Real Number Computation through Gray Code Embedding

Hideki Tsuiki

Division of Mathematics,
Faculty of Integrated Human Studies,
Kyoto University, Kyoto 6006, Japan

tsuiki@i.h.kyoto-u.ac. jp

Abstract

We propose an embedding G of the unit open interval to the set {0, 1}‘1,1 of infinite
sequences of {0,1} with at most one undefined element. This embedding is based on
Gray code and it is a topological embedding with a natural topology on {0, 1}‘1,1. We also
define a machine called an IM2 machine (indeterministic multihead type 2 machine) which
input/output sequences in {0, 1}‘1’71, and show that the computability notion induced on
real functions through the embedding G is equivalent to the one induced by the signed digit
representation and Type-2 machines. We also show that basic algorithms can be expressed
naturally with respect to this embedding.

1 Introduction

One of the ways of defining computability of a real function is by representing a real
number x as an infinite sequence called a name of x, and defining the computability
of a function by the existence of a machine, called a Type-2 machine, which inputs
and outputs the names one-way from left to right. This notion of computability dates
back to Turing[Tur36], and is the basis of effective analysis [Wei85,Wei00].

This notion of computability depends on the choice of representation we use, and
signed digit representation and equivalent ones such as the Cauchy representation
and the shrinking interval representation are most commonly used; they have the
property that every arbitrarily small rational interval including = can be obtained
from a finite prefix of a name of x, and therefore induces computability notion that
a function f is computable if there is a machine which can output arbitrary good
approximation information of f(z) as a rational interval when arbitrary good ap-
proximation information of x as a rational interval is given. The naturality of this
computability notion is also justified by the fact that it coincides with those de-

Preprint submitted to Elsevier Science 18 March 2006

fined through many other approaches such as Grzegorczyk’s (|Grz57]), Pour-El and
Richards ([PER89]), and domain theoretic approaches([ES98], [Gia99]).

One of the properties of these representations is that they are not injective [Wei00].
More precisely, uncountably many real numbers have infinitely many names with
respect to representations equivalent to the signed digit representation [BH00]. This

kind of redundancy is considered essential in many approaches to exact real arithmetic
[BCRO86,EP97,Gia96,Gia97,Vui9o).

Thus, computability of a real function is defined in two steps: first the computability
of functions over infinite sequences is defined using Type-2 machines, and then it is
connected with the computability of real functions by representations. The redun-
dancy of representations means that we cannot define the computability of a real
function more directly by considering an embedding of real numbers into the set of
infinite sequences on which a Type-2 machine operates. In this paper, we consider
such a direct definition by extending the notion of infinite sequences and modifying
the notion of computation on infinite sequences.

Our embedding, called the Gray code embedding, is based on the Gray code expan-
sion, which is another binary expansion of real numbers. The target of this embedding
is the set {0, 1}4 ;| of infinite sequences of {0, 1} in which at most one L, which means
undefinedness, is allowed. We define the embbeding GG of the unit open interval Z,
and then explain how it can be extended to the whole real line in the final section.
{0,1}4 ; has a natural topological structure as a subspace of {0, 1, L}*. We show
that G is a topological embedding from Z to the space {0,1}% ;.

Because of the existence of 1, a machine cannot have sequential access to inputs
and outputs. However, because | appears only at most once, we can deal with it by
putting two heads on a tape and by allowing indeterministic behavior to a machine.
We call such a machine Indeterministic Multihead Type 2 machine (IM2-machine for
short). Here, indeterministic computation means that there are many computational
paths which will produce valid results [She75,Bra98]. Thus, we define computation
over {0, 1} | using IM2-machines, and consider the induced computational notion on
7 through the embedding GG. We show that this computational notion is equivalent
to the one induced by the signed digit representation and Type-2 machines.

We also show how basic algorithms like addition can be expressed with this represen-
tation. One remarkable thing about this representation is that it has three recursive
structures though it is characterized by two recursive equations. This fact is used in
composing basic recursive algorithms.

We introduce Gray code embedding in Section 2 and an IM2 machine in Section 3.
Then, we define the Gray code computability of real functions in Section 4, and show
that it is equivalent to the computability induced by the signed digit representation
and Type 2 machines in Section 5. In Section 6, we study topological structure.

2

number | Binary code | Gray code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

Fig. 1. Binary code and Gray code of integers

In Section 7 and 8, we consider basic algorithms with respect to this embedding.
We will discuss how this embedding can be extended to R, give some experimental
implementations, and give conclusion in Section 9.

Notation: Let ¥ be an alphabet which does not include L. We write ¥* for the set of
finite sequences of X, ¥ for the set of infinite sequences of ¥, and ¢ (n =1,2,...)
for the set of infinite sequences of ¥ in which at most n instances of the undefinedness
character L are allowed to exist. We write f :C X — Y when f is a partial function
from X to Y, and F:C X XY when F is a multi-valued function from X to Y, that
is, F'is a subset of X x Y considered as a partial function from X to the power set
of Y. We call a number of the form m x 27" for integers m and n a dyadic number.

3

2 Gray Code Embedding

Gray code is another binary encoding of natural numbers. Figure 1 shows the usual
binary code and the Gray code of integers from 0 to 15. In this way, n-bit Gray code
is composed by putting the n-th bit on and reversing the order of the coding up to (n-
1)-bits, instead of repeating the coding up to (n-1)-bits as we do in the usual binary
code. The importance of this code lies in the fact that only one bit differs between
the encoding of a number and that of its successor. This code is used in many areas
of computer science such as image compression [ASD90] and finding minimal digital
circuits [Dew93].

