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Abstract

The notion of an independent subbase was introduced by H. Tsuiki to apply
non-redundant {0, 1,⊥}ω-code representations to topological spaces. We prove
that every dense in itself, separable, metrizable space X has an independent
subbase and, if dim X ≤ n in addition, then X has an independent subbase
of dimension n. We also study other properties of subbases related to non-
redundant {0, 1,⊥}ω-codings.
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1. Introduction

Let T be the set {0, 1,⊥}, where ⊥ is called the bottom character which
means undefinedness. The notion of an independent subbase was introduced
by Tsuiki [10] to apply non-redundant Tω-code representations to topological
spaces, in particular, separable metrizable spaces. Let ω be the first infinite
ordinal. As usual, an element of ω is identified with the set of smaller elements,
for example, 2 = {0, 1}, and Γ2 denotes the set of all maps from a finite subset
Γ of ω to 2.
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Definition 1. An independent subbase S of a space X is a subbase {Sn,i : n <
ω, i < 2} of X, such that

(∀n < ω)(Sn,0 ∩ Sn,1 = ∅), and (1.1)

(∀n < ω)(∀σ ∈ n2)

(∩
k<n

Sk,σ(k) ̸= ∅

)
. (1.2)

We show its equivalence to the definition in [10] in the next section. In particu-
lar, we show in Lemma 7 that Sn,i (n < ω, i < 2) are regular open and Sn,0 and
Sn,1 are exteriors of each other for an independent subbase S. It is obvious from
(1.2) that for a finite subset Γ of ω and a function σ ∈Γ 2,

∩
k∈Γ Sk,σ(k) is not

empty. Therefore, we can say that an independent subbase is a subbase which
generates through finite intersections and unions a free boolean subalgebra of
the boolean algebra of regular open sets of X.

¿From an independent subbase S, we can define a mapping φS from X to
Tω as follows

φS(x)(n) =

 0 (x ∈ Sn,0)
1 (x ∈ Sn,1)
⊥ (otherwise)

.

Actually, it is a topological embedding of X in Tω and it assignes a unique
Tω-code to each element of X. It has the property that each index has an
“independent” meaning in that for any subset Γ of ω and n ̸∈ Γ, any assignment
σ of digits (i.e., 0 or 1) to Γ do not determine the digit at the index n because∩

k∈Γ∪{n} Sk,σi(k) ̸= ∅ for both of the extensions σi (i = 0, 1) of σ to Γ ∪ {n}
which assigns i to n. We explain in detail the relation between an independent
subbase and a non-redundant Tω-code representation in Section 2.

In this paper, we prove Theorems 1, 3 and their corollaries below, which
answer the questions asked in [10, Section 6]. Moreover, we study other notions
of subbases closely related to an independent subbase and prove some results
which fill a gap in a statement in [10, p.679].

In [10, Proposition 6.1], it is shown that every space having an independent
subbase is dense in itself. Then, examples of independent subbases are given
on the Cantor set, the unit interval I, the products In, the Hilbert cube Iω,
the circle S1, and several surfaces such as S2, the torus T 2 and the n-torus
nT 2, and it is asked if every dense in itself, separable, metrizable space has an
independent subbase. Theorem 1 answers this question positively.

Theorem 1. Every dense in itself, separable, metrizable space has an indepen-
dent subbase.

¿From this theorem and Proposition 6.1 of [10], we have the following.

Corollary 2. A separable metrizable space X is dense in itself if and only if X
has an independent subbase.
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For a Tω-code representation of a topological spaceX, the maximum number
of copies of⊥ which may appear in a code sequence has a computational meaning
as is explained in [7] and also in Section 2 of this paper. For the case φS of a
Tω-code representation derived from an independent subbase S, such a number
is equal to the dimension of an independent subbase defined as follows

Definition 2. For a non-negative integer m, an independent subbase S =
{Sn,i : n < ω, i < 2} is of dimension m if ord{X \(Sn,0∪Sn,1) : n < ω} ≤ m−1,
where ordA means the largest integer m such that the collection A contains
m+ 1 sets with a non-empty intersection.

Note that if the dimension of S is m, then φS is an embedding of X in Tω
m,

which is the subspace of Tω only with those sequences with at most m copies of
⊥. Tω

m is a T0-space with the small inductive dimension m [9]. Therefore, if X is
a separable metrizable space, dim X ≤ m for dim X the covering dimension of
X, because the covering dimension and the small inductive dimension coincide
for separable metrizable spaces. It was an open question of [10] whether there
is an independent subbase of dimension dim X for a dense in itself, separable,
metrizable space X. Theorem 3 answers this question positively.

