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Abstract

In a previous paper [6], the authors introduced the hyperbolic topol-
ogy on a metric space, which is weaker than the metric topology and
naturally derived from the Lawson topology on the space of formal
balls. In this paper, we characterize spaces Lp(Ω,Σ, µ) on which the
hyperbolic topology induced by the norm ∥·∥p coincides with the norm
topology. We show the following.

(1) The hyperbolic topology and the norm topology coincide for
1 < p <∞.

(2) They coincide on L1(Ω,Σ, µ) if and only if µ(Ω) = 0 or Ω has
a finite partition by atoms.

(3) They coincide on L∞(Ω,Σ, µ) if and only if µ(Ω) = 0 or there
is an atom in Σ.
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1 Introduction

The hyperbolic topology of a metric space (X, d) is the topology generated
by sets of the form {z : d(z, x)− d(z, y) < t} for x, y ∈ X and −d(x, y) < t.
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Hyperbolic topology was introduced in [6] as a subspace topology of the
Lawson topology of the poset of generalized formal balls. Let R and R+

denote the sets of real numbers and non-negative real numbers respectively.
For a metric space (X, d), we call an element of B+X = X×R+ a formal ball
in (X, d). Formal balls are firstly introduced by Weihrauch and Schreiber in
[7] to represent a metric space in a domain, and Edalat and Heckmann [3]
investigated further properties of B+X as a computational model for (X, d).
We can generalize the notion of formal balls so that a ball with a negative
radius is allowed, and call an element of BX = X × R a generalized formal
ball in (X, d). The set BX is endowed with the partial order ⊑ defined
as (x, r) ⊑ (y, s) if d(x, y) ≤ r − s. Therefore, we can consider the Lawson
topology on BX, which is a topology defined on a partially ordered set. The
Lawson topology of BX is generated by sets of the form {(y, s) : d(x, y) <
r− s} and {(y, s) : d(x, y) > r− s} for (x, r) ∈ BX. Then, Lawson topology
restricted to the set Bd(x, r) = {(y, s) ∈ BX : d(x, y) = r − s} derives
a topology on X, because there is a one-to-one correspondence between
Bd(x, r) and X. In [6], it is shown that this topology does not depend on
the choice of x and r, and coincides with the hyperbolic topology defined
above.

Now, our interest is how different is the hyperbolic topology from the
metric topology. In [6], it is proved that the hyperbolic topology and the
metric topology coincide on X if and only if the Lawson topology and the
product topology coincide on BX. Through this property, we can derive
conditions for the hyperbolic topology and the metric topology to coincide
on a metric space X from the conditions given in [6] for the Lawson topology
and the product topology to coincide on BX. In particular, we can derive an
example of a metric space for which the hyperbolic topology and the metric
topology do not coincide, from an example in [6]. However, the metric
topology of the example is the discrete topology and one may think of it
as an artificial example from a mathematical point of view. Our concern in
this paper is whether they differ also in more natural spaces which appear
in many branches of mathematics.

In this paper, we study the relation between the hyperbolic topology
and the metric topology for normed linear spaces, in particular, spaces
Lp(Ω,Σ, µ) for Σ a σ-algebra of subsets of a set Ω, and µ a positive measure
on Σ. We show the followings.

(1) The hyperbolic topology coincides with the norm topology for every
locally uniformly rotund (uniformly convex) normed space (X, ∥ · ∥), and
thus the two topologies coincide on Lp(Ω,Σ, µ) for 1 < p <∞.

(2) They coincide on L1(Ω,Σ, µ) if and only if µ(Ω) = 0 or Ω has a finite

2



partition {A1, . . . , An} by atoms.
(3) They coincide on L∞(Ω,Σ, µ) if and only if µ(Ω) = 0 or there is an

atom A ∈ Σ.
As special cases, they coincide in ℓp for 1 < p ≤ ∞, but do not coincide

on ℓ1.

Notation.
For each point x of a metric space (X, d) and each r > 0, we denote the

r-open ball of x by Sr(x) = {y ∈ X : d(x, y) < r} and the r-closed ball of x
by Br(x) = {y ∈ X : d(x, y) ≤ r}.

2 Hyperbolic topology of a metric space

For a metric space (X, d), we call the topology TH generated by those sets
θ(x, y, t) = {z : d(z, x) − d(z, y) < t} for x, y ∈ X and −d(x, y) < t the
hyperbolic topology of (X, d). We denote by TM the metric topology induced
by the original metric d. Obviously, TH is weaker than TM .

