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Abstract. The hexagonal bipyramid fractal is a fractal in three dimen-
sional space, which has fractal dimension two and which has six square
projections. We consider its 2nd level approximation model, which is
composed of 81 hexagonal bipyramid pieces. When this object is looked
at from each of the 12 directions with square appearances, the pieces
form a 9× 9 grid of squares which is just the grid of the SUDOKU puz-
zle. In this paper, we consider colorings of the 81 pieces with 9 colors so
that it has a SUDOKU solution pattern in each of the 12 appearances,
that is, each row, each column, and each of the nine 3×3 blocks contains
all the 9 colors in each of the 12 appearances. We show that there are 140
solutions modulo change of colors, and, if we identify isomorphic ones,
we have 30 solutions. We also show that SUDOKU coloring solutions
exist for every level 2n approximation models (n ≥ 1).

1 Introduction

The Sierpinski tetrahedron is a well-known fractal in three-dimensional space.
When A is a regular tetrahedron with the vertices c1, c2, c3, c4, it is defined as
the fixed point of the iteration function system (IFS) {f1, f2, f3, f4} with fi the
dilation with the ratio 1/2 and the center ci (i = 1, 2, 3, 4). It is self-similar
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Fig. 1. Three views of the Sierpinski tetrahedron ([2]).



in that it is equal to the union of four half-sized copies of itself, and it is two
dimensional with respects to fractal dimensions like the similarity dimension
and the Hausdorff dimension. We refer the reader to [3] and [4] for the theory of
fractals.

Fig. 1 shows some computer graphics images of the Sierpinski tetrahedron.
As Fig. 1 (b) shows, it has a solid square image when projected from an edge,
and there are three orthogonal directions in which the projection images be-
come square. Here, we count opposite directions once. It is true both for the
mathematically-defined pure Sierpinski tetrahedron and for its level n approxi-
mation model, which is obtained by applying the IFS n times starting with the
tetrahedron A, and composed of 4n regular tetrahedrons (n ≥ 0).

While studying about generalizations of the Sierpinski tetrahedron, the au-
thor found a fractal in three-dimensional space which has six square projections
[2]. This fractal and its finite approximation models are shown in Fig. 2. We
start with a hexagonal bipyramid Fig. 2 (A, B, C). This dodecahedron is the
intersection of a cube with its 60-degree rotation along a diagonal, and each of
its face is an isosceles triangle whose height is 3/2 of the base. As (C) shows, it
has square projections in six directions and it has square appearances when it
is viewed from each of the 12 faces. We consider the IFS which is composed of
nine dilations with the ratio 1/3 and the centers the 8 vertices and the center
point of a hexagonal bipyramid. The pictures (D, E, F, G) and (H, I, J, K) are
the 1st and 2nd level approximation models, respectively, and (L, M, N, O) are
computer graphics of the hexagonal bipyramid fractal. As (G, K, O) shows, this
fractal and its finite approximation models have six square projections.

In this paper, we consider the 2nd level approximation model. It consists of
81 hexagonal bipyramid pieces and, as (K) shows, it has 12 square appearances
each of which is composed of 9 × 9 = 81 squares, which are divided into nine
3 × 3 blocks (P). This is nothing but the grid of the puzzle called SUDOKU or
Number Place. The objective of this puzzle is to assign digits from 1 to 9 to the
81 squares so that each column, each row, and each of the nine 3x3 block contains
all the nine digits. In SUDOKU puzzle, the digits do not have the meaning and
we can use, for example, nine colors instead.

The goal of this paper is to find assignments of nine colors to the 81 pieces of
the 2nd level approximation model of the hexagonal bipyramid fractal so that it
has SUDOKU solution patterns in all the 12 square appearances. We also study
SUDOKU coloring problem of level 2n approximation models n ≥ 1.

Notation

When ∆ is an alphabet and f is a function from ∆ to ∆, we denote by
mapn(f) : ∆n → ∆n the component-wise application of f .