The conversion between these two encodings is easy. Gray code is obtained from the
usual binary code by taking the bitwise xor of the sequence and its one-bit shift.
Therefore, the function to convert from binary code to Gray code is written using
the notation of a functional language Haskell [HJ92] as follows:

conv s = map xor (zip s (0:s)).

This conv function has type [Int] -> [Int], where [Int] is the Haskell type of
(possibly infinite) list of integers. a:b means the list composed of a as the head and
b as the tail, xor is the “exclusive or” defined as

xor (0, 0) =0
xor (0, 1) =1
xor (1, 0) =1
xor (1, 1) =0 ,

and zip is a function taking two lists (of length [and m) and returning a list of pairs
(of length min(l, m)). This conversion is injective and the inverse is written as

rconv x = rconvi(x,0)
rconvl (a:s,x) = xor(a,x):rconvl(s,xor(a,x))
rconvl ([1,x) = [,

with [] the empty list.

We will extend this coding to real numbers. Since the function conv is applicable to
infinite lists, we can obtain the Gray code expansion of a real number x by applying
conv to the binary expansion of x.

The Gray code expansion of real numbers in the unit interval Z = (0, 1) is visualized
in Figure 2. Here, a horizontal line means that the corresponding bit has value 1
on the line and value 0 otherwise. This figure has a fine fractal structure and shows
symmetricity of bits greater than n at every dyadic number m x 27".

4

SISV A v vA VA vAVvAvAVvAvAVAvAYAvAVA YA VS
bits !
bit4 |

bit3

bit2

bitl

Fig. 2. Gray code of real numbers

In the usual binary expansion, we have two expansions for dyadic numbers. For
example, 3/; can be expressed as 0.110000... and also as 0.101111.... This is also the
case for the Gray code expansion. For example, by applying conv to these sequences,
we have the two sequences 0.101000... and 0.111000... of 3/s. However, one can find
that the two sequences differ only at one bit (in this case, the 2nd). This means that
the information that this number is 3/4 is given only by the remaining bits and the
2nd bit does not contribute to this fact. Therefore, it would be natural to introduce
the character | denoting undefinedness and consider the sequence 0.1.11000... as the
unique representation of 3/;. Note that the sequence after the bit where they differ
is always 1000.... Thus, we define Gray code embedding of Z as a modification of
the Gray code expansion in that a dyadic number is represented as s11000... with
s € {0,1}*.d

Definition 1 The Gray code embedding of the unit open interval Z is an injective
function G from Z to ¥¢ ; which maps z to an infinite sequence aga; ... composed
as follows: a; = 1 if m x 277 — 2=0H+D) < 2 < m x 277 4+ 2-0+D for an odd number m,
a; = 0 if the same holds for an even number m, and a; = L if © = m x 27% — 2-@+1)
for some integer m. We call G(z) the modified Gray code expansion of z, or simply
Gray code of x.

When G(x) = apay ..., ap is 1, L, or 0, according as x is bigger than, equal to, or less
than 1/. The tail function which maps = to G™'(aiay...) denotes the so-called tent
map

2 (x <1f)
2(1 —xz) (z >1h)
It is in contrast to the binary expansion in that the tail function of the binary

5

expansion denotes the function

2z (x < 1)
20 — 1 (x > 1))

flx) =

Note that Gray code expansion coincides with the itinerary by the tent map which
is essential for symbolic dynamical systems [HY84].

3 Indeterministic Multihead Type 2 Machine

Consider calculating a real number = (0 < z < 1) as the limit of approximations and
output the result as the modified Gray code expansion. More precisely, we consider a
calculation which produces shrinking intervals (r,,s,) (n = 0,1,...) successively so
that lim,, ,o s, =lim,_,, 7, = .

When we know that x <1/ (i.e. s, <1/ for some n), we can write 0 as the first digit.
And when we know that 15 < z (i.e. 7, > 1/ for some n), we can write 1. However,
when z = 1/, neither will happen and we cannot ever write the first digit. Even so,
when we know that 1/4 < x <3/4, we can skip the first and write 1 as the second digit,
and when we know that 3/s < x < 5/, we can write 0 as the third digit. Thus, when
x =1/, we can continue producing the digits skipping the first one and we can write
the sequence 1000... from the second digit. In order to produce the Gray code of
x as the result, we need to fill the first cell with L, which is impossible because we
cannot obtain the information x =1/ in a finite time. To solve this, we define | as
the “blank character” of the output tape and consider that the output tape is filled
with L at the beginning. Thus, when a cell is skipped and is not filled eternally, it is
left as L.