Theorem 3. Every dense in itself, separable, metrizable space X with dim X ≤
m has an independent subbase of dimension m.

¿From this theorem, with the above discussion and Proposition 6.1 of [10],
we can derive the next corollary.

Corollary 4. A separable metrizable space X is dense in itself and dim X ≤ m
if and only if X has an independent subbase of dimension m.

In the next section, we explain the relation between an independent subbase
and a non-redundant Tω-code representation of a topological space. We give the
proof of Theorem 1 in Sections 3 and 4, and the proof of Theorem 3 in Section
5. After that, in Section 6, we investigate other properties of subbases related
to non-redundant Tω-codings.

Preliminaries and Notations:
Throughout this paper, X denotes a second countable space. If X is regular,

then X is separable metrizable by Urysohn’s metrization theorem. Recall that
a subset U of X is regular open if U is the interior of its closure. The terms
‘(regular) open set’ and ‘closed set’ always mean ‘(regular) open set in X’ and
‘closed set in X’, respectively, and intA, clA, bdA denote the interior, closure,
boundary of a set A in X, respectively. The notation and terminology on
topology will be used as in [2].

Each element of Tω is called a bottomed sequence and each copy of 0 and 1
which appears in a bottomed sequence σ is called a digit of σ. A finite element
of Tω is a bottomed sequence with a finite number of digits, and the set of all
finite elements of Tω is denoted by K(Tω). We write dom(σ) = {k : σ(k) ̸= ⊥}
for σ ∈ Tω and tω = (t, t, · · · ) ∈ Tω for t ∈ T.
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We define the partial order relation ⊥ ≼ 0 and ⊥ ≼ 1 on T, and denote its
product order on Tω by the same symbol ≼, i.e., for every σ, τ ∈ Tω, σ ≼ τ if
σ(n) ≼ τ(n) for each n < ω. Then 2ω is the set of maximal elements of Tω. We
consider the T0-topology {∅, {0}, {1}, {0, 1},T} on T, and its product topology
of Tω. We say that two elements σ and σ′ of Tω are compatible if σ ≼ τ and
σ′ ≼ τ for some τ ∈ Tω, and write σ ↑ σ′ if σ and σ′ are compatible. For σ ∈ Tω,
we define ↑σ = {τ : τ ≽ σ}, ↓σ = {τ : τ ≼ σ}, and ↓↑σ = ∪{↓σ′ : σ′ ∈↑σ}.
Therefore, we have ↓↑σ = {τ : τ ↑ σ}. The family {↑σ : σ ∈ K(Tω)} is a base of
the topology on Tω.

A surjective partial function from 2ω to X, i.e., a surjection defined on a
subset of 2ω, is called a representation of X [11]. A representation can be
considered as a coding which may assign more than one codes to each element.
That is, a representation ρ of X assigns elements of ρ−1(x) as codes of x.

The letters i, j, k, l,m, n will be used to denote finite ordinal numbers (=
non-negative integers), and σ and τ will be used to denote bottomed sequences.

2. Independent Subbases and Non-Redundant {0, 1,⊥}ω-Codings

The idea of an independent subbase comes from a Tω-coding of a topological
space which is non-redundant in that (1) it assigns a unique code to each element
as opposed to a representation which may assign more than one codes, and that
(2) there is no redundancy among the meanings of the digits of each code.

In the introductory explanation of this section, we consider the case X is
a separable metrizable space though an independent subbase will be defined
generally for second countable spaces which are not necessarily regular. First,
we consider a unique 2ω-coding of a separable metrizable space X which is
expressed as an injective function φ′ from X to 2ω. Such a coding induces
computation on X with a Type2 machine, which is an extension of the Turing
machine with input and output tapes of infinite length [11]. Here, for the
extension in the next paragraph, we consider a variant of a Type2 machine
which fills the cells in any order. That is, in order to output x, a machine starts
with the output tape filled with ⊥ and fills ⊥-cells with 0 or 1 in any order, and
the tape becomes φ′(x) after an infinite time of execution. Correspondingly, as
an input, we consider that a sequence of pairs (nk, ik) (k = 0, 1, . . .) for nk < ω
and ik < 2 is given, where (n, i) means that the n-th cell of the input tape is filled
with i. We have the restriction that each cell of the tape is filled only once, that
is, nk ̸= nk′ for k ̸= k′. Therefore, the states of the input/output tapes change
monotonically as ⊥ω ≼ σ1 ≼ σ2 ≼ σ3 ≼ . . . for σi ∈ K(Tω), where σi is the state
of the input/output tape when the i-th input/output operation is made. Let
S′(σ) =