When p ∈ ∆n and q ∈ ∆m are sequences, we denote by p · q ∈ ∆n+m the
concatenation of p and q, and by q[i,j] the subsequence of q from index i to j.

We use two alphabets Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8} and Γ = {a, b, c, d, e, f, g, h, i}.
Sequences of Σ are used for addresses, and sequences of Γ are used for colors.
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Fig. 2. The hexagonal bipyramid fractal and its approximations ([2]).
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Fig. 3. Addressing of the level 1
object. Fig. 4. Rotation of the level 2 object.

2 Mathematical Formulation

We can define SUDOKU coloring not only on the level 2 object but also on level
2n objects (n ≥ 1). A level 2n object consists of 92n pieces and when it is viewed
from each of its face, we have a 9n×9n grid of squares which consists of 3n×3n-
blocks arranged in a 3n × 3n grid. Therefore, we have the coloring problem to
assign 9n colors so that each column, row, and 3n × 3n-block contain all the 9n

colors. We will first formalize this SUDOKU coloring problem symbolically as a
problem of words.

We give addressing of the 1st level object with Σ as in Fig. 3 (A). We call
the pieces 0, 1, 2 the axis pieces and 3, 4,..., 8 the ring pieces. The address of
the level 2 object is given as pairs (a, b) for a, b ∈ Σ, where a specifies a block
and b specifies a piece in the block. We call the blocks 0, 1, 2 the axis blocks and
3, 4,...,8 the ring blocks. Similarly, we give the addressing of the level 2n object
with a tuple in Σ2n. We sometimes fix a viewpoint so that the nine pieces of
the 1st level object are arranged as Fig. 3 (B), and we specify a rotation of the
object with a permutation on Σ2n, instead of a changing of the viewpoint.

The symmetry group of a hexagonal bipyramid is the dihedral group D6 of
order 12. It is also true for its fractal and the finite approximation models. This
group is composed of a rotation σ of 60 degree around the axis between block 1
and 2 and a rotation τ of 180 degree around the axis between block 4 and 7.

When σ is applied to the 1st level object, the axis pieces are fixed and the
ring pieces are shifted to the next position. Therefore, it causes the permutation
σ1 = (3 4 5 6 7 8) on Σ. A rotation on the 2nd level object is the combination
of a revolution around the axis blocks and rotation inside each block, as Fig. 4
shows. In general, σ causes on the n-th level object a component-wise application
of σ1, which is σn = mapn(σ1). We also consider the permutation corresponding
to τ , which is defined for the 1st level object as τ1 = (1 2)(6 8)(3 5) and for the
level n object τn = mapn(τ1). Thus, the symmetry group of the level n object
is represented as 〈σn, τn〉. We also define reflection υ1 = (1 2) on the first level
object and υn = mapn(υ1) on the level n object.

Definition 1. A coloring of the level 2n object is a function from Σ2n to Γn.
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Fig. 5. Possible arrangement of one color ’a’.

We first define a SUDOKU coloring of a 9n × 9n-grid and then define a
SUDOKU coloring of the level 2n object.

Definition 2. A coloring γ : Σ2n → Γn of the level 2n object is a one-face
SUDOKU coloring when
(1) The restriction of γ to a1a2 . . . anΣn is surjective for every a1a2 . . . an ∈ Σn.
(2) For A1 = {1, 3, 4}, A2 = {8, 0, 5}, A3 = {7, 6, 2}, the restriction of γ to
Ad(1)Ad(2) . . . Ad(2n) is surjective for every function d : {1, . . . , 2n} → {1, 2, 3}.
(3) For B1 = {1, 8, 7}, B2 = {3, 0, 6}, B3 = {4, 5, 2}, the restriction of γ to
Bd(1)Bd(2) . . . Bd(2n) is surjective for every function d : {1, . . . , 2n} → {1, 2, 3}.