Suppose that we know 1/4 < x <3/; and we have written the second digit as 1 skipping
the first one. As the next output, we have two possibilities: to write the third digit
as 0 because we know that 3/s < x < 5/s; or to write the first digit because we obtain
the information x <1/ or x > 1. Therefore, when we consider a machine with Gray
code output, the output tape is not written one-way from left to right. To present
this behavior in a simple way, we consider two one-way heads H;(O) and Hy(O) on an
output tape O which move automatically after an output. At the beginning, H;(O)
and Hy(O) are located above the first and the second cell, respectively. After an output
from Hy(O), Ho(O) is moved to the next cell, and after an output from H,(O), H;(O)
is moved to the position of Hy(O) and Hy(O) is moved to the next cell. Thus, in order
to fill the output tapeas L1 11 1...—-0L1l1ll...—-0L1LLl...—0L10L...—
0110L ... — 01101.. ., we output Hy (0)(0), Hy(0)(1), Hy(0)(0), H, (0)(1), Hy (0)(1).
Here, H(j) (H is H1(O) or Hy(O) and j = 0, 1) means to output j from H . With this
head movement rule, each cell is filled at most once and a cell is not filled eternally

6

only when H;(O) is located on that cell and output is made solely from Hy(O).
When H,(O) and Hy(O) are on the s-th and ¢-th cell of an output tape, the i-th cells
(1 < s,s <i<t)are already output and no longer accessible. Therefore, H; (O) and
Hy(O) are always located at the first and the second unfilled cells and the machine
treats the tape as if it were [O[s], O[t], Ot + 1],...].

Next, we consider how to input a modified Gray code expansion of a real number.
We define our input mechanism so that finite input contains only approximation
information. Therefore, our machine should not recognize that the cell under the
head is L, because the character 1 with its preceding prefix specifies the number
exactly. This requirement is also supported by the way an input tape is filled when
it is produced as an output of another machine; the character | may be overwritten
by 0 or 1 in the future and it is impossible to recognize that a particular cell is left
eternally as L. Therefore, our machine needs to have something other than the usual
sequential access.

To solve this, we consider multiple heads and consider that the machine waits for
multiple cells to be filled. Since at most one cell is left unfilled, two heads are sufficient
for our purpose. Therefore, we consider two heads H;(I) and Hy(7) on an input tape
I, which move in the same way as output heads when they input characters. Note
that the character 1 cannot be recognized by our machine, unlike the blank character
B used by a Turing machine.

Thus, we define a machine which has two heads on each input/output tape. Though
we have explaind this idea based on the modified Gray code expansion, this machine
can input/output sequences in ¥ 1 generally. In order to give the same computational
power as a Turing machine, we consider a state machine controlled by a set of compu-
tational rules, which has some ordinary work tapes in addition to the input/output
tapes.

In order that the machine can continue working even when the cell under H;(I) or
H,(I) for an input tape [is L, we need, at each time, a rule applicable only reading
from H;(I) or Hy(I). Therefore, the condition part of each rule should not include
input from both Hy(7) and Hy(I). This also means that, if both head positions of an
input tape are filled, we may have more than one applicable rules. Since a machine
may execute both rules, both computational paths should produce valid results.

To summarize, we have the following definition.

Definition 2 Let X be the input/output alphabet. Let I be the work-tape alphabet
which includes a blank character B. An indeterministic multihead Type 2 machine
(IM2-machine in short) with & inputs is composed of the following:

(i) k input tapes named Iy, I, ..., I; and one output tape named O. Each tape T
7

has two heads H; (7") and Hy(T),
(ii) several work tapes with one head,
(iii) a finite set @ of states with one initial state gy € Q,
(iv) computational rules of the following form:
g ir(cr)y ..y ir(cr),wi(dy),. .., ws(ds) =
£0(c), wh(dh), .., whldh), My(wf), .., M (wl).
Here, ¢ and ¢’ are states in (), i; are heads of different input tapes, o is a head of
the output tape, wj, w}, and wj are heads of work tapes, ¢; (j = 1,...,r) and
c are characters from %, d; and d;; are characters from I', and M; (j =1,...,u)
are '+’ or '—’. Each part of the rule is optional; there may be a rule without o(c),
for example. The meaning of this rule is that if the state is ¢ and the characters
under the heads ¢; (j =1,...,7) and w, (e = 1,...,s) are ¢j and d., respectively,
then change the state to ¢', write the characters ¢ and dj (j =1,...,t) under
the heads o and w}, respectively, move the heads w? (j = 1,...,u) forward
or backward depending on whether M; = '+’ or '—’, and move the heads of
input/output tapes as follows. For each i; (j = 1,...,r) and o, when it is a head
H,(T) of a tape T, H,(T) is moved to the position of Hy(T") and Hy(T") is moved
to the next cell, and when it is Hy(7'), the position of H;(T') is left unchanged
and Hy(T') is moved to the next cell.

The machine starts with the output tape filled with L, work tapes filled with B, the
state set to qp, the heads of work tapes located on the first cell, and the heads H; (7))
and Hy(7T) of an input/output tape T are located above the first and the second cell,
respectively. At each step, the machine chooses one applicable rule and applies it.
When more than one rules is applicable, only one is selected in a nondeterministic
way.

Note 1. We can define an indeterministic multihead Type 2 machine more generally
in that each input/output tape may have n+ 1 heads Hy(T),...,H,+1(7) and it can
input /output sequences in ¢ | (n =0,1,...) . We define the head movements after
an input/output operation as follows. If input/output is made from H;(T) (I < n)
then H;(T)(l < j < n) are moved to the position of H;1(T) and H,,41(T) is moved
to the next cell. If input/output is made from H,, (7)) then H, ;1 (7T) is moved to
the next cell. Note that when n =0, X9 ; is nothing but %* and a tape has only one
head which moves to the next cell after an input/output.

Note 2. Here, we acted as if the full contents of the input tapes were given at the
beginning. However, an input is usually generated as an output of another machine,
and given incrementally. In this case, the machine behaves like this: it repeats exe-
cuting an applicable rule until no rule is applicable, and waits for input tapes to be
filled so that one of the rules become applicable, and repeats this process indefinitely.