∩
k∈dom(σ){x : φ′(x)(k) = σ(k)}. According to the change of the states

of a tape, we have the information that x is in the sets X = S′(⊥ω) ⊇ S′(σ1) ⊇
S′(σ2) ⊇ . . . and {x} = S′(φ′(x)) =

∩
n<ω S′(σn). In order that this process

is regarded as producing better and better topological approximation of x, it is
natural to impose the condition that {S′(σn) : n < ω} forms a neighbourhood
base of x. Since it holds for every x ∈ X, {S′(σ) : σ ∈ K(Tω)} should be a
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base of the topology of X. That is, we follow the idea that open sets are finitely
observable properties [6]. Since S′(σ) = φ′−1({τ ∈ 2ω : τ ≽ σ}) for σ ∈ K(Tω)
and the family of sets {τ ∈ 2ω : τ ≽ σ} for σ ∈ K(Tω) forms a base of 2ω, it
means that φ′ is an embedding of X in 2ω.

However, there is no embedding of X in 2ω for a non-zero dimensional space
X because 2ω is zero-dimensional, and we cannot define computation on a non-
zero dimensional space X in this way. Usually, this problem is solved by consid-
ering a representation, which may assign more than one codes to each element
[11]. Here, we consider a different approach, that is, by changing the code space
from 2ω to Tω and considering a coding function φ : X → Tω. It is immediate
to show that separable metrizable spaces can be embedded in Tω, and more
generally that a topological space can be embedded in Tω if and only if it is a
second countable T0-space. On the other hand, by allowing some of the cells of
the output tape to be unfilled even after an infinite-time of computation, the
same kind of machine as above can input and output Tω elements. Therefore,
with such a coding function, we can define computation over X. In particular,
for n ≤ ω, a separable metrizable space X is n-dimensional if and only if there
is an embedding of X in Tω

n , which is the set of bottomed sequences with at
most n copies of ⊥ [7, 9], and on the other hand, one can define in a concise
way an IM2-machine, which input and output bottomed sequences in Tω

n for
n < ω [7, 8]. Therefore, coding functions with the code space Tω

n for n < ω are
particularly important.

Now, suppose that an embedding φ : X → Tω of a topological space X
is given. We define Pn,i = {σ ∈ Tω : σ(n) = i} and Sn,i = {x : φ(x)(n) =
i} = φ−1(Pn,i). Since {Pn,i : n < ω, i < 2} forms a subbase of Tω such
that Pn,0 ∩ Pn,1 = ∅, {Sn,i : n < ω, i < 2} forms a subbase of X such that
Sn,0 ∩ Sn,1 = ∅ for every n < ω. Conversely, if S = {Sn,i : n < ω, i < 2} is a
subbase indexed with ω × 2 such that Sn,0 ∩ Sn,1 = ∅ for n < ω, then we have
an embedding φS : X → Tω defined as

φS(x)(n) =

 0 (x ∈ Sn,0)
1 (x ∈ Sn,1)
⊥ (otherwise)

.

Therefore, we identify an embedding of X in Tω with such a subbase indexed
with ω × 2. When S = {Sn,i : n < ω, i < 2} is such a subbase and σ ∈ Tω, we
write

S(σ) =
∩

n∈dom(σ)

Sn,σ(n).

Then the family {S(σ) : σ ∈ K(Tω)} forms a base of X corresponding to the
subbase S.

In [10], an independent subbase is defined in three steps as a special case of
such a subbase with index.

Definition 3 ([10]). A dyadic subbase of a space X is a subbase S = {Sn,i :
n < ω, i < 2} indexed with ω × 2 such that every element is a regular open set
and Sn,1 = X \ clSn,0 for n < ω.
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When S = {Sn,i : n < ω, i < 2} is a dyadic subbase of X, pairings of
Sn,0 and Sn,1 are fixed and differences of indexings with ω × 2 are caused only
by reindexings on ω and 2. Since the corresponding difference on the coding
functions are caused only by reindexings on ω and inversions on the values,
which are not essential when we consider properties of codings, we ignore the
indexing and call the subbase itself a dyadic subbase.