In condition (1), a1 . . . an specifies a 3n × 3n-block and this condition says
that every 3n × 3n-block contains all the 9n colors. In condition (2) and (3),
a function d : {1, . . . , 2n} → {1, 2, 3} specifies a row or a column and these
conditions say that every row and every column contains all the 9n colors.

Definition 3. A coloring γ : Σ2n → Γn is a SUDOKU coloring of the level 2n
object if γ ◦ σn

k is a one-face SUDOKU coloring for k = 0, 1, . . . , 5.

Note that γ ◦ τn is always a one-face SUDOKU coloring when γ is, and we
do not need to consider it in this definition.

Definition 4. (1) Two colorings δ and η are change of colors when δ = p ◦ η
for a permutation p on Γn.

(2) Two colorings δ and η are isomorphic when δ and η ◦ r are change of
colors for r an element of the dihedral group D6 generated by 〈σ2n, τ2n〉.

(3) A coloring δ is a reflection of η when δ and η ◦ r are change of colors for
r ∈ 〈σ2n, τ2n, υ2n〉.

We identify colorings obtained by change of colors, and in this definition, we
define isomorphism and reflection modulo change of colors.



Fig. 6. Two solutions of the coloring of the axis pieces. Fig. 7. Colorings of
block 1 and 2.

3 SUDOKU Coloring of the 2nd level object

In this section, we determine all the SUDOKU colorings of the 2nd level object.
Consider the assignment of color ’a’ to the piece (1, 0) as in Fig. 5 (A). In ordinary
SUDOKU, we cannot assign the same color ’a’ to pieces marked with ∗. In our
SUDOKU coloring, we cannot assign it to pieces with + either, because they
come to places with ∗ by σk (k = 1, . . . , 5). Note that (1, 0) is on the axis of the
axis block and therefore fixed by σ. As this example shows, the constraint we
need to consider is very tight. Fig. 5 (B) shows the places ’a’ can be assigned
after it is assigned to (1, 0) and (3, 3). This figure shows that there is only one
piece left in block 4 and 8, and when we have such an assignment, there is no
piece left on block 5 (Fig. 5 (C)). Thus, the assignment of ’a’ to (3, 3) will cause
a conflict. Similarly we cannot assign ’a’ to (3, 6). Therefore, (3, 1) and (3, 2) are
the only pieces to which we can assign ’a’, and they determine the left of the
assignments of ’a’ as in Fig. 6. Therefore, there are only two solutions for the
assignment of ’a’. It is also the case for the colors assigned to (0, 1) and (0, 2),
each of which has only two possible configurations, which are color ’b’ and color
’c’ in Fig. 6, respectively. As a consequence, we have only two colorings of the
axis pieces, given in Fig. 6. Note that they switch by the application of σ, and
also by the application of υ, modulus of change of colors.

It also shows that the SUDOKU coloring problem is the product of two
independent coloring problems, one is the coloring of the 27 axis pieces with
three colors ’a’, ’b’, and ’c’, and the other one is the coloring of the 54 ring
pieces with six colors ’d’, ’e’, ’f’, ’g’, ’h’, and ’i’. We have shown that there are
two isomorphic solutions to the former one.

Now, we study the coloring of the ring pieces. First, we study the two blocks
1 and 2. In Fig. 7, the four pieces marked with + (yellow) move to the places
with * (gray) by σ3, and pieces with the marks 3′ and 4′ move to 3 and 4 by σ3.
It means that the two colors assigned to 3′′ and 4′′ are different from the four
colors assigned to the pieces marked with +, and thus equal to the two colors
assigned to 3 and 4 after the application of σ3, which are the colors of 3’ and
4’. The same consideration applies to every pair of adjacent pieces on the rings
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Fig. 8. Coloring constraint of the ring pieces of block 0, 3–8.

of blocks 1 and 2, and therefore, we can conclude that the color arrangements
on the rings of these two blocks are the same. Since the coloring of the axis of
these blocks are also the same in both colorings of the axis pieces, block 1 and
2 have the same coloring.