Note 3. A machine can have different input/output types on the tapes. The in-
put/output types we consider are ¥4 , (n > 0) and X, where we may write X for

8

¥4 o- We extend an IM2-machine with a sequence (Y1,...,Y},Y)) indicating that it
has k input tapes with type Y; (i = 1,...,k) and one output tape of type Y;. When
Y; is X9 ,, the corresponding tape has the properties written in Note 1. When Y;
is X*, the corresponding tape has the alphabet ¥ U { B} and it has one head which
moves to the next cell when it reads/writes a character. In this case, the blank cells
are initialized with B. In addition, when Y} is ¥*, we consider that the machine has
a halting state at which the machine stops execution.

4 Gray Code Computability of Real Functions

As we have seen, an IM2-machine has a nondeterministic behavior and thus it has
many possible outputs to the same input. Therefore, we consider that an IM2-machine
computes a multi-valued function. Note that multi-valued functions appear naturally
when we consider computation over real numbers [Bra98].

Definition 3 An IM2-machine M with k inputs realizes a multi-valued function
F C Eilk :32‘11 if all the computational paths M have with the input tapes filled
with (p1,...,pk) € dom(F') produce infinite outputs, and the set of outputs forms a
subset of F(p1,...,pr). We say that F is IM2-computable when it is realized by some
IM2-machine.

This definition can be generalized to a multi-valued function F :C Y7 X ... x Y, X Y}
for the case Yj is ¥* or X% | (n=0,1,...).

Note that our nondeterministic computation is different from nondeterminism used,
for example, in a non-deterministic Turing machine; a non-deterministic Turing ma-
chine accepts a word when one of the computational paths accepts the word, whereas
all the computational paths should produce valid results in our machine. To distin-
guish, we use the word indeterminism instead of nondeterminism following [She75]
and [Bra98].

Definition 4 A multi-valued function F' :C ZF R T is realized by M if G(F) is
realized by M. We say that F is Gray-code-computable if G o F o G~ is IM2-
computable.

Definition 5 A partial function f :C ZF¥ — T is Gray-code-computable if it is
computable as a multi-valued function.

5 Equivalence to the Computability induced by the Signed Digit Repre-
sentation

Now, we prove that Gray code computability is equivalent to the computability in-
duced by a Type-2 machine and the (restricted) signed digit representation.

Definition 6 A Type-2 machine is an IM2-machine whose type includes only ¥
and ¥, and whose computational rule is deterministic.

This definition is equivalent to the one in [Wei00].

Proposition 1 Let Y; be X% or ¥* (i = 0,...,k). There is an IM2-machine which
computes F' :C Y] x ... x Y, XYy iff there is a deterministic IM2-machine which
computes F'.

Proof: The if part is immediate. For the only if part, we need to construct a deter-
ministic machine from an indeterministic machine for the case that the input/output
tapes have only one head. Suppose that M is an IM2-machine which realizes F.
Since the set of rules of M is finite, we give a numbering to them. We can determine
whether or not each rule is applicable because the input tapes do not have the char-
acter L. Therefore, we can modify M to construct a deterministic machine M’ which
chooses the first applicable rule with respect to the numbering. The result of M’ to
x € dom(F) is uniquely determined and is in F(z). =

Definition 7 A representation of a set X is a surjective partial function from ¢ to

X.

If p is a representation of X and p(p) = x, we call p a p-name of z.

Definition 8 Let 6 :C ¥ — T and §' :C X% — T be representations. We say that
§ is reducible to &' (6 < §') when there is a computable function f:C ¥¥ — X' such
that §(p) = 0'(f(p)) for all p € dom(5). We say that § and &' are equivalent (§ = 0')
when 6 < 6" and &' < 4.

Definition 9 1) The signed digit representation psq of I uses the alphabet ¥ =
{0,1,1} with T denoting —1, and it is a partial function psq :C X% — T defined on

{a1as... | a1 =1 and 35 > 2, 3 > 2 such that a; # 1 and a; # 1}

and returns 2°,a; - 27 to ajas. . ..

2) The restricted signed digit representation psq. of I is a restriction of psq to a

10

smaller domain
{a1as... | a1 =1 and Yk 35 > k, 3l > k such that a; # 1 and a; # 1}
without the first character a;(=1).

By psd, 3/8 has infinitely many names 101000. .., 111000. .., 1011111 ..., 10T1111. . .,
10101111.... The domain of p,qs means that we do not use a name which lasts as
111...or 111..., and therefore 3/8 has only two psg-names 01000 ... and 11000.. ..

Proposition 2 p. = psqy.

Proof: It is an easy exercise to give an algorithm that converts a pgs-name to a
Psar-NAamMe.

Definition 10 Let 6 :C X% — T be a representation of Z. A multi-valued function
F:CIT=XT s (0,0)-computable if there is a Type-2 machine M of type (X¥,3%) such
that if 6(p) € dom(F), then M with input p produces an infinite sequence q such that
d(q) € F(5(p))-

A partial function is (d, §)-computable if it is computable as a multi-valued function.
This definition can easily be extended to a function with several arguments.

Equivalent representations induce the same computability notion on Z. As we ex-
plained in the introduction, the equivalence class to which signed digit representation
belongs induces a suitable notion of computability on real numbers.