If S is a dyadic subbase, {x : φS(x)(n) = ⊥} is the boundary of both
Sn,0 and Sn,1 and is a nowhere dense subset for every n. This fact has the
following computational meaning. As we have noted, for each n < ω, one
cannot obtain the information φS(x)(n) = ⊥ by observing the n-th cell of the
tape, because even if it has the value ⊥ at the time of observation, it may
be filled with 0 or 1 afterwards. If {x : φS(x)(n) = ⊥} is nowhere-dense,
this information is not obtained even from the observation of the whole tape,
because the information obtained from the tape state σ is that the value is in
S(σ), and {x : φS(x)(n) = ⊥} does not contain any subset of the form S(σ) for
σ ∈ K(Tω).

Next, we introduce a proper dyadic subbase. When S = {Sn,i : n < ω, i < 2}
is a dyadic subbase of X and σ ∈ Tω, we write

S̄(σ) =
∩

n∈dom(σ)

clSn,σ(n).

Through the embedding φS , we can consider X as a subspace of Tω and we
have the following characterization of S : Tω → P(X) and S̄ : Tω → P(X) via
the order structure of Tω.

Lemma 5 (Proposition 3.5 of [10]). Suppose that S is a dyadic subbase of
a space X and σ ∈ Tω.

(1) S(σ) = φ−1
S (↑σ).

(2) S̄(σ) = φ−1
S (↓↑σ).

Proof. (1) x ∈ S(σ) if and only if φS(x)(n) = σ(n) for every n ∈ dom(σ), if
and only if φS(x) ≽ σ.

(2) x ∈ S̄(σ) if and only if φS(x)(n) is σ(n) or ⊥ for every n ∈ dom(σ), if
and only if φS(x) ↑ σ. �

Definition 4 ([10]). We say that a dyadic subbase is proper if clS(σ) = S̄(σ)
for every σ ∈ K(Tω).

We investigate more about proper dyadic subbases in Section 6.
Finally, we introduce ‘independent subbase’ of [10]. Before that we explain

two examples of proper dyadic subbases of the closed unit interval I = [0, 1]
given in [10]. One is the Dedekind subbase D = {Dn,i : n < ω, i < 2} with
Dn,0 = [0, qn) and Dn,1 = (qn, 1] for a numbering qn (n < ω) of rational
numbers in (0, 1). The other one is the Gray subbase which corresponds to the
Gray embedding [3, 8]. Let the tent function t : I → I be

t(x) =

{
2x (0 ≤ x ≤ 1/2)
2(1− x) (1/2 < x ≤ 1)

.
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Figure 1: The Gray Subbase of the unit interval [0,1].

For the sets X0 = [0, 1/2) and X1 = (1/2, 1], we define the Gray subbase G =
{Gn,i : n < ω, i < 2} as Gn,i = t−n(Xi). Figure 1 shows the Gray subbase, with
the gray lines representing Gn,0 and the black lines representing Gn,1.

One can see that each code sequence of the Dedekind subbase contains re-
dundant information. For example, suppose that qn = 3/4 and qm = 1/2.
Then, Dn,0 ⊃ Dm,0 and therefore φD(x)(n) always has the value 0 when
φD(x)(m) = 0, and we do not need the n-th value in identifying x if the m-th
value is 0. On the other hand, Gray subbase is efficient in that there is no
such redundancy in each code sequence. In [10], in order to express such a
non-redundancy, three notions are introduced on proper dyadic subbases.

Definition 5 (independent subbase of [10]). A proper dyadic subbase S is
an independent subbase if S(σ) ̸= ∅ for every σ ∈ K(Tω).

This definition of an independent subbase is equivalent to the one in the
previous section by the lemmas below. One can see that the Gray subbase is
independent whereas the Dedekind subbase is not. Since S(σ) = φ−1

S (↑σ) by
Lemma 5(1) and {S(σ) : σ ∈ K(Tω)} is a base of Tω, we have the following.

Proposition 6. A proper dyadic subbase S is an independent subbase if and
only if φS is a dense embedding.

We defer the definitions of the other two properties, full-representing and canon-
ically representing, to Section 6.

Lemma 7. If S = {Sn,i : n < ω, i < 2} is a subbase of a space X satisfying
(1.1) and (1.2), then S is a dyadic subbase.
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Proof. When σ(n) = ⊥, let σn=i denote the bottomed sequence obtained by
assigning i to the n-th component of σ. Suppose that x ̸∈ Sn,0 ∪ Sn,1 and
x ∈ S(σ) for σ ∈ K(Tω). We have σ(n) = ⊥. From (1.2), S(σn=0) and S(σn=1)
are both non-empty and they are subsets of S(σ). Thus, in every neighbourhood
of x, there are points of Sn,0 and Sn,1. That is, x is on the boundary of both
Sn,0 and Sn,1. Therefore, Sn,0 and Sn,1 are regular open and Sn,1 = X \ clSn,0.

