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DYADIC SUBBASES AND EFFICIENCY
PROPERTIES OF THE INDUCED

{0, 1,⊥}ω-REPRESENTATIONS

HIDEKI TSUIKI

Abstract. A dyadic subbase induces a representation of a
second-countable regular space as a subspace of the space of
infinite sequences of {0, 1,⊥}, which is known as Plotkin’s �ω.
We study four properties of dyadic subbases – full-representing,
canonically representing, independent, and minimal – which
express efficiency properties of the induced representations.

1. Introduction

When a subbase (with an enumeration) S = (S0, S1, . . .) of a
T0 space X is given, we can represent X as a subspace of Pω,
the powerset of N, through the map ϕ′

S : X → Pω defined as
ϕ′

S(x) = {n | Sn � x}, or equivalently, we can represent each point
of the space as an infinite sequence of 1 and ⊥. When X is a second-
countable regular space and the subbase S = (S0

0 , S
1
0 , S

0
1 , S

1
1 , . . .) is

dyadic in the sense that Sj
n are regular open and S0

n and S1
n are

exteriors of each other, we can represent X also as a subspace of
Plotkin’s Tω, which is the set of infinite sequences of T = {0, 1,⊥}
[6]. Here, the representation function ϕS : X → Tω is defined as
ϕS(x)[n] is 0, 1, and ⊥ iff x is in S0

n, S1
n, and on the boundary of
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S0
n (= the boundary of S1

n), respectively. When X is realized as a
subspace of Tω, we can study topological properties of X through
the domain structure of Tω, and we can define computation on X
through string manipulation on Tω[7, 8]. Pairs of regular opens
which are exteriors of each other are the maximal points of the
domain studied in [2].

We give two examples of dyadic subbases and the induced rep-
resentations of the closed unit interval I = [0, 1].

Example 1.1 (Dedekind subbase). Fix a numbering qi of rational
numbers in (0, 1). Define the dyadic subbase D = (D0

0 ,D
1
0 ,D

0
1,D

1
1 , . . .)

as D0
n = [0, qn) and D1

n = (qn, 1]. The induced representation
ϕD : [0, 1] → Tω is ϕD(x)[n] = 0,⊥, and 1 iff x < qn, x = qn,
and x > qn, respectively.

Example 1.2 (Gray subbase [7]). We first define the representa-
tion function ϕG. Let the tent function t : I → I be

t(x) =
{

2x (0 ≤ x ≤ 1/2)
2(1 − x) (1/2 < x ≤ 1)

and the function P : I → T

P (x) =

⎧⎨
⎩

0 (x < 1/2)
⊥ (x = 1/2)
1 (x > 1/2)

.

Gray embedding ϕG is a function from I to Tω
⊥,1 defined as ϕG(x)[n] =

P (tn(x)) (n = 0, 1, . . .). Figure 1 shows this embedding. Here, a
horizontal line means that the corresponding bit has value 1, and the
edge of each line corresponds to the value ⊥. It is just the itinerary
of the tent function, which is essential for symbolic dynamical sys-
tems [5]. It is also just the expansion of [0, 1] with binary reflected
Gray-code, which is a binary coding of natural numbers other than
the ordinary one [4].

Define G0
n = {x | ϕG(x)[n] = 0} and G1

n = {x | ϕG(x)[n] = 1}.
G = (G0

0, G
1
0, G

0
1, G

1
1, . . .) forms a dyadic subbase of [0, 1].

When we compare these two representations, one can see that ϕG

is, in some sense, more efficient than ϕD, and ϕD is more redun-
dant than ϕG. To characterize this efficiency of ϕG, we define four
properties of dyadic subbases, that is, full-representing, canonically
representing, independent, and minimal. Full-representing roughly
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Figure 1. Gray code Embedding of real numbers.

means that every Σω sequence appears as a representation of some
point when we fill the bottoms with 0 and 1, and canonically repre-
senting means that every digit of the induced representation is in-
dispensable to identify a point. Independent subbase is analogous
to independent family of subsets, and minimal subbase is simply
defined as a minimal dyadic subbase.