Proposition 3 Let M be an IM2-machine which realizes a multi-valued function
F:CYix...xY,2RYyand N; (i =1,...,k) be IM2-machines which realize multi-
valued functions G; :C Y{ x...x Y, X Y;. Suppose that Im((G,...,Gy)) C dom(F).
Then, there is an IM2-machine M o(Ny, ..., Ng) which realizes the multi-valued func-
tion F o (Gy,...,Gy) :C Y] x...xY!=XY,. Here, the composition of multi-valued
functions F' and G is defined to be y € (F o G)(x) if z. z € G(x) and y € F(z).

Proof: First, we consider the case k = 1. We write N for N;. We use the input
tapes of N as those of M o N and the output tape of M as that of M o N. We use
a work tape T with the alphabet ¥ U {B} which connects the parts representing N
and M, and work tapes to simulate the head movements of the input tape of M and
the output tape of N. It is easy to change the rules of M and N so that M reads
from T and N writes on 7. We also need to modify the rules so that it first looks for
an applicable rule coming from M and if there is no such rule, then looks for a rule
coming from N. It is possible because the former rules do not access to the input

11

tapes and therefore a machine can determine whether a particular rule is applicable
or not.

When k£ > 1, we need to copy the input tapes onto work tapes so that they can be
shared by the parts representing Ny, ..., N. We define that it executes rules coming
from N; until it outputs a character, and then switch to the next part. n

As we will show in Section 7, we have the followings.

Lemma 4 There is an IM2-machine of type ({1,0,1}*,{0,1}¢ ;) which converts a
psar-name of x to G(x) for all x € I.

Lemma 5 There is an IM2-machine of type ({0,1}{ ,,{1,0,1}*) which converts
G(x) to the psg-name of x for all x € 1.

Now, we prove the equivalences.

Theorem 6 A multi-valued function F :C I% — T is Gray-code-computable iff it is
((psdr)k, Psar) -computable.

Proof: Suppose that M is an IM2-machine which Gray code computes F'. By com-
posing it with the IM2-machines in Lemma 4 and Lemma 5, we can form, by Propo-
sition 3, an IM2-machine of type (({1,0,1}*)*,{T,0, 1}*) which outputs a ps4-name
of a member of F(xy,...,zx) when psg-names of z; are given. Therefore, we have a
desired Type-2 machine by Proposition 1.

On the other hand, suppose that there is a Type-2 machine which ((psqr)*, psar)-
computes F'. Since a Type-2 machine is a special case of an IM2-machine, again, by
composing the IM2-machines in Lemma 4 and Lemma 5, we can form an IM2-machine
which Gray code computes F. 1

6 Topological Properties

Let ¥ = {0, 1}. In this section, we show that G from 7 to X¢ ; is homeomorphic, and
therefore is a topological embedding.

Since the character 1. may be overwritten by 0 or 1, it is not appropriate to consider
Cantor topology on X ;. Instead, we define the order structure L <0 and L <1 on
our alphabet and consider the Scott topology on {0, 1, L}, i.e. {{},{0},{1},{0,1},{0,1, L}}.
We consider its product topology on {0, 1, L}*, and consider its subspace topology
on X¢ . Let 1 p denote the set {z | p < z}. Then, the set {1 (dL) | d € {0,1, L}*}

12

is a base of {0,1, L}*. From this, we have a base {1 (d1¥)NX¥Y, | d € P} for
P={0,1}* + {0,1}*1{0,1}* of £% .

Note that P corresponds to the states of output tapes of IM2-machines after a finite
time of execution, and 1 (d1“)N¥Y , is the set of possible outputs of an IM2-machine
after it outputs d € P. Thus, if ¢ € O for an open set O C X ; and for an output ¢
of an IM2-machine, then this fact is available from a finite time of execution of the
machine. In this sense, the observation that open sets are finitely observable proper-
ties in [Smy92] holds for our IM2-machine. We can prove the following fundamental
theorem in just the same way as we do for Type-2 computability and Cantor topology
on {0,1}*.

Theorem 7 An IM2-computable function f :C ((l],1)k — XY | s continuous.

Now, I'm(G) is the set {0, 1} — {0, 1}*0¢ + {0,1}* L10¥ C 3¢ ;. We also consider the
subspace topology on I'm(G), which has the base {1 (dL“) N Im(G)| d € {0,1}* +
{0,1}*1L10*}. We consider the inverse image of this base by G. When d € {0,1}*
and e € 0%, G"(1 (dL¥)) and G'(1 (dL1e)) range over open intervals of the form
mx27 <z < (m4+1)x27% and m x 270 — 270D < g < m x 270 4 27(HD)
respectively, for m and ¢ integers. Since these open intervals form a base of the unit
open interval Z, Z and I'm(G) become homeomorphic through the function G. Thus,
we have the following:

Theorem 8 The Gray code embedding G is a topological embedding of I into ¥ ;.
As a direct consequence, we have the following:
Corollary 9 A Gray-code-computable function f :C I*¥ — T is continuous.

As an application of our representation, we give a simple proof of Theorem 4.2.6 of
[Wei00], which says that there is no effective enumeration of computable real numbers.
Here, we define (x;);c, to be a computable sequence if there is an IM2-machine of
type (X%, £%) which outputs G(x;) when a binary name of i is given.

Theorem 10 If (x;);c, is a computable sequence, then a computable number x with
x # x; for all i € w exists.