Next, we study the color arrangements of the ring pieces of the other seven
blocks. In the followings, we fix the colors assigned to the pieces (1, 3), . . . (1, 8)
to be ’d’, . . . ’i’, respectively, as Fig. 8 (A) shows. In this figure, pieces 3, 4, 5, . . .
are located from the lower-right corner anticlockwise. Since block 1 and 2 have
the same coloring, the colors of the pieces (2, 3) to (2, 8) are also ’d’, to ’i’. Each
of the 18 lines of Fig. 8 (B) shows ring pieces which form the same row or column
from the viewpoint of Fig. 3 (B). Fig. 8 (C) shows the rows and the columns
of all the viewpoints in one figure, with the colorings of blocks 1 and 2 copied
around the other blocks. In this figure, there are 27 lines. This figure shows the
constraint we need to solve. That is, our goal is to assign 6 colors to the 42 pieces
so that each of the 7 blocks and each of the 27 lines contain all the 6 colors.

Before studying the general case, we consider the case the center block (block
0) also has the same color assignment as block 1 and 2. In this case, according
to the constraint, colors ’d’, ’f’, ’h’ can appear on the pieces 3, 5, 7, and ’e’,
’g’, ’i’ can appear on the pieces 4, 6, 8 of each block, respectively. Therefore,
this coloring problem is the product of two coloring problems each of which is
a coloring of 18 pieces with 3 colors. One can easily check that there are two
solutions to each of them and we have 4 solutions as their composition. Since
the two solutions alter by the application of σ, we have two solutions modulus
of isomorphism (Fig. 9). Solution A has only one coloring pattern of a block,
which is rotated by 120 degree to form three block patterns, which is assigned
to blocks numbered with (0, 1, 2), (3, 5, 7), and (4, 6, 8), respectively. Solution B



Solution A Solution B

Fig. 9. Two ring colorings for the case the three axis blocks have the same coloring.

has three block coloring patterns each of which is assigned to three blocks as
Solution A.

When block 0 is allowed to have different coloring from block 1 and 2, we
have more solutions. Solution A in Fig. 9 has hexagonally arranged six pieces
with two alternating colors which range over three blocks as Fig. 10 (A) shows. If
we switch the two colors on these six pieces, the result also satisfy the constraint
in Fig. 8 (C). There are three kinds of such hexagonal six pieces as Fig. 10 (A,
B, C) shows. In these three figures, the vertices of each hexagon have two colors
which can be switched. For each of these three, there are three places that the
same kind of switching may occur. Since there is no overlapping, two or three
switching may occur simultaneously as Fig. 10 (D, E) shows. Therefore, there
are 3 × 3 non-isomorphic patterns of this kind. Patterns in Fig. 10 (A, B, C)
can occur simultaneously only when they have the same center as in Fig. 10 (F),
because there exist overlapping pieces for each of the other cases. Therefore, four
kinds of combinations: (A, B), (B, C), (A, C), and (A, B, C) exist. Therefore,
when we identify isomorphic colorings, we have 3 × 3 + 4 = 13 solutions except
for solutions A and B.

Next, we count colorings which are isomorphic to one of them. Three solutions
like (E) is mapped to itself by the application of σ2 and τ , and therefore there
are two non-isomorphic colorings, which switch by the application of σ. For the
other ten patterns, the application of σk (k = 0, 1.., 5) are all different and τ will
map a coloring to one of them. Therefore, in all, there are 10 × 6 + 3 × 2 = 66
solutions if we do not identify isomorphic ones.
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Fig. 10. Six pieces of Solution A, whose coloring can be switched.