After defining (proper) dyadic subbases in Section 3, we define
the above four properties and show that the strength of them de-
crease in this order in Section 4. In Section 5, we study the case X
is compact and show that the first three properties are equivalent.
In Section 6, we give examples of such subbases, and mention some
open problems.

2. Notations

We will write Int O,Ext O,Bd O,O for the interior, exterior,
boundary, and closure of O, respectively. An open set O is regular
when Int O = O, and in this case, we have Ext Ext O = O.

Throughout this paper, Σ is the alphabet {0, 1}. We write T for
Σ ∪ {⊥}. We write Σω and Tω for the set of infinite sequences of
Σ (i.e. the Cantor set) and T, respectively. Each element of Tω

is called a bottomed sequence. We call each copy of 0 and 1 which
appears in d ∈ Tω a digit of d. A finite (an infinite) element of Tω is
an element with finite (infinite) number of digits. When we express
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a finite element of Tω, we omit the ⊥ω which comes at the end of the
sequence. For example, we write ⊥110⊥1 for ⊥110⊥1⊥ω ∈ Tω. We
write K(Tω) and L(Tω) for the set of finite and infinite elements
of Tω, respectively. We use variables p, q, and r for elements of
Tω, d and e for elements of K(Tω), c for elements of T, and a for
elements of Σ (i.e. digits). not is a function to invert a digit, i.e.,
not(0) = 1 and not(1) = 0.

We consider the order 1 > ⊥ and 0 > ⊥ on T, and its product
order on Tω. That is, p ≥ q iff p[n] = q[n] holds when q[n] is
a digit. (Tω,≤) is an ω-algebraic domain, and Σω is the set of
maximal elements of (Tω,≤). This paper is related to, but does
not explicitly use domain theory [1]. We write ↑p for {r | r ≥ p}.
When p and q have a common upper bound (i.e., r ≥ p and r ≥ q
for some r), we say that p and q are compatible, and write p ↑ q.
One can see that p ↑ q iff p[n] = q[n] holds when both p[n] and q[n]
are digits.

We call the number of digits in p the length of p. When p ∈ Tω,
we write p|n for the finite element of length n which has the first n
digits of p. p|n satisfies p|n ≤ p. We write p[n := c] ∈ Tω for p with
the n-th component replaced by c ∈ T.

We consider the topology {∅, {0}, {1}, {0, 1},T} on T and its
product topology on Tω, which coincides with the Scott topology
of the domain (Tω,≤).

3. Dyadic subbase

Definition 3.1. Let X be a Hausdorff space. We call a countable
subbase S = (S0

0 , S
1
0 , S

0
1 , S

1
1 . . .) of X with a pairing and an enumer-

ation of the pairs a dyadic subbase when Sj
n(n = 0, 1, 2, . . . , j = 0, 1)

are regular open and S0
n and S1

n are exteriors of each other.

A space is called semiregular when it is Hausdorff and it has a
base which consists of regular open sets. When a Hausdorff space
X has a dyadic subbase, X is a second-countable semiregular space
because the intersection of two regular open sets is also regular
open. On the other hand, we have

Proposition 3.2. Every second-countable semiregular space has a
dyadic subbase.
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Proof. Let B be a countable base of a second-countable semiregular
spaceX. Let P = {(B1, B2) |B1, B2 ∈ B and there is a regular open
set U such that B1 ⊆ U ⊆ B2}. For each P = (B1, B2) ∈ P, we
choose a regular open set UP such that B1 ⊆ UP ⊆ B2. Then,
U = {UP | P ∈ P} is a countable regular base. By extending it
with the exteriors of each element, we have a dyadic subbase of
X. �

Since a regular space is semiregular, every second-countable reg-
ular space has a dyadic subbase. Though we are mainly interested
in regular spaces, we use regularity only in Theorem 5.2 and we
only assume that X is Hausdorff when we say that X has a dyadic
subbase. See the open problems on regularity in Section 6.