We put θx(y, t) = θ(x, y, t) for x, y ∈ X and −d(x, y) < t. Then,
x ∈ θx(y, t) and θx(y, s) ⊂ θx(y, t) when −d(x, y) < s < t. The follow-
ing proposition was proved in [6] via Lawson topology of the space of formal
balls. Here, we give a simple and direct proof.

Proposition 2.1 For each point x ∈ X, {θx(y, t) : y ∈ X and − d(x, y) <
t} generates a base for the TH-neighborhood system at x.

Proof. Suppose that −d(a, y) < s and x ∈ θ(a, y, s). We show x ∈
θx(y, t) ⊂ θ(a, y, s) for t = s − d(a, x). First, since d(x, a) − d(x, y) < s, we
have −d(x, y) < s− d(x, a) = t. Therefore, θx(y, t) is well defined.

Suppose that z ∈ θx(y, t). Since d(z, x) − d(z, y) < t = s − d(a, x),
we have d(z, a) − d(z, y) < d(z, a) + s − d(x, a) − d(z, x) ≤ s. Therefore,
z ∈ θ(a, y, s).

The hyperbolic topology TH is Hausdorff because for x, y ∈ X, θx(y, 0)
and θy(x, 0) are separating the two points. Moreover, we have Cl θx(y, s) ⊂
{z ∈ X : d(z, x) − d(z, y) ≤ s} ⊂ θx(y, t) for −d(x, y) < s < t. Therefore,
TH is regular.

In [6], we studied the Lawson topology of the partial ordered set BX of
formal balls in X, and proved the following.

3



Theorem 2.2 For a metric space (X, d), the following are equivalent:
(1) The Lawson topology and the product topology coincide on BX.
(2) The hyperbolic topology and the metric topology coincide on X.

Here, we refer the reader to [3, 4, 6] for the poset of formal balls and
Lawson topology of partially ordered sets. With this theorem, we can de-
rive some conditions on X so that the hyperbolic topology and the metric
topology coincide from the conditions given in [6] on X so that the Lawson
topology and the product topology coincide on BX. Here, we present them
with direct proofs to make this paper self-contained.

Proposition 2.3 If (X, d) is a totally bounded metric space (in particular,
(X, d) is a compact metric space), then the hyperbolic topology and the metric
topology coincide.

Proof. Let x ∈ X and ε > 0. It is immediate when X has at most one
point and we may assume that Sε(x) ̸= X. Since d is totally bounded, there
are finitely many points x1, x2, . . . , xn of X such that ∪n

i=1Sε/2(xi) = X.
Suppose that x ∈ Bε/2(xi) for 1 ≤ i ≤ k and x ̸∈ Bε/2(xi) for k+1 ≤ i ≤ n.

We have ∪k
i=1Sε/2(xi) ⊂ Sϵ(x) and therefore k < n. For k + 1 ≤ i ≤

n, we have d(xi, x) > ε/2 and thus we can consider the TH -neighborhood
θx(xi,−ε/2) of x. For z ∈ θx(xi,−ε/2), d(z, x) − d(z, xi) < −ε/2 and
therefore d(z, xi) > d(z, x)+ε/2 ≥ ε/2. Therefore, θx(xi,−ε/2)∩Sε/2(xi) =
∅ and thus ∩n

i=k+1θx(xi,−ε/2) ∩ ∪n
i=k+1Sε/2(xi) = ∅. Since ∪k

i=1Sε/2(xi) ∪
∪n
i=k+1Sε/2(xi) = X, ∩n

i=k+1θx(xi,−ε/2) ⊂ ∪k
i=1Sε/2(xi) ⊂ Sϵ(x).

Let (X, ∥ · ∥) be a normed linear space and TH the hyperbolic topology
on X induced by the norm ∥ · ∥. Then we easily have the following.

Proposition 2.4 Let (X, ∥ · ∥) be a normed linear space, a ∈ X and α > 0.
Then φa : (X, TH) → (X, TH) defined by φa(x) = x+ a and ψα : (X, TH) →
(X, TH) defined by ψα(x) = αx are homeomorphisms.

Proposition 2.5 Let (X, ∥ · ∥) be a normed linear space and d the metric
induced by the norm ∥ · ∥. If the restriction of d on the unit ball B1(0) is
totally bounded, then the hyperbolic topology and the metric topology coincide
on X.