�

Lemma 8. If S = {Sn,i : n < ω, i < 2} is a subbase of a space X satisfying
(1.1) and (1.2), then S is proper, and therefore S is an independent subbase in
the sense of Definition 5.

Proof. Suppose that clS(σ) ( S̄(σ) for σ ∈ K(Tω), and thus x ∈ S̄(σ) and
x ̸∈ clS(σ) for some x ∈ X. Since x ̸∈ clS(σ), x ∈ S(τ) and S(σ) ∩ S(τ) = ∅
for some τ ∈ K(Tω). If σ ↑ τ , S(σ) ∩ S(τ) = S(σ ⊔ τ), which is non-empty
by (1.2). Here, σ ⊔ τ is the least upper bound of σ and τ . Therefore, we have
σ ̸↑ τ . On the other hand, since x ∈ S̄(σ), we have σ ↑ φS(x) by Lemma 5(2).
Since we also have x ∈ S(τ), we have φS(x) ≽ τ . Therefore, σ ↑ τ and we have
contradiction.

Lemma 9. Let S = {Sn,i : n < ω, i < 2} be a dyadic subbase of a space X. S
is proper if and only if S satisfies

(∀n < ω)(∀σ ∈ n2)

(
cl
∩
k<n

Sk,σ(k) =
∩
k<n

clSk,σ(k)

)
. (2.1)

Proof. We only need to show the if part. Let σ ∈ K(Tω) and Γ = dom(σ).
Fix n < ω with Γ ⊆ n. Put T = {τ ∈ K(Tω) : dom(τ) = n and τ ≽ σ}. Then,
since S(σ) ⊇ S(τ) = ∩k<nSk,τ(k) for each τ ∈ T , it follows from (2.1) that

clS(σ) ⊇
∪
τ∈T

clS(τ) =
∪
τ∈T

(∩
k<n

clSk,τ(k)

)

=
∪
τ∈T

∩
k∈Γ

clSk,τ(k) ∩
∩

k∈n\Γ

clSk,τ(k)


=
∩
k∈Γ

clSk,σ(k) ∩
∪
τ∈T

 ∩
k∈n\Γ

clSk,τ(k)

 .

This implies that clS(σ) ⊇
∩

k∈Γ clSk,σ(k) = S̄(σ), because the last union in
the above formula is equal to X by the fact that S is dyadic. �

3. Proof of Theorem 1

For a subset A of a space X, Ae stands for the exterior of A in X. For open
sets V and S in a space X, we write V ≫ S if cl (V ∩ S) = clV ∩ clS and

8



cl (V e ∩ S) = cl (V e) ∩ clS. Note that the first equality does not necessarily
imply the second, and V ≫ S does not necessarily imply S ≫ V even if both
V and S are regular open (see Remark 1 at the end of this section).

Proof (Proof of Theorem 1). LetX be a dense in itself, separable, metriz-
able space. We show that X has a subbase {Sn,i : n < ω, i < 2} satisfying (1.1)
and (1.2). We may assume that X is non-empty. Then there exists a col-
lection {Un,i : n < ω, i < 2} of non-empty regular open sets in X such that
clUn,0 ⊆ Un,1 for each n < ω and, for each x ∈ X and each neighborhood G of
x, there exists n < ω such that x ∈ Un,0 and Un,1 ⊆ G. We inductively define,
for each n < ω, regular open sets Sn,0 and Sn,1 satisfying that

Sn,1 = (Sn,0)
e (= X \ clSn,0), (3.1)

(∀σ ∈ n+12)

cl
∩
k≤n

Sk,σ(k) =
∩
k≤n

clSk,σ(k)

 , (3.2)

(∀σ ∈ n+12)

∩
k≤n

Sk,σ(k) ̸= ∅

 , and (3.3)

(∀x ∈ Un,0)(∃Γ ⊆ n+ 1)(∃σ ∈ Γ2)

(
x ∈

∩
k∈Γ

Sk,σ(k) ⊆ Un,1

)
. (3.4)