Proposition 3.3. When S is a dyadic subbase of X, we have a
topological embedding ϕS : X → Tω defined as

ϕS(x)[n] =

⎧⎨
⎩

0 (x ∈ S0
n)

⊥ (x ∈ Bd S0
n = Bd S1

n)
1 (x ∈ S1

n)
.

Proof. ϕS is one-to-one because X is a Hausdorff space. It is an
embedding because ϕS induces a correspondence between the open
base generated by S and the family {↑e∩ Image(ϕS) | e ∈ K(Tω)},
which is an open-base of Image(ϕS). �

Definition 3.4. We define ψS , ψS : Tω → P(X) as follows

ψS(p) =
⋂
S

p[n]
n ,

ψS(p) =
⋂
S

p[n]
n .

Here, we define S⊥
n = X.

Both ψS and ψS are anti-monotonic (ψS(p) ⊇ ψS(q) and ψS(p) ⊇
ψS(q) if p ≤ q) and ψS(p) ⊆ ψS(p). We can consider each infinite
sequence p in Tω as a specification of points in X in two ways. The
first one is to consider each digit a on the n-th cell of p as giving the
specification that the point is in Sa

n. The other one is to consider it
as giving the specification that the point is in Sa

n. ψS(p) and ψS(p)
are just the sets of points satisfying the specification p in these two
ways, respectively. {ψS(d) | d ∈ K(Tω)} is the base generated by
S.
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The sets ψS(p) and ψS(p) are also expressed using the order
relation on Tω as follows.

Proposition 3.5. 1)ψS(p) = ϕ−1
S (↑p).

2)ψS(p) = ϕ−1
S ({q | p ↑ q}).

Proof. 1) Obvious.
2) p ↑ q iff p[n] �= ⊥ implies (q[n] = p[n] or q[n] = ⊥). Therefore,

p ↑ ϕS(x) iff x ∈ S
p[n]
n for every n. �

In the following, we place one more condition on dyadic subbases
which connects these two interpretations of p ∈ Tω.

Definition 3.6. A dyadic subbase is proper if ψS(d) = ψS(d) for
d ∈ K(Tω).

Both the Dedekind subbase and the Gray subbase defined in the
introduction are proper.

Example 3.7. An example of a non-proper dyadic subbase of I.
Replace the first two components [0, 1/2) and (1/2, 1] of the Gray
subbase with the four elements [0, 1/2)∪(5/8, 3/4), [0, 1/2)∪(3/4, 7/8),
(1/2, 1]∪(1/8, 1/4), (1/2, 1]∪(1/4, 3/8) and their exteriors. As an-
other example, simply duplicate a non-clopen component (S0

k , S
1
k)

of a proper dyadic subbase.

Proposition 3.8. Let S be a proper dyadic subbase. When x �= y,
x and y are separated by S0

n and S1
n for some n.

Proof. Suppose that x and y are separated by open base elements
ψS(d) and ψS(e). Then, x ∈ ψS(d) and y �∈ ψS(d) = ψS(d). There-

fore, for some n, x ∈ S
d[n]
n and y �∈ S

d[n]
n , and thus y ∈ Snot(d[n])

n . �

In Example 3.7, the two points 1/4 and 3/4 cannot be separated
by subbase elements. Thus, it gives a counter-example to Proposi-
tion 3.8 when S is not proper.

Proposition 3.9. When S is a proper dyadic subbase, for p, q ∈
Image(ϕS), p ↑ q implies p = q.