Proof. By Proposition 2.4, we only need to show U ⊂ B1/2(0) for

some TH -neighborhood U of 0. Since the metric space (B1(0), d) is to-
tally bounded, by Proposition 2.3, we have ∩k

i=1θ0(xi, ri)∩B1(0) ⊂ B1/2(0)
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for some xi ∈ B1(0) and −∥xi∥ < ri (1 ≤ i ≤ k). Then, for every y ∈ X
such that ∥y∥ > 1, z = y/∥y∥ ∈ B1(0) and z ̸∈ B1/2(0), and therefore,
z ̸∈ θ0(xi, ri) for some 1 ≤ i ≤ k. Therefore, ∥z∥ − ∥z − xi∥ ≥ ri. Then,
∥y∥ − ∥y − xi∥ = ∥y − z∥ + ∥z∥ − ∥y − xi∥ = ∥z∥ − ∥z − xi∥ + ∥z − xi∥ +
∥y − z∥ − ∥y − xi∥ ≥ ∥z∥ − ∥z − xi∥ ≥ ri. Therefore, y ̸∈ θ0(xi, ri). Thus,
∩k
i=1θ0(xi, ri) ⊂ B1/2(0).

The following lemma is a well-known property of a normed linear space
(cf. Lemma 17 of [6]).

Lemma 2.6 Let (X, ∥·∥) be a normed linear space and d the metric induced
by the norm ∥·∥. The restriction of d on the unit ball B1(0) is totally bounded
if and only if (X, ∥ · ∥) is finite-dimensional.

Thus, we have the following.

Theorem 2.7 The hyperbolic topology and the norm topology coincide for
finite-dimensional normed linear spaces.

Here is an example in [6] of a metric space (X0, ds) on which the two
topologies differ. Let X0 be an infinite set with a fixed point x0 ∈ X0, and
ds the following metric function on X0.

ds(x, y) =


0, if x = y,
1, if x0 ∈ {x, y} and x ̸= y,
2, otherwise.

The metric topology of (X0, ds) is the discrete topology where the hyperbolic
topology of (X0, ds) is generated by those sets {x} for x ∈ X0 − {x0}, and
X0 −A, where A ranges over finite subsets of X0 which do not contain x0.

3 The hyperbolic topology in Lp(Ω,Σ, µ)

In this section, we study the relation between the hyperbolic topology and
the metric topology for normed linear spaces, especially, Lp(Ω,Σ, µ) for 1 ≤
p ≤ ∞. In this section, we denote the norm in Lp(Ω,Σ, µ), 1 ≤ p ≤ ∞, by
∥ · ∥ instead of ∥ · ∥p.

3.1 Locally uniformly rotund (convex) spaces

First, we consider the case 1 < p < ∞. In this case, we have a general the-
orem. We consider the uniformly rotund spaces (uniformly convex spaces),
which are introduced by J. A. Clarkson [1].
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Definition 3.1 A normed linear space (X, ∥ · ∥) is said to be uniformly
rotund (uniformly convex) if for every ε > 0 there is δ(ε) > 0 such that for

each x, y ∈ X with ∥x∥ = ∥y∥ = 1 and ∥x− y∥ ≥ ε, ∥x+y∥
2 < 1− δ(ε).

A normed linear space (X, ∥ · ∥) is said to be locally uniformly rotund (or
locally uniformly convex) if for each x ∈ X with ∥x∥ = 1 and ε > 0 there
is δ(x, ε) > 0 such that for each y ∈ X with ∥y∥ = 1 and ∥x − y∥ ≥ ε,
∥x+y∥

2 < 1− δ(x, ε).

Uniform rotundity means that when x and y are points on the unit
sphere with the distance greater than ε, then the middle point is in the ball
B1−δX(ε)(0) and therefore the distance from the unit sphere is greater than
δX(ε).

The sum norm and the max norm on R2 are not locally uniformly rotund
because the unit sphere has the form of a square with each of these two
norms. It is known that Lp(Ω,Σ, µ) for 1 < p < ∞ are uniformly rotund
([1]) and hence locally uniformly rotund. We notice that if (X, ∥ · ∥) is
locally uniformly rotund and x ∈ X with ∥x∥ = 1, then the real number
δ(x, ε) works for the point −x, i.e., we may assume that δ(−x, ε) = δ(x, ε).

