encodes the modulus of continuity (in unary)

f e C[0,1]
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Type-2 Second Order Polynomials

Defined inductively by
Q@ P(L,n):=m, for me N
@ P(L,n):=n
o Let © P, Q second order polynomials = P+ Q, P- Q
@ Def © P a second order polynomial = L(P)
e Bod Example: P(L,n) =2L(L(L(n)- L(n)+ 2L(n)) +2)+ n+ 10
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Type-2 Complexity Theory

@ Let ¥** be the set of length-monotone string-functions

o Define |¢| : N — N by [¢] (|u]) = [¢(uv)]

@ Bound running time by second order polynomials P(|¢|)(|x])
o Can define complexity classes FP?, #P2 and FPSPACE?

°

Can also define complexity classes P2, NP? and PSPACE? by
considering functions ¢ : ©** — (X* — {0,1})



Small Complexity Classes
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Small Complexity Classes

"efficiently solvable by a parallel computer"



Small Complexity Classes
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The stack model (Kawamura and Ota)
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The stack model (Kawamura and Ota)

ORACLE WRITE SYMBOL ON TOP OF QUERY TAPE
PUSH NEW QUERY TAPE
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Example

Function Application

The function Apply : CJ[0,1] x [0,1] — R, (f,x) — f(x) is

(CEN

|, pr)—FL computable.
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y)—FL computable.

x€e€R

C[0,1] x [0,1] = R, (F,x) —~ f(x) is

Input:

Stack:

Oracle Output:
Work:

Output:

0"
g5¢
om
9

e

x =yl <27m = |f(x) - f(y)| < 270D
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C[0,1] x [0,1] = R (F,x) — f(x) is
y)—FL computable.

Input: 0"
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C[0,1] x [0,1] = R (F,x) — f(x) is
y)—FL computable.

Input: 0"
Stack: -
Oracle Output: g
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Example

Function Application

The function Apply : CJ[0,1] x [0,1] — R, (f,x) — f(x) is
([0, p]léo’l]], pr)—FL computable.

Similarly, Apply¢ : C[0,1] x [0,1] — [0,1] (f,x) — f°(x) is

([5D,p]|1£0’1]],pR)—FL computable for constant ¢ € N using a stack

of size 2¢c + 1.
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Some Results from Real Complexity Theory

For general polynomial time computable functions, many important
operators have been shown to be computationally hard.
For example

@ Polynomial time computable functions may have non
computable derivatives. (Ko 1983)

e Parametric maximization is NP-hard. (Ko/Friedman (1982))
o Integration is #P-hard. (Friedman (1984))

12



Analytic Function

An analytic function is a function locally given by a complex power series
Definition (Analytic Function)
f: D — C, DCC is analytic if for any xg € D the Taylor-series

o0

T(x): Z x—x)"

converges to f(x) for x in a neighborhood of xg.




Analytic Function

Computable Sequence

An analytic

Definition (4 (am)men is computable if there is a machine that on

input 17, 1™ outputs a rational approximation d, m
FiD=C L with |dpy—am| <277

T(x):= Z an(x — xo)"
n=0

converges to f(x) for x in a neighborhood of xg.




Analytic Function

Computable Sequence

An analytic

Definition (4 -(am)mEIj ismcomputable if there is a mac?hine_ that on
input 1", 1™ outputs a rational approximation dp m
FiD—=C b with |dypm— am| <277

T(x):= Z an(x — xo)"
n=0

converges to f(x) for x in a neighborhood of xg.

Theorem (Pour-El, Richards, Ko, Friedman, Miiller (1987/1989))
f is (polytime) computable iff (am)men is.

From that polynomial time computability of the derivative and the
anti-derivative of a function follows immediately.

13



Representation for Analytic Functions

How to represent analytic functions?
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Representation for Analytic Functions

How to represent analytic functions?
Theorem (Miiller (1995))

The evaluation operator ((am)men, x) — f(x) is not computable.
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Representation for Analytic Functions

How to represent analytic functions?

Theorem (Miiller (1995))

The evaluation operator ((am)men, x) — f(x) is not computable.

Lemma

Let f : B(0,1) — R be analytic and (ap)nen its power series around 0.

Then there exist k, A € N such that

@ /2 is a lower bound on the radius of convergence
Q |a,| <A 27k

14



How to represent analytic functions?

Representation 1

A function ¢ € X** is a name for a power series (ay)ken iff it is a
concatenation of the following

© An integer A encoded in binary

@ An integer k encoded in unary

@ A name for a sequence (ak)ken
Such that |a,| < A-27% for all n € N.