Proof: Let s; = G(z;) and M be an IM2-machine which computes s; to the binary
name of 7. By Proposition 1, we can assume that M is deterministic. This means that,
by selecting one machine, the order the output tape is filled is fixed. Since s; € 3 |,
either s;[2i] or s;[2i + 1] is written in a finite time. When s;[27] is written first, we
put t[2i] = (not s;[2i]) and t[2i + 1] = s;[2i]. When s;[2i + 1] is written first, we put
t[21] = s;[2i + 1] and ¢[2i + 1] = not s;[2i + 1]. Here, not is defined as not 1 = 0 and
not 0 = 1. Then, the resulting sequence ¢ is computable and is in Im(G), but is not
equal to s; for (i € w). Therefore, G (¢) is not equal to z; because of the injectivity

13

of the representation. n

7 Conversion with signed digit representation

As an example of an IM2-machine, we consider conversions between the Gray code
and the restricted signed digit representation. Recall that a psg--name of v € T is
given as a sequence 1 : zs with xs an infinite sequence of {0, 1,1}. In this section, we
consider xs as the p,g-name of x.

Since the intervals represented by finite prefixes of both representation coincide, the
conversions become simple automaton-like algorithms which do not use work tapes.

Example 1 Conversion from the signed digit representation to Gray code. It has the
type ({1,0,1}¥,{0,1}% ;). We simply write the head of the input tape as I. It has
four states (4,7) (4,7 € {0,1}) with (0,0) the initial state, and 12 rules:

1,0),H,(O)(1); (1,0),1(1)=(1,0),H,(0)(0);
(0,0), I(1)=(0,0), H,(0)(0); (1,0),1(1)=(0,0), Hi(O)(1);
0,1),Ha(0)(1); (1,0),1(0)=(1,1), Ho(O)(1);

QS

(0,1), 1(1)=(0,0), H, (0)(1); (1,1),1(1)=(0,0), Hi(O)(0);
(0,1), I(1)=(1,0),H (0)(0); (1,1), I(1)=(L,0), Hi(O)(1);
(0,1),1(0)=(0,1),Ha(0)(0); (1,1),1(0)=(1,1), Hy(O)(0);

In order to express this more simply, we use the notation of the functional language
Haskell as follows:

s2gxs = stog0(xs,0,0)

stog0(1:xs,0,0) = 1:stogl(xs,1,0)

(1:xs,0,0) =0:stogl(xs,0,0)

stog0(0:xs,0,0) =c:1:ds where c:ds = stog0(xs,0,1)

stog0(0:xs,0,1) =c:0:ds where c:ds = stog0(xs,0,1)

Here, where produces bindings of ¢ and ds to the head and the tail of stogO
(xs,0,1), respectively. It is clear that the behavior of an IM2-machine can be ex-
pressed using this notation with the state and the contents of the work tapes be-
fore and after the head positions passed as additional arguments. In the program
stog0, the states are used to invert the output: the result of stog0(xs, 1,0) is that of
stog0(xs,0,0) with the first character inverted, and the result of stog0(xs,0,1) is

14

input tape

\ /

stog stog

v/ a

output tape

Fig. 3. The behavior of stog IM2-machine when it reads 0

that of stog0(xs, 0,0) with the second character inverted. Therefore, we can simplify
the above program as follows:

stog(l:xs) =1:nh (stog xs)
stog(1l:xs) =0:stog xs
stog(0:xs) =c:1:nh ds where c:ds = stog xs

Here, nh is the function to invert the first element of an infinite list. That is,

not 0 =1
not 1 =0
nh (s:ds) = not s:ds

The behavior of stog with input 0:xs is given in Figure 1. Here, a small circle on an
output head means to invert the output from that head before filling the tape.

The program stog is a correct Haskell program and works on a Haskell system.
However, if we evaluate stog([0,0..]), there will be no output because it tries to
calculate the first digit, which is L. Of course, tail(stog([0,0..]1)) produces the
answer [1,0,0,0,....

Next, we consider the inverse conversion, which is an example of Gray code input.

Example 2 Conversion from Gray code to signed digit representation. Now, we only
show a Haskell program. It has the type ({0,1}4 |, {1,0,1}*).

gtos(l:xs) =1:gtos(nh xs)
gtos(0:xs) =1: gtosxs
gtos(c:1:xs) =0:gtos(c:nh xs)

In this case, indeterminism occurs and yields many different valid results: the results
are actually signed digit representations of the same number. This is also a correct

15

Haskell program. However, it fails to calculate, for example, gtos(stog([0,0..1))
because the program gtos, from the first two rules, tries to pattern match the head
of the argument and starts its non-terminating calculation. Therefore, it fails to use
the third rule. This is a limitation of the use of an existing functional language. We
will discuss how to implement an IM2-machine as a program in Section 9.

These programs are based on the recursive structure of the Gray code and is not as
difficult to write such a program as one might imagine. One can see from Figure 2
the following three recursive equations:

[0:p] =1pl/2,

[1:p] =1/2+ [nh p]/2(= 1.0 — [p] = 0.5]), (1)

[e:1:p] =1/4+ [c: (nh p)]/2.
Here, [p] is G7'(p). The first equation corresponds to the fact that on the interval
with the first bit 0, i.e. the left half of Figure 2, the remaining bits form a /> reduction
of Figure 2. The second equation corresponds to the fact that on the interval with the
first bit 1, i.e. the right half of Figure 2, the remaining bits with the first bit inverted
form a1/, reduction of Figure 2, and if we use the equation with parenthesis, we can
also state that the remaining bits form the reversal of Figure 2. These two equations
characterize Figure 2. One interesting fact about this representation is that we also
have the third equation. It says that on the interval with the second bit 1, i.e. the

middle half of Figure 2, the remaining bits with the second bit inverted form a 1/
reduction of Figure 2.