Theorem 3.2 If (X, ∥·∥) is a locally uniformly rotund normed linear space,
then the hyperbolic topology coincides with the norm topology on X.

Proof. The two topologies coincide for the case X = {0}. We shall
show that TM ⊂ TH . By Proposition 2.4, it suffices to show that the TM -
neighborhood S1(0) = {x ∈ X : ∥x∥ < 1} of 0 contains a TH -neighborhood
V of 0. Fix a point x ∈ X with ∥x∥ = 1. Let δ(x, 1) > 0 be a real
number defined in Definition 3.1. We put t = max{1 − 2δ(x, 1), 0} and
V = θ0(x,−t) ∩ θ0(−x,−t). Then V is a TH -neighborhood of 0. To show
that V ⊂ S1(0), we assume that there is z ∈ V − S1(0). Then we have
∥x− z∥ − ∥z∥ > t and ∥ − x− z∥ − ∥z∥ > t. Let z′ = z/∥z∥. It follows that
∥z′−x∥ ≥ ∥z−x∥−∥z′−z∥ > ∥z∥+ t−(∥z∥−1) = t+1 ≥ 1−2δ(x, 1)+1 =
2− 2δ(x, 1). Hence we have

∥z
′ + (−x)

2
∥ > 1− δ(x, 1) = 1− δ(−x, 1).

Since ∥z′∥ = 1, by the choice of δ(−x, 1), we have that ∥z′ − (−x)∥ < 1.
Similarly, we can see that ∥z′ − x∥ < 1. Hence, 2 = 2∥x∥ = ∥x − (−x)∥ ≤
∥x−z′∥+∥z′−(−x)∥ < 1+1 = 2. This is a contradiction. Hence V ⊂ S1(0)
and hence TM ⊂ TH . This completes the proof.
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Corollary 3.3 Let 1 < p < ∞, Σ a σ-algebra of subsets of a set Ω, and
µ a positive measure on Σ. The hyperbolic topology and the norm topology
coincide on Lp(Ω,Σ, µ).

The following is a special case of Corollary 3.3.

Corollary 3.4 If 1 < p < ∞, then the hyperbolic topology coincides with
the norm topology on ℓp and Lp[0, 1].

3.2 The case p = 1

Let (Ω,Σ, µ) be a measure space. A set A ∈ Σ is said to be an atom if
µ(A) > 0 and for each B ⊂ A with B ∈ Σ we have µ(B) = 0 or µ(B) = µ(A).
We say that a measure space (Ω,Σ, µ) has a finite partition by atoms if there
are finitely many atoms Ai ∈ Σ, i = 1, . . . , n such that Ω = A1 ∪ · · · ∪ An

and Ai ∩Aj = ∅ if i ̸= j.
We notice that the measure space (N, 2N, µ), where µ is the counting

measure, contains atoms, but it does not have a finite partition by atoms.

Lemma 3.5 Let (Ω,Σ, µ) be a measure space and 1 ≤ p ≤ ∞. If µ(Ω) =
0, or (Ω,Σ, µ) has a finite partition by atoms, then Lp(Ω,Σ, µ) is finite
dimensional.

Proof. If µ(Ω) = 0, then Lp(Ω,Σ, µ) = {0}. We suppose that µ(Ω) > 0.
Let {A1, . . . , An} be a finite partition of Ω by atoms, f ∈ Lp(Ω,Σ, µ) and
i ≤ n. Let fi : Ai → R be the restriction of f over Ai. We define mappings
gi : Ω → R, i = 1, . . . , n, as follows:

gi(x) =

{
1, if x ∈ Ai,
0, if x /∈ Ai.

Since Ai is an atom, it follows that fi is a constant mapping a.e. Hence,
Lp(Ω,Σ, µ) is generated by g1, . . . , gn and hence Lp(Ω,Σ, µ) is n-dimensional.

The following is a direct consequence of Theorem 2.7 and Lemma 3.5.

Corollary 3.6 Let (Ω,Σ, µ) be a measure space and 1 ≤ p ≤ ∞. If µ(Ω) =
0, or (Ω,Σ, µ) has a finite partition by atoms, then the hyperbolic topology
coincides with the norm topology on Lp(Ω,Σ, µ).