Proof. Suppose that p = ϕS(x) and q = ϕS(y) satisfy p ↑ q. If
p �= q, x and y are separated by S0

n and S1
n for some n. Thus, p[n]

and q[n] are different digits. This contradicts p ↑ q. �
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Proposition 3.10. (1) When S is a dyadic subbase, ψS ◦ϕS(x) =
{x}, and ψS(q) = ∅ for all q � ϕS(x).
(2) When S is a proper dyadic subbase, ψS ◦ ϕS(x) = {x}. More-
over, ψS(q) = {x} for all q ≥ ϕS(x).

Proof. (1) Obvious. Note that q � ϕS(x) means that there is an
index n of q such that q[n] = 0 or 1 and ϕS(x)[n] = ⊥.

(2) Suppose that y ∈ ψS ◦ϕS(x). It means that y is in the closure
of every element Sj

n such that x ∈ Sj
n. Since Sj

n ∩ Si
m = Sj

n ∩ Si
m,

y is in the closure of every base element containing x. Since X is
Hausdorff, it means y = x. Since ψS is anti-monotonic, ψS(q) ⊆
{x} when q ≥ ϕS(x). �

4. Four properties of dyadic subbases

We consider four conditions each of which distinguishes the Gray
subbase from the Dedekind subbase.

From Proposition 3.10, every bottomed sequence q ≥ ϕS(x) spec-
ifies {x} with respect to ψS when S is a proper dyadic subbase.
First, we consider the condition that the converse is also true.

Definition 4.1. A proper dyadic subbase S is called a canonically
representing subbase if ψS(q) = {x} implies q ≥ ϕS(x).

It is obvious that if q is not compatible with ϕS(x), then x is not
in ψS(q). Therefore, this condition is equivalent to saying that when
q � ϕS(x), ψS(q) includes at least one point other than x. Since ψS

is anti-monotonic, we only need to consider the case q is maximal,
i.e., q = ϕS(x)[n := ⊥] for an index n such that ϕS(x)[n] is a digit.
Thus, S is canonically representing means that the representation
function ϕS has no redundancy in that if we erase any digit of
ϕS(x), then there is another point satisfying the specification with
respect to ψS and the sequence no longer identifies the point x.

Next, we consider the following condition.

Definition 4.2. A proper dyadic subbase S is called a full-representing
subbase if for each p ∈ Σω, there is an element z ∈ X such that
ϕS(z) ≤ p.

Note that such an element z is unique by Proposition 3.9. In
Type-2 Theory of Effectivity[9], a surjective partial function from
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Σω to X is called a representation. When a dyadic subbase S
is given, we can define such a representation ρS : Σω → X as

ρS(p) = x iff x ∈ S
p[n]
n for all n. The condition that S is full-

representing means that ρS is a total function from Σω to X. Thus,
in this case, X is a dyadic space (the continuous image of the Cantor
cube Dm for m ≥ ℵ0 [3, 3.12.12]). Note that not all dyadic spaces
have full-representing subbases. See Corollary 6.2.

Thirdly, we define independent subbase. A countable family
A0, A1, . . . of subsets ofX is called an independent family iff

⋂
A

d(i)
i �=

∅ for all d ∈ K(Tω), when we define A0 = A, A1 = X\A, and
A⊥ = X. By analogy, we define as follows.

Definition 4.3. A proper dyadic subbase S is called an indepen-
dent subbase if ψS(d) �= ∅ for all d ∈ K(Tω).

It is equivalent to saying that Image(ϕS) is dense in Tω. Finally,
we define as follows.

Definition 4.4. A proper dyadic subbase is minimal if any proper
subset is not a dyadic subbase.

Proposition 4.5. (1) The subbase G is canonically representing,
full-representing, independent, and minimal.
(2) The subbase D is not canonically representing, nor full-representing,
nor independent, nor minimal.

We study relations among these four properties.

Proposition 4.6. A full-representing subbase is canonically repre-
senting.