15



How to represent analytic functions?

Representation 2
A (length-monotone) function ¢ : £ — ¥* is a name for an analytic
function f : B(0,1) — R iff it is a concatenation of the following

© An integer A encoded in binary,

@ An integer k encoded in unary,

© A name for the function f

Such that f extends analytically to B(0,+/2) and |f(z)| < A for all
z € B(0,+/2)

16



Analytic Functions and Computational Complexity

Theorem (Kawamura, Rosnick, Miiller, Ziegler (2013))

With the previous two representations the following operations can be
performed in polynomial time

@ evaluation
@ addition and multiplication
@ differentiation and anti-differentiation

© parametric maximization

17



Analytic Functions and Computational Complexity

Theorem (Kawamura, Rosnick, Miiller, Ziegler (2013))

With the previous two representations the following operations can be
performed in polynomial time

@ evaluation

@ addition and multiplication

© differentiation and anti-differentiation
© parametric maximization

Further, when identifying an analytic function with its power series, the
operators that compute one representation from the other are
polynomial-time computable.
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Complexity of Ordinary Differential Equations

Theorem (Kawamura, 2010)
Consider the IVP

y'(t) =f(t,y(t)) ; y(0)=0.

There exists functions f : [0,1] x [-1,1] = R and y : [0,1] — [-1,1] as
above such that

© f is Lipschitz-continuous and polynomial time computable
Q y is PSPACE-hard.

18



Complexity of Ordinary Differential Equations

Theorem (Kawamura, 2010)
Consider the IVP

y'(t) =f(t,y(t)) ; y(0)=0.

There exists functions f : [0,1] x [-1,1] = R and y : [0,1] — [-1,1] as
above such that

© f is Lipschitz-continuous and polynomial time computable
Q y is PSPACE-hard.

For analytic right-hand side y will again be analytic
and polynomial time computable.

18



Analytic Functions and Small Complexity Classes

Consider functions complex analytic on the closed unit disc.

Representation 1

Integers A, k and the series sequence (ak)ken-
lan] < A-27% forall n € N.

Representation 2

Integers A, k, and name for function f.
f extends analytically to B(0,¥/2) and |f(z)| < A for all z € B(0, +/2)

Those two representations are logspace equivalent.

19



Representation 1 =- Representation 2

Given A, k s.t. |ap| < A- 2= % for all n € N.
Find A, k' s.t. for all z € B(0, ¥/2) |f(z)| < A’

20



Representation 1 =- Representation 2

Given A, k s.t. |a,| < A-27% forall ne N.
Find A, K’ s.t. for all z € B(0, ¥/2) |f(z)] < A’

Let k' =2k and A’ = 4kA

.
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Representation 1 =- Representation 2

Task

Given A, k s.t. |ap| < A- 2= % for all n € N.
Find A, k' s.t. for all z € B(0, ¥/2) |f(z)| < A’

Solution

Let k' =2k and A’ = 4kA

Proof

7
\.

For z € B(0, ¥/2) : f(2) = 200 ganz" < AY00 027 % - 2%k < 4Ak

20



Representation 1 =- Representation 2

Compute a function name for f.
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Representation 1 =- Representation

Compute a function name for f.

f e C[0,1]

om o#%m) d 0" g
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Representation 1 =- Representation

f e C[0,1]
.
Compute a function name for f. om ou%m) d o" g

m +— m + log,(A) + 2logy(k) + 5 is a modulus of continuity for the
function.
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Representation 1 =- Representation

f e C[0,1]
Compute a function name for f. om ou%m) d o" g

We need to evaluate N = n - k + log(A) terms of the sum.

Zfig/(") ajxf is logspace computable.

21



Representation 1 =- Representation i

f e C[0,1]
Task

Compute a function name for f. om 0#+m) d 0" g

Solution

7
’
\.

We need to evaluate N =~ n - k + log(A) terms of the sum.
Zr}o/y(n)

=0 ajx’/ is logspace computable.

Proof

The following is logspace computable

@ Addition and Multiplication of polynomially many n-bit integers

@ x™ with precision polynomial in n for polynomial length m

© Composition of constantly many logspace computable functions




Representation 2 =- Representation 1

Given A, k st. for all z € B(0, §/2) |f(z)] < A
Compute A’, k" such that |a,| < A- 2=% forall me N.

We can just set A’ = A and k' = k.

.




Representation 2 =- Representation 1

Task

Given A, k st. for all z € B(0, §/2) |f(z)] < A
Compute A’, k" such that |ap,| < A-27% for all m € N.