Now we consider the case p = 1. We can easily show the following
lemma.
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Lemma 3.7 Let (Ω,Σ, µ) be a measure space such that µ(Ω) > 0. If
(Ω,Σ, µ) does not have a finite partition by atoms, then there is a count-
able set {A1, A2, . . . } ⊂ Σ such that Ai ∩ Aj = ∅ if i ̸= j and µ(Ai) > 0 for
each i.

Theorem 3.8 Let (Ω,Σ, µ) be a measure space. The hyperbolic topology
coincides with the norm topology on L1(Ω,Σ, µ) if and only if µ(Ω) = 0 or
(Ω,Σ, µ) has a finite partition by atoms.

Proof. Corollary 3.6 proves the ”if” part. To prove the ”only if” part,
we suppose that µ(Ω) > 0 and (Ω,Σ, µ) does not have a finite partition
by atoms. By Lemma 3.7, there is a countable set {A1, A2, . . . } ⊂ Σ such
that Ai ∩ Aj = ∅ if i ̸= j and µ(Ai) > 0 for each i. We may assume that
Ω = ∪∞

i=1Ai. Let 0 ∈ L1(Ω,Σ, µ) be the constant mapping and S1(0) the
1-open neighborhood of 0 in the norm topology. Let f1, . . . , fn ∈ L1(Ω,Σ, µ)
and t1, . . . , tn ∈ R, where −∥fi∥ < ti. Put U = ∩n

i=1θ0(fi, ti). It suffices
to show that U − S1(0) ̸= ∅. For each i ≤ n we put δi = ∥fi∥ + ti > 0
and δ = min{δ1, . . . , δn}. Since

∑∞
k=1

∫
Ak

|fi|dµ =
∫
Ω |fi|dµ < ∞, there is

k(i) such that
∑∞

k=k(i)

∫
Ak

|fi|dµ < δ/2. Let K = max{k(1), . . . , k(n)}. We
define a function g : Ω → R by

g(x) =

{ 1
µ(AK) , if x ∈ AK ,

0, otherwise.

It is clear that g ∈ L1(Ω,Σ, µ) and ∥g∥ = 1. On the other hand, for each
i ≤ n we have

8



∥g∥ − ∥fi − g∥ = 1−
∫
Ω
|fi − g|dµ

= 1−
∞∑
k=1

∫
Ak

|fi − g|dµ

= 1− (
∑
k ̸=K

∫
Ak

|fi|dµ+

∫
AK

|fi − g|dµ)

< 1− (∥fi∥ −
∫
AK

|fi|dµ+

∫
AK

|g|dµ−
∫
AK

|fi|dµ)

< 1− ∥fi∥+
δ

2
− 1 +

δ

2
= δ − ∥fi∥
≤ δi − ∥fi∥
= ti.

This implies that g ∈ θ0(fi, ti) and hence g ∈ U − S1(0).

Since the measure space (N, 2N, µ), where µ is the counting measure, does
not have a finite partition by atoms, the following is a direct consequence of
Theorem 3.8.

Corollary 3.9 The hyperbolic topology is strictly weaker than the norm
topology on ℓ1.

3.3 The case p = ∞

For the case p = ∞, we have the following.

Theorem 3.10 Let (Ω,Σ, µ) be a measure space. The hyperbolic topology
coincides with the norm topology on L∞(Ω,Σ, µ) if and only if µ(Ω) = 0 or
(Ω,Σ, µ) has an atom.

Proof. If µ(Ω) = 0, then the hyperbolic topology coincides with the norm
topology by Corollary 3.6. Now, we suppose that µ(Ω) > 0 and (Ω,Σ, µ)
has an atom A ∈ Σ. Let S1(0) be the 1-open neighborhood of 0 in the norm
topology. Let f1, f2 ∈ L∞(Ω,Σ, µ) be defined by

f1(x) =

{
1, if x ∈ A,
0, if x /∈ A,
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f2(x) =

{
−1, if x ∈ A,
0, if x /∈ A.