Proof. Suppose that S is a full-representing subbase of X. Let
x be any point of X, q = ϕS(x), and q[n] �= ⊥. We will show
that ψS(q[n := ⊥]) �= {x}. Without loss of generality, we assume
q[n] = 0. Let q′ = q[n := 1] and p be any element in Σω such
that q′ ≤ p. From the assumption, there is an element y such that
ϕS(y) ≤ p. We have x �= y because x ∈ S0

n and y ∈ S1
n. We have

y ∈ ψS(q[n := ⊥]) because q[n := ⊥] < p ≥ ϕS(y) and Proposition
3.5(2). �
Proposition 4.7. A canonically representing subbase of a non-
empty space is independent.
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Proof. Suppose that P = {d ∈ K(Tω) | ψS(d) = ∅} is not empty
and d is an element of P which includes minimal number of digits.
By reindexing the subbase, we can assume that d = 0n (n ≥ 1).
When n = 1, we have S0

0 = ∅ and S1
0 = X. Therefore, for every

element x ∈ X, ϕS(x)[0] = 1 and q = ϕS(x)[0 := ⊥] satisfies
ψS(q) = {x}. Thus, S is not canonically representing.

When n > 1, consider the sets ψS(0)(= S0
0), ψS(1)(= S1

0), and
ψS(⊥0n−1). By assumption, they are not empty and ψS(0)∩ψS(⊥0n−1) =
ψS(0n) = ∅. Then, since ψS(⊥0n−1) is an open set which does not
intersect with ψS(0), it is in the exterior of ψS(0). That is, we have
ψS(⊥0n−1) ⊆ ψS(1). Since ψS(⊥0n−1) is not empty, take a point
x ∈ ψS(⊥0n−1). We have ϕS(x)[0] = 1 because x ∈ ψS(1). Let
p = ϕS(x)[0 := ⊥] ∈ Tω. Suppose that y ∈ ψS(p). Then, y be-
longs to

⋂
1≤i≤n−1 S

0
i , which is equal to

⋂
1≤i≤n−1 S

0
i = ψS(⊥0n−1)

because S is proper. Since ψS(⊥0n−1) ⊆ ψS(1), y ∈ ψS(1) and
thus y ∈ ψS(ϕS(x)). Therefore, we have y = x. It means that
ψS(p) = {x}, and contradicts the fact that S is canonically repre-
senting. �

Proposition 4.8. When S is a proper dyadic subbase, the following
conditions are equivalent.
1) S is an independent subbase.
2) If d, e ∈ K(Tω) are compatible, then ψS(d) ∩ ψS(e) �= ∅.
3) If d, e ∈ K(Tω) satisfy ψS(d) ⊆ ψS(e), then d ≥ e.
4) If d, e ∈ K(Tω) satisfy ψS(d) = ψS(e), then d = e.

Proof. (1) ↔ (2) is obvious from the definition.
(2) → (3) Suppose that ψS(d) ⊆ ψS(e). We need to show that,

if e[n] is a digit a, then d[n] = a. If d[n] = not(a), then ψS(d) ∩
ψS(e) = ∅ and thus contradicts. Suppose that d[n] = ⊥. Let d′ =
d[n := not(a)]. We have d′ > d and thus ψS(d′) ⊆ ψS(d) ⊆ ψS(e).
On the other hand, d′ �↑ e and thus ψS(d′) ∩ ψS(e) = ∅. Since
ψS(d′) = ψS(d′) ∩ ψS(d′) is not empty, it contradicts.

(3) → (4) Obvious.
(4) → (1) If ψS(d) = ∅, then ψS(e) = ∅ for all e > d. �

When S is an independent subbase, Image(ϕS) ⊆ L(Tω) because
ψS(d) cannot be a one-point set for d ∈ K(Tω).

Proposition 4.9. An independent subbase is minimal.
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Proof. Suppose that an independent subbase S = (S0
0 , S

1
0 , S

0
1 , S

1
1 , . . .)

is not minimal and S′ = (S0
1 , S

1
1 , . . .) is also a subbase. Then,

S0
0 ⊃ ψS(d) for some d ∈ K(Tω) such that d[0] = ⊥. Thus, for
d′ = d[0 := 1], ψS(d′) = ∅. �

So far, we have proved full-representing ⇒ canonically represent-
ing ⇒ independent ⇒ minimal, when the space is not empty. These
implications are strict as the following examples show.