Solution

| r

We can just set A’ = A and k' = k.

.

Proof

£(m)(0)
m!

By Cauchy’s integral formula |ap,| = < A-27% forall n € N.

22



Representation 2 =- Representation 1

Compute the coefficients for the power series around O.
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Representation 2 =- Representation 1

Compute the coefficients for the power series around 0.

@ Approximate function by a polynomial
o Differentiate this polynomial and evaluate at 0
@ Divide by factorial

.
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Representation 2 =- Representation 1

Task

Compute the coefficients for the power series around O.

Solution

| r

@ Approximate function by a polynomial
o Differentiate this polynomial and evaluate at 0

@ Divide by factorial

\.

Proof

@ Computing factorials and binomial coefficients of polynomial
size is logspace computable.

@ To get the coefficient a,, the function has to be evaluated at

2m + 1 equidistant points with polynomial precision (see
e.g.Miiller).

23



Further Operations

Logspace computable operations

Similarly, the following operations on analytic functions are com-
putable in logartihmic-space

@ Addition, Subtraction, Multiplication of two analytic functions

24
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Similarly, the following operations on analytic functions are com-
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Further Operations

Logspace computable operations

Similarly, the following operations on analytic functions are com-
putable in logartihmic-space

@ Addition, Subtraction, Multiplication of two analytic functions
@ Computing the d-fold derivative
© Computing the d-fold anti-derivative

24



Multidimensional Analytic Functions

Multidimensional Power Series
S S e = Yob

ieN jeN ieN

with b; = Za;,jxé

JeN

Computing b; — evaluating an analytic function.




Multidimensional Analytic Functions

Multidimensional Power Series

Y X apdxd = b

ieN jeN ieN

with b; = Za;,jxé

JeN

Computing b; — evaluating an analytic function.

i+j
|lai j| < A-27% forall n € N.

i _i _i _i K _i
b1l < jenlaijl el < A27% 3027k = A2 20 < (2AK)2

25



Multidimensional analytic functions

Representation

A function ¢ € X** is a name for a d dimensional power series
(any,....ng)m.....ngen iff it is a concatenation of the following

© An integer A encoded in binary

@ An integer k encoded in unary

@ A name for a sequence (ak)ken

mA-tng

Such that |a,,, o <A-277 % for all n € N.

26



Multidimensional analytic functions

Representation

A function ¢ € X** is a name for a d dimensional power series
(any,....ng)m.....ngen iff it is a concatenation of the following

© An integer A encoded in binary

@ An integer k encoded in unary

@ A name for a sequence (ak)ken

ny+-tng

Such that |ap, . n,| <A-277 % for all n € N.

Complexity of evaluation (and most other operations) is exponential
in the dimension!

.
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Open Problem: P-completeness

Kawamura and Ota also define the notions of reductions and completeness.

27



Open Problem: P-completeness

Kawamura and Ota also define the notions of reductions and completeness.

For example they give the following uniform version of a theorem by Ko

Theorem

For the set M of bijective functions in C[0, 1], define the donv
representation by adding a modulus of continuity for the inverse function
to the g representation.

The function Inv : M — C[0,1], Inv(f) — f~1is

(dounv, 0o)-FP-complete.
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Open Problem: P-completeness

Kawamura and Ota also define the notions of reductions and completeness.
For example they give the following uniform version of a theorem by Ko

Theorem

For the set M of bijective functions in C[0, 1], define the donv
representation by adding a modulus of continuity for the inverse function
to the g representation.

The function Inv : M — C[0,1], Inv(f) — f~1is

(dounv, 0o)-FP-complete.

Which operations on analytic functions are P-hard?
o Initial Value Problem?

@ Maximization?

27



Open Problem: P-completeness

Initial Value Problem

28



Open Problem: P-completeness

Initial Value Problem

y(t) =f(y(1)) ; »(0)=0.

\.

J

Power series

fOy) =y

1 d
f[k+1]()’) = mf()/) f[k]()/)

Then

1
ak = Fy(k)(O) = f1(0)

This can be used to get a recurrence relation that makes it possible
to compute the coefficients in polynomial time.

Can they also be computed without such a recurrence?

28



Conclusion

@ Presented Kawamura and Ota’s model for logspace computability in
analysis.

@ In this model many operations on analytic functions are logspace
computable, when considering representations that have previously
been considered for polynomial time computability.

@ Open Problems: Parametrized Maximization, Ordinary Differential
Equations

@ Connection to parallelization in exact real arithmetic

@ Implementations

29
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