As the result, we have 13 + 2 = 15 solutions on the coloring of the rings
modulus of isomorphism, and 66+4 = 70 solutions if we do not identify isomor-
phic ones. Since there are two solutions on the coloring of the axis, we have 30
SUDOKU colorings of the level 2 model if we identify isomorphic ones, and 140
SUDOKU colorings if we do not identify isomorphic ones.

From the constraint of Fig. 8 (B), we can show that they are all the SUDOKU
colorings of the level 2 object. From Fig. 8 (B), each ring piece of a ring block
has three coloring possibilities as in Fig. 11. If we assume the color of (0, 3)
(red piece in Fig. 11) to be ’f’, then the possible colors of (3, 3) and (6, 3) are
both ’h’ and ’g’, and therefore, ’h’ is assigned to at least one of them. In the
same way, ’h’ must be assigned to one of (4, 3) and (7, 3), and one of (5, 3) and
(8, 3). Therefore, ’h’ is assigned to three pieces out of these six pieces, and one
can show through some calculation that it causes a conflict. Therefore, it is not
allowed to assign ’f’ to (0, 3). In the same way, we cannot assign ’h’ to (0, 3).
Therefore, only ’d’, ’e’, ’g’, ’i’ are allowed to (0, 3). Among them, ’d’ is the color
assigned in Solution A and B. When ’e’ is assigned to (0, 3), it is easily shown
that the color of (0, 4) must be ’d’. Similarly, when ’g’ is assigned to (0, 3), the
color of (0, 6) must be ’d’, and when ’i’ is assigned to (0, 3), the color of (0, 8)
must be ’d’, In this way, we can show that the possible configurations of block 0
are only those obtained from that of Solution A through the switching listed in
Fig. 10. Then, for each of the color assignment of block 0 obtained in this way,



Fig. 11. The other 13 solutions on the ring.

we can calculate one or two color assignments of the other pieces, which are all
among the solutions we have explained.

By the application of υ, the two axis colorings switch as we have noted,
and the ring coloring is fixed because ring colorings on block 1 and 2 are the
same. Therefore, the switching of the two axis-colorings causes reflection of the
coloring.

Theorem 5. The level 2 object has (1) 140 SUDOKU colorings if we identify
change of colors, (2) 30 SUDOKU colorings if we identify isomorphic ones, (3)
15 SUDOKU colorings if we identify reflections.

4 SUDOKU Coloring of the level 2n object

In this section, we show that SUDOKU colorings of the level 2n object exist for
every n ≥ 1.

Definition 6. Let γ : Σ2n → Γn and δ : Σ2m → Γm be colorings of the
level 2n and the level 2m object, respectively. We define a coloring comp(γ, δ) :
Σ2(n+m) → Γn+m of the level 2(n + m) object as follows.

comp(γ, δ)(p) = γ(p[m+1,m+2n]) · δ(p[1,m] · p[m+2n+1,2m+2n]) .

Proposition 7. Suppose that γ and δ are SUDOKU colorings of the level 2n
and the level 2m object, respectively. Then, comp(γ, δ,) is a SUDOKU coloring
of the level 2(n + m) object.



Proof. We need to show that comp(γ, δ)◦σ2(n+m)
k is a one-face SUDOKU color-

ing of level 2(n+m) for k = 0, 1, . . . , 5. However, since σ2(n+m) is the application
of σ1 to each component, we have σa+b(p · q) = σa(p) · σb(q) for p ∈ Σa and
q ∈ Σb. Therefore,

comp(γ, δ)(σ2(n+m)(p))
= comp(γ, δ)(σm(p[1,m]) · σ2n(p[m+1,m+2n]) · σm(p[m+2n+1,2m+2m]))
= γ(σ2n(p[m+1,m+2n])) · δ(σm(p[1,m]) · σm(p[m+2n+1,2m+2n]))
= γ(σ2n(p[m+1,m+2n])) · δ(σ2m(p[1,m] · p[m+2n+1,2m+2n]))
= comp(γ ◦ σ2n, δ ◦ σ2m)(p).