Example 4.10. An example of a canonically representing subbase
which is not full-representing. Consider the subset J = {x ∈ I | x =
k/2m for k,m ∈ N} and the subspace P = I \ J with the relative
topology of I. P is homeomorphic to the Baire space. Let S be the
subbase on P which is relative to the Gray subbase on I. We have
P = {x ∈ I | ϕG(x) contains infinite number of 1}, and ϕS(x) ∈
Σω for x ∈ P. Obviously, S is not full-representing. Suppose that
x ∈ P and ϕS(x)[n] = a. Let q = ϕS(x)[n := ⊥]. ψG(q) is always a
two-point set and both of the elements contain infinite number of 1.
Therefore, ψS(q) = ψG(q) and thus S is canonically representing.

Example 4.11. An example of an independent subbase which is not
canonically representing. Consider [0,1) with the relative subbase
S of the Gray subbase. Then, since ψS(10ω) is empty, ψS(⊥0ω) =
{0}, whereas ϕS(0) = 0ω.

Example 4.12. An example of a minimal subbase which is not
independent. Consider the space [0, 1] ∪ [2, 3] and the subbase S
whose 0th component S0

0 is [0, 1], (thus S1
0 = [2, 3]) and the other

components are composed from the Dedekind subbase D on [0,1]
and the Gray subbase G on [2,3], defined as S0

n+1 = D0
n ∪ G0

n and
S1

n+1 = D1
n ∪G1

n.

5. The compact case

We have stronger results when X is compact.

Theorem 5.1. When X is compact and S is a proper dyadic sub-
base of X, the followings are equivalent.
1) S is full-representing.
2) S is canonically representing.
3) S is independent.
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Proof. (1) → (2): Proposition 4.6.
(2) → (3): Proposition 4.7.
(3) → (1): Let p ∈ Σω. Consider the infinite sequence ψS(p|1) ⊃

ψS(p|2) ⊃ . . . of non-empty closed sets. Since X is compact, their
intersection is not empty. Let z be in their intersection. Then, we
have ϕS(z)[n] ≤ p[n] for each n and thus ϕS(z) ≤ p. Therefore,
z ∈ ψS(p). The uniqueness of such an z is by Proposition 3.9. �

Note that the spaces in Example 4.10 and 4.11 are not compact
but the space in Example 4.12 is compact. Therefore, independent
subbase and minimal subbase are different even for the compact
case.

Theorem 5.2. Suppose that S is a full-representing subbase of a
space X with the representation function ρS : Σω → X.
1) X is compact.
2) X is regular.
3) ρS is continuous.

Proof. (1) → (2) : Every compact Hausdorff space is regular.
(2) → (3) : Let p ∈ Σω, x = ρS(p), and ψS(d) � x. Since

{ψS(d) | d ∈ K(Tω)} is a base of X, when x ∈ ψS(d), there is e ≥ d

such that x ∈ ψS(e) ⊂ ψS(e) ⊂ ψS(d). Then, for all q ∈↑e ∩ Σω,
we have ϕS(ρS(q)) ↑ e because ϕS(ρS(q)) ≤ q ≥ e. Therefore,
ρS(q) ∈ ψS(e) by Proposition 3.5, which is equal to ψS(e) because
S is proper. Therefore, ρS(q) ∈ ψS(d).

(3) → (1) : Because Σω is compact and X is the image of ρS . �
This theorem shows that when we only consider regular spaces,

the existence of a full-representing subbase implies compactness.
On the other hand, it is still open whether there exists a non-regular
space with a full-representing subbase. See Section 6.