Let U = θ0(f1,−1/2) ∩ θ0(f2,−1/2). By Proposition 2.4, it suffices to
show that 0 ∈ U ⊂ S1(0). It is obvious that 0 ∈ U . Let g ∈ U . Then
1/2 < ∥g−fi∥−∥g∥ for each i = 1, 2, because g ∈ θ0(fi,−1/2). We have ∥g−
fi∥ = max{∥g|Ω−A−fi|Ω−A∥, ∥g|A−fi|A∥} = max{∥g|Ω−A∥, ∥g|A−fi|A∥}. If
∥g|Ω−A∥ ≥ ∥g|A−fi|A∥, then we have 1/2 < ∥g−fi∥−∥g∥ = ∥g|Ω−A∥−∥g∥ ≤
0. This is a contradiction. Hence we have ∥g|Ω−A∥ < ∥g|A − fi|A∥, and
hence ∥g − fi∥ = ∥g|A − fi|A∥ for each i = 1, 2. Furthermore, since A is an
atom, g|A = t a.e. on A for some t ∈ R. Since 1/2 < ∥g − f1∥ − ∥g∥ =
∥g|A − f1|A∥ − ∥g∥, we have

1/2 < ∥g|A − f1|A∥ − ∥g∥ ≤ ∥g|A − f1|A∥ − ∥g|A∥ = |t− 1| − |t|.

Hence we have t < 1/4. Similarly, we also have that

1/2 < ∥g|A − f2|A∥ − ∥g∥ ≤ ∥g|A − f2|A∥ − ∥g|A∥ = |t+ 1| − |t|,

and hence t > −1/4. Hence, we have −1/4 < t < 1/4. Since ∥g|Ω−A∥ <
∥g|A − fi|A∥ = ∥t − fi|A∥ for each i = 1, 2, it follows that ∥g|Ω−A∥ <
min{|t − 1|, |t + 1|} ≤ 1. Finally, we have ∥g∥ = max{∥g|Ω−A∥, ∥g|A∥} =
max{∥g|Ω−A∥, |t|} < 1. Hence g ∈ S1(0) and hence U ⊂ S1(0). Therefore,
TH = TM in L∞(Ω,Σ, µ).

Conversely, we suppose that µ(Ω) > 0 and (Ω,Σ, µ) does not have an
atom. Let f1, . . . , fn ∈ L∞(Ω,Σ, µ) and t1, . . . , tn ∈ R such that fi ̸= 0 a.e.
and −∥fi∥ < ti. It suffices to show that θ0(f1, t1)∩· · ·∩θ0(fn, tn)−S1(0) ̸= ∅.
Since θ0(fi, s) ⊂ θ0(fi, t) if −∥fi∥ < s < t, we may assume that ti ≤ 0 for
each i ≤ n.

For each i ≤ n we put

A+
i = {x ∈ Ω : fi(x) > −ti},

A−
i = {x ∈ Ω : fi(x) < ti}.

We have ∥fi∥ > −ti and hence µ(A+
i ∪ A−

i ) > 0. Thus, µ(A+
i ) > 0 or

µ(A−
i ) > 0. Let I+ = {i ≤ n : µ(A+

i ) > 0} and I− = {1, . . . , n} − I+. Put

Bi =

{
A+

i , if i ∈ I+,
A−

i , if i ∈ I−.
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We notice that µ(Bi) > 0 for each i ≤ n. Since (Ω,Σ, µ) does not have an
atom, it is easy to see that for each i ≤ n there is Ci ∈ Σ such that Ci ⊂ Bi,
µ(Ci) > 0 and Ci ∩ Cj = ∅ if i ̸= j. Define g : Ω → R by

g(x) =


1, if x ∈ Ci and i ∈ I−,

−1, if x ∈ Ci and i ∈ I+,
0, otherwise.

Then g ∈ L∞(Ω,Σ, µ) and ∥g∥ = 1 (and hence g /∈ S1(0)). Furthermore, it
is easy to see that ∥g∥−∥g−fi∥ < ti for each i ≤ n. Hence g ∈ ∩n

i=1θ0(fi, ti).
This implies that TH ( TM .

The following is a direct consequence of the theorem above.

Corollary 3.11 The hyperbolic topology coincides with the norm topology
on ℓ∞.

By a similar argument to the proof of Theorem 3.10, we can show the
following.

Corollary 3.12 The hyperbolic topology does not coincide with the norm
topology on C([0, 1]).

Remark 3.13 Combining the results in this section and Theorem 2.2, we
have the characterization of spaces Lp(Ω,Σ, µ) such that the Lawson topol-
ogy and the product topology coincide on BLp(Ω,Σ, µ). In addition, we
have examples of normed linear spaces for which the two topologies do not
coincide on their spaces of formal balls, for instance, ℓ1 and C([0, 1]).
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