From our assumption, γ ◦ σ2n and δ ◦ σ2m are one-face SUDOKU colorings
of the level 2n and the level 2m object, respectively. Therefore, we only need
to show that when γ and δ are one-face SUDOKU colorings of the level 2n and
level 2m objects, respectively, then comp(γ, δ) is a one-face SUDOKU coloring
of the level 2(n + m) object.

Conditions (2) and (3) of Definition 2 hold because they are independent of
the permutation of the coordinates. We show that condition (1) holds. Suppose
that p1 ∈ Σn, p2 ∈ Σm, r1 ∈ Γn, and r2 ∈ Γm. We need to show that r1 · r2 =
comp(γ, δ)(p1 · p2 · q) for some q ∈ Σn+m. Since γ and δ satisfy condition (1),
there exists q1 and q2 such that γ(p1 · q1) = r1 and γ(p2 · q2) = r2 hold. Then,
comp(γ, δ)(p2 · p1 · q1 · q2) = γ(p1 · p2) · δ(q1 · q2) = r1 · r2.

We proved in Section 3 that there are 30 SUDOKU colorings of level 2 object.
Therefore, by induction we have the following.

Theorem 8. There exist SUDOKU colorings of level 2n object for every n ≥ 1.

Usually, there are two ways of constructing level n+1 approximation models
of a fractal from level n approximation models. One is to fix the size of the
fundamental piece and construct a larger model by combining copies of the level
n models. The other one is to fix the total size and replace the fundamental pieces
of a level n model with level 1 approximation models. Correspondingly, there are
two induction schemes to prove properties of approximation models of a fractal.
In our proof of Proposition 7, we used both of them simultaneously. Let C0 be
a hexagonal bipyramid we start with. We consider the following construction
of the level 2n + 2 approximation model Cn+1 from the level 2n approximation
model Cn. We replace each fundamental piece of Cn with a level 1 approximation
model to form a level 2n + 1 approximation model Bn, then make 8 copies of
Bn and locate them on the vertices of Bn so that Bn becomes the block 0 of the
level 2n+2 object Cn+1. Then, the size of the 3n ×3n-SUDOKU “blocks” of Cn

is equal to the size of C0 for every n. Our proof for the case m = 1 constructs
the SUDOKU coloring of Cn+1 from that of Cn and a SUDOKU coloring of the
1st level object.

Corresponding to this construction, it is more natural to shift the index of the
address space from [0, 2n] to [−n+1, n] = {−(n−1),−(n−2), . . . , 0, 1, 2, . . . , n}.
Then, the address grows in both directions when the level of the model increases,
and the 9n SUDOKU “blocks” are addressed with the index [−(n − 1), 0] and
inside each block, each piece is addressed with the index [1, n].



Fig. 12. A SUDOKU Sculpture.

5 Conclusion

We showed that there are 140 SUDOKU colorings of the level 2 approximation
of the hexagonal bipyramid fractal if we identify change of colors, and 30 if we
identify isomorphic ones. This result is also verified by a computer program. Note
that the ordinary SUDOKU has 18, 383, 222, 420, 692, 992 solutions if we identify
change of colors [1]. Our SUDOKU problem has a strict constraint compared
with the ordinal SUDOKU and therefore it is natural that we do not have many
solutions. It is interesting to note that, as we have seen, all the solutions are
symmetric to some extent and are logically constructed. It is in contrast to the
lot of random-looking solutions of the ordinal SUDOKU.

Among the 30 SUDOKU coloring solutions, Solution A is most beautiful in
that the order of the colors of the rings of the nine blocks are the same. The
paper model in Figure 2 (H, I, J, K) has this coloring. This object is displayed at
the Kyoto University Museum, with an acrylic resin frame object with 12 square
colored faces. The 12 square faces are located so that this object looks square
with SUDOKU pattern when it is viewed through these faces.
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