Proposition 5.3. 1) When X is a compact space with a dyadic
subbase S, ϕ−1

S (Σω ∩ Image(ϕS)) is a dense Gδ set in X.
2) When X is a compact space with an independent subbase S,
Σω ∩ Image(ϕS) is a dense Gδ set in Σω.

Proof. 1) This set is equal to ∩n(S0
n ∪ S1

n). Since S0
n ∪ S1

n is a dense
open subset of X, it holds because of the Baire category theorem.
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2) Recall that Image(ϕS) is dense in Tω when S is an indepen-
dent subbase, and Σω ∩ Image(ϕS) is dense in Image(ϕS) by (1).
Therefore, Σω ∩ Image(ϕS) is also dense in Tω, and also dense in
Σω. �

This proposition shows that the set of points whose representa-
tion by ϕS does not include a ⊥ is a dense Gδ set.

Finally, we consider the possibility of another definition for a
canonically representing subbase. The intuitive meaning of a canon-
ically representing subbase is that if we erase a digit from the se-
quence ϕS(x), it no longer identifies a point with respect to ψS . If
we use ψS instead of ψS , one may as well define as follows. (See
also Proposition 3.10.)

Definition 5.4. A dyadic subbase S is strongly canonically repre-
senting iff ψS(q) = {x} implies q = ϕS(x).

However, we can prove that, when X is compact, only the Cantor
space has such a subbase.

Proposition 5.5. Suppose that S is a strongly canonically rep-
resenting subbase of X. If p ∈ Image(ϕS) and q is obtained by
inverting finite number of digits of p, then q ∈ Image(ϕS).

Proof. Suppose that p = ϕS(x) and p[n] = 0. Let r = p[n := ⊥].
Then, since ψS(r) contains an element other than x, there is y �= x
such that ϕS(y) ≥ r. In particular, ϕS(y) ≥ r[n := 1] = p[n := 1]
because ϕS(y) �≥ r[n := 0] = p. In the same way, there is z such that
ϕS(z) ≥ ϕS(y)[n := 0]. From this construction, we have ϕS(z) ≥
ϕS(x). Therefore, z = x. Thus, y satisfies ϕS(y) = ϕS(x)[n := 1].
Repeating this process, we have the result.

�
Theorem 5.6. A compact space with a strongly canonically repre-
senting subbase is homeomorphic to the Cantor space.

Proof. Suppose that p ∈ Image(ϕS) and p[0] = ⊥. Let q ∈ Σω

be any element of Σω and r < q be the element which satisfies
r[n] = ⊥ iff p[n] = ⊥ for every n. In particular, r[0] = ⊥. Since r|m
can be extended to an infinite sequence which is same as p except
for finite number of coordinates, from Proposition 5.5, we have, for
every m ≥ 0, an element ym in ψS(r|m). ym satisfies ym[0] = ⊥.
Let z be a cluster point of ym. When r[n] is a digit a, ym ∈ Sa

n for



DYADIC SUBBASE AND REPRESENTATIONS 13

almost all m, and thus z ∈ Sa
n. On the other hand, when r[n] = ⊥,

ym ∈ Bd S0
n for every n and thus z ∈ Bd S0

n. Therefore, we have
ϕS(z)[n] ≤ r[n] for every n, which means ϕS(z) ≤ r. In particular,
z[0] = ⊥. Since q is arbitrary, it means that for every z ∈ X,
ϕS(z)[0] = ⊥, which is impossible because S0

0 �= ∅. Thus, p[0] is a
digit. For the same reason, p[n] is a digit for every n. �

6. Examples of spaces and open problems

We show examples of compact spaces with independent (also
canonically representing and full-representing by Theorem 5.1) sub-
bases. First of all, since Image(ϕS) is dense in Tω,

Proposition 6.1. If X has an independent subbase, then X has
no isolated points (i.e., X is dense in itself).

Corollary 6.2. Every countable compact Hausdorff space does not
have an independent subbase.

The characterization of dense-in-itself compact Hausdorff spaces
with independent subbases is an open problem. We give some con-
structions of independent subbases.