From Equations (1), we have the following recursive scheme.

fO0:p) =alfP),
fL:p) = gs(f(nhp)),
f(c:1:p) =g3(f(c:nhp)).
Here, g; is a function to calculate f(z) from f(2z) when 0 < x <1/, go is a function to

calculate f(z) from f(2z —1) whenlh < z < 1, and g3 is a function to calculate f(x)
from f(2x —1/) when 1y < x <3/4. gtos is derived immediately from this scheme.

On the other hand, Equations (1) can be rewritten as follows:
G =0:G(x),

G(f+Tf) = 1: (nh G(2)),
G(/s+%k) =c:1:(nh p) where c:p=G(x).

16

stog uses this scheme to calculate the gray code output. These recursive schemes are
used to derive the algorithm for addition in the next section.

8 Some simple algorithms in Gray code

We write some algorithms with respect to Gray code.
Example 3 Multiplication and division by 2. They are simple shifting operations.

mul2 (0:s) = s (suppose that the input is 0 < x < 1/2)
div2 xs = 0:xs

Example 4 The complement x + 1 — z. It is a simple operation to invert the first
digit, i.e.,the nh function in Example 1. Note that with the usual binary representation
and the signed digit representation, we need to invert all the bits to calculate 1 — z
and thus this operation needs to be defined recursively. We can also see that the
complement operation (z — k/2" — x) with respect to a dyadic number k/2"*! for
(k—1)/2""' < & < (k+1)/2"*"! can be implemented as inverting one digit.

Example 5 Shifting © — x +15 (0 < z <1/k) . Addition with a dyadic number is
nothing but two continuous complement operations over dyadic numbers. In the case
of +1/, the first axis is 1> and the second axis is 3/4. Therefore, the function

AddOneOfTwo x:y:xs = (not x):(not y):xs
operates as * — x +14 if 0 <z <lhand as z +— z —1hiflh <z < 1.
Example 6 Addition

We consider addition z+y with 0 < x,y < 1. Since the result is in (0, 2), we consider
the average function (x +)/, instead.

pl (0:as) (0:bs) = 0:pl as bs

pl (1:as) (1:bs) = 1:pl as bs

pl (0:as) (1:bs) = c

pl (1:as) (0:bs) = c:1:nh cs where c:cs

pl as (nh bs)
pl (nh as) bs

:1:nh cs where c:cs

pl (a:1l:as) (b:1:bs) = c:1:nh cs where c:cs = pl (a:nh as) (b:nh bs)
pl (a:1:0:as) (0:0:bs) = 0:pl (a:l:as) (1:nh bs)
pl (a:1:0:as) (1:0:bs) = 1:pl (not a:l:as) (1:nh bs)

1
1
1
pl (a:1:0:as) (O:
1
0
0

0

0

b:1:bs) = 0:1:pl (not a:nh as) (not b:nh bs)
pl (a:1:0:as) (1:b:1:bs) = 1:1:pl (a:nh as) (not b:nh bs)
pl (0:0:as) (b:1:0:bs) = 0:pl (1:nh as) (b:1:bs)
pl (1:0:as) (b:1:0:bs) = 1:pl (1:nh as) (not b:1:bs)

17

pl (0:a:l:as) (b:1:0:bs)
pl (1:a:1:as) (b:1:0:bs)

0:1:pl (not a:nh as) (not b:nh bs)
1:1:pl (not a:nh as) (b:nh bs)

To calculate the sum with respect to the signed digit representation, we need to look
ahead two characters. It is also the case with the Gray code representation. Since it
does not have redundancy, we can reduce the number of rules from 25 to 13 compared
with the program written in the same way with the signed digit representation.

9 Extension to the Whole Real Line, Implementation, and Conclusion

We have defined an embedding G of Z to {0, 1} | based on Gray code, and introduced
an indeterministic multihead Type 2 machine as a machine which can input/output
sequences in {0, 1} ;. Since G is a topological embedding of Z into {0, 1}¥ |, our IM2-
machines are operating on a topological space which includes Z as a subspace. We
hope that this computational model will propose a new perspective on real number
computation.

In this paper, we only treated the unit open interval Z = (0, 1). We discuss here how
this embedding can be extended to the whole real line R. First, by using the first
digit as the sign bit: 1 if positive, 0 if negative, and L if the number is zero, we can
extend it to the interval (—1,1). We can also extend it to (—2*,2%) for arbitrary k
by assuming that there is a decimal point after the k-th digit. However, there seems
to be no direct extension to all of the real numbers without losing injectivity and
without losing the simplicity of the algorithms in Section 7 and 8.

One possibility is to use some computable embedding of R into (—1,1), such as the
function f(x) = 2 % arctan(x)/7. It is known that this function is computable, and
therefore, we have IM2-machines which convert between the signed digit representa-
tion of x € R and the Gray code of f(z) in (—1,1). Therefore, we can define our
new representation as G'(x) = G(f(x)) (r € R). It is clear that this representation
embeds R into X¢ |, and all the properties we have shown in Section 4 to 6 hold if
we replace Z with R and G with G'. In particular, the computability notion on R
induced by G’ and IM2-machines is equivalent to the one induced by the signed digit
representation and Type-2 machiens. However, we will lose the symmetricity of the
Gray code expansion and simplicity of the algorithms in Section 7 and 8.

Another possibility is to introduce the character “.” indicating the decimal point into
the sequence. In order to allow an expression starting with L (i.e. integers of the
form 2"), we also need to consider an expression starting with 0 because it should
be allowed to fill the | with 0 or 1 afterwards. Thus, we lose the injectivity of the
expansion because we have 0:1:xs = 1:xs. We also have the same kind of difficulty if
we adopt the floating-point-like expression: a pair of a number indicating the decimal

18

point and a Gray code on (—1,1).

Although this expansion becomes redundant, the redundancy introduced here by
preceding zeros is limited in that we only need at most one zero at the beginning
of each representation and thus each number has at most two names. As is shown
in [BHOO], we need infinitely many names to infinitely many real numbers if we
use representations equivalent to the signed binary representation. Therefore, the
redundancy we need for this extension is essentially smaller than that of the signed
binary representation.

Finally, we show some experimental implementations we currently have. As we have
noted, though we can express the behavior of an IM2-machine using the syntax of a
functional language Haskell, the program comes to have different semantics under the
usual lazy evaluation strategy. We have implemented this Gray code input/output
mechanism using logic programming languages. We have written gtos, stog, and the
addition function pl of Section 8 using KL.1 [UC90], a concurrent logic programming
language based on Guarded Horn Clauses. We have also implemented them using
the coroutine facility of SICStus Prolog. We are also interested in extending lazy
functional languages so that programs in Section 7 and 8 become executable. The
details about these implementations are given in [Tsu01].

Acknowledgements

The author thanks Andreas Knobel for many interesting and illuminating discus-
sions. He also thanks Mariko Yasugi, Hiroyasu Kamo, and [zumi Takeuchi for many
discussions.

References

[ASD90] D. J. Amalraj, N. Sundararajan, and G. Dhar. A data structure based on gray
code encoding for graphics and image processing. In SPIE Vol. 1349 Applications
of Digital Image Processing XIII, 1990.

[BCRO86] H. J. Boehm, R. Cartwright, M. Riggle, and M. J. O’Donnel. Exact real
arithmetic: A case study in higher order programming. In ACM Symposium
on Lisp and Functional Programming, 1986.

[BHOO] Vasco Brattka and Peter Hertling. Topological properties of real number
representations. Theoretical Computer Science, 2000. to appear.

[Bra98] Vasco Brattka. Recursive and Computable Operations over Topological
Structures. PhD thesis, Fern Universitat, 1998.

19

[Dew93] A. K. Dewdney. The New Turing Omnibus. Computer Science Press, 1993.

[EP97] Abbas Edalat and Peter John Potts. A new representation for exact real
numbers. FElectronic Notes in Theoretical Computer Science, 6, 1997.

[ES98] Abbas Edalat and Philipp Siinderhauf. A domain-theoretic approach to
computability on the real line. Theoretical Computer Science, 210(1):73-98,
1998.

[Gia96] Pietro Di Gianantonio. Real number computability and domain theory.
Information and Computation, 127:11-25, 1996.

[Gia97] Pietro Di Gianantonio. A golden ratio notation for the real numbers. Technical
Report Technical Report CS-R9602, CWI Amsterdam, 1997.

[Gia99] Pietro Di Gianantonio. An abstract data type for real numbers. Theoretical
Computer Science, 221:295-326, 1999.

[Grzb7] Andrzej Grzegorczyk. On the definitions of computable real continuous
functions. Fundamenta Mathematicae, 44:61-71, 1957.

[HJ92] P. Hudak and S. P. Jones. Haskell report. Technical Report 27(5), SIGPLAN
Notices, 1992.

[HY84] Masayoshi Hata and Masaya Yamaguti. The takagi function and its
generalization. Japan J. Appl. Math., 1:183-199, 1984.

[PER89] Marian B. Pour-El and J. Ian Richards. Computability in Analysis and Physics.
Springer-Verlag, 1989.

[She75] J. C. Shepherdson. Computation over abstract structures: serial and parallel
procedures. In H. E. Rose and J. C. Shepherdson, editors, Logic Colloguium
73, volume 80 of Studies in Logic and the Foundation of Mathematics, pages
445-513. North-Holland, 1975.

[Smy92] M. B. Smyth. Topology. In S. Abramsky, D. M. Gabbay, and T.S.E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 1, pages 641-761.
Clarendon Press, Oxford, 1992.

[Tsu01] Hideki Tsuiki. Implementing real number computation in GHC. Computer
Software (in Japanese), 18(2):40-53, 2001.

[Tur36] Alan M. Turing. On computable numbers, with an application to the
entscheidungsproblem. In Proc. of the London Mathematical Society 42(2),
pages 230-265, 1936.

[UC90] Kazunori Ueda and Takashi Chikayama. Design of the kernel language for the
parallel inference machine. The Computer Journal, 33(6):494-500, 1990.

[Vui90] J. Vuillemin. Exact real computer arithmetic with continued fractions. IEEE
Transactions on Computers, 39(8):1087-1105, 1990.

20

[Wei85] Klaus Weihrauch. Type 2 recursion theory. Theoretical Computer Science,
38:17-33, 1985.

[Wei00] Klaus Weihrauch. Computable analysis, an Introduction. Springer-Verlag,
Berlin, 2000.

21