The Cantor space Σω: The subbase S0
n =↑⊥n0 and S1

n =↑⊥n1.
The unit interval I: The Gray subbase G in Example 1.2.
Products In : For the case of I2, let Sj

2n = Gj
n × I and Sj

2n+1 =
I ×Gj

n(n = 0, 1, 2, . . . , j = 0, 1). In the same way, we can form an
independent subbase of X × Y from those of X and Y .

Hilbert cube Iω: We can apply the same kind of construction
for infinite products of spaces with independent subbases.

The circle S1: The endpoints 0 and 1 of I have the represen-
tations ϕG(0) = 0ω and ϕG(1) = 10ω , respectively. Since they
are different only at the first coordinate, we can give the repre-
sentation ϕG′ of S1 = I/(0 = 1) so that ϕG′([0 = 1]) = ⊥0ω and
ϕG′(x) = ϕG(x) for other x. The corresponding subbase is inde-
pendent.
n-dimensional surface Sn, torus T 2, n-torus nT 2 (ori-

entable closed surface of genus n): Suppose that S is an in-
dependent subbase of X and Z is a nowhere-dense closed subset of
X. Consider the space Y = {0, 1} × X/∼ where ∼ is defined as
(0, z) ∼ (1, z) for z ∈ Z. Then, we can form an independent subbase
T of Z as T 0

0 = ({0}×X)\Z, T 1
0 = ({1}×X)\Z, T 0

n+1 = {0, 1}×S0
n,
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and T 1
n+1 = {0, 1} × S1

n. This technique applies to these cases, and
we can form independent subbases for them.

We define the dimension of a dyadic subbase as the maximal
number of ⊥ which appears in the representation of each point.
For example G and D have dimension 1, and the dimension of each
independent subbase we listed above is equal to the weak inductive
dimension of the space. In [8], it is proved that every separable
metric space of dimension n (n ≤ ∞) has a dyadic subbase with
dimension n. The characterization of n-dimensional spaces with
independent subbases of dimension n is an open problem. As an-
other open problem, as we have mentioned in Section 5, we have not
succeeded in constructing a non-regular space with an independent
subbase.

Finally, we will briefly study about independent subbases of I.
The Gray subbase G is not the only independent subbase of I; there
are uncountably many independent subbases of I, even if we identify
those which are conjugate through auto-homeomorphisms on I and
automorphisms on Tω. Among them, the author has constructed,
with professor Shuji Yamada, an independent subbase whose first
coordinate has infinite number of points on its boundary. Note
that the n-th coordinate of the Gray-subbase G has 2n points on
its boundary. When e is a Σ-sequence of length n, let [l, r] be the
closed interval ψG(e) and let ẽ denote the function from [0, 1/2n] to
Tω defined as ẽ(x)[m] = e[m] when m < n and ẽ(x)[m] = ϕG(x +
l)[m] when m ≥ n. When f : [0, rf ] → Tω and g : [0, rg] →
Tω are functions, we define f ++ g : [0, rf + rg] → Tω such that
f ++ g(x) = f(x) when x < rf , f ++ g(x) = g(x−rf ) when x > rf ,
and f ++ g(rf )[n] = f [n] � g[n]. Here, f [n] � g[n] = f [n] when
f [n] = g[n], and f [n] � g[n] = ⊥ when f [n] �= g[n]. Then, we
define an : [0, 1/2n+1] → Tω as an = 0̃1n0 ++ 1̃1n0 when n is even
and an = 1̃1n0 ++ 0̃1n0 when n is odd. Now, define a function
ϕ′

P : [0, 1) → Tω as the infinite sum a0 ++a1 ++ a2 ++ ..., and
extend it to a function ϕP : [0, 1] → Tω so that ϕP (1) = ⊥1ω. The
corresponding subbase P is independent. One can see that Bd P 0

0

is an infinite set, which has an accumulation point on a boundary
of [0,1].
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