If we construct Sn,0 and Sn,1 for all n < ω, then {Sn,i : n < ω, i < 2} is an
independent subbase of X by (3.1), (3.3) and (3.4). Although (3.1) is stronger
than (1.1) and (3.2) is not required in the definition of an independent subbase,
we need them to proceed the induction and it is natural to require them in
view of Lemmas 7, 8 and 9. For n = 0, we may assume that U0,0 ̸= X. Put
S0,0 = U0,0 and S0,1 = (S0,0)

e. Fix n ≥ 1 and assume that Sk,0 and Sk,1 have
been defined for all k < n. For each σ ∈ n2, put S(σ) =

∩
k<n Sk,σ(k). Then,

by the inductive hypothesis, we have

(∀σ ∈ n2)

(
clS(σ) =

∩
k<n

clSk,σ(k)

)
, (3.5)

(∀σ ∈ n2)(S(σ) ̸= ∅), and (3.6)

(∀σ, σ′ ∈ n2)(if σ ̸= σ′, then S(σ) ∩ S(σ′) = ∅). (3.7)

Now, we need the following lemma.

Lemma 10. Let {Si : i ∈ I} be a finite collection of disjoint open sets in X.
Let F be a closed set and G an open set such that F ⊆ G. Then there exists a
regular open set W such that F ⊆ W ⊆ clW ⊆ G and W ≫ Si for each i ∈ I.

Leaving the proof of Lemma 10 to the next section, let us continue the
proof of Theorem 1. By Lemma 10 there exists a regular open set Vn such that
clUn,0 ⊆ Vn ⊆ clVn ⊆ Un,1 and

Vn ≫ S(σ) for each σ ∈ n2. (3.8)

9



Put A = {σ ∈ n2 : S(σ) ⊆ Vn} and B = {σ ∈ n2 : S(σ) ∩ clVn = ∅}. Then,
since Vn is regular open, we have

(∀σ ∈ n2 \ (A ∪B))(S(σ) ∩ Vn ̸= ∅ and S(σ) ∩ V e
n ̸= ∅). (3.9)

For every σ ∈ A ∪B, by (3.6), we can take a non-empty regular open set G(σ)
such that

clG(σ) ⊆ S(σ) and S(σ) \ clG(σ) ̸= ∅. (3.10)

Then, by the definitions of the sets A, B and (3.7), we have

(∀σ ∈ A ∪B)(bdVn ∩ clG(σ) = ∅), and (3.11)

(∀σ, σ′ ∈ A ∪B)(if σ ̸= σ′, then clG(σ) ∩ clG(σ′) = ∅). (3.12)

Define

Sn,0 =

(
Vn \

∪
σ∈A

clG(σ)

)
∪
∪
σ∈B

G(σ) and

Sn,1 =

(
V e
n \

∪
σ∈B

clG(σ)

)
∪
∪
σ∈A

G(σ).

Then it follows from (3.6), (3.9) and (3.10) that Sn,i ∩S(σ) ̸= ∅ for each σ ∈ n2
and i = 0, 1. Thus, Sn,0 and Sn,1 satisfy (3.3). To show that Sn,0 and Sn,1 are
regular open and satisfy (3.1), (3.2) and (3.4) we prove the following claim.

Claim 11. We have

clSn,0 =

(
clVn \

∪
σ∈A

G(σ)

)
∪
∪
σ∈B

clG(σ) and (3.13)

clSn,1 =

(
clV e

n \
∪
σ∈B

G(σ)

)
∪
∪
σ∈A

clG(σ). (3.14)

Proof. We prove only the first equality (3.13), since the second can be proved
similarly. Let R be the right hand set of (3.13). Then clSn,0 ⊆ R, since R is
closed and includes Sn,0. Thus, it is enough to show that R \ Sn,0 ⊆ clSn,0.
For every x ∈ R \ Sn,0, either x ∈ clVn \ Vn or x ∈ clG(σ) \ G(σ) for some
σ ∈ A ∪B. If x ∈ clVn \ Vn, then x ̸∈

∪
σ∈A clG(σ) by (3.11), and hence,

x ∈ cl

(
Vn \

∪
σ∈A

clG(σ)

)
⊆ clSn,0.

If x ∈ clG(σ)\G(σ) for some σ ∈ A, then x ∈ cl (S(σ)\clG(σ)), because G(σ) is
regular open and clG(σ) ⊆ S(σ). Hence, x ∈ clSn,0 since S(σ)\ clG(σ) ⊆ Sn,0.
If x ∈ clG(σ)\G(σ) for some σ ∈ B, then x ∈ clSn,0 since G(σ) ⊆ Sn,0. Hence,
we have (3.13). �

10



By Claim 11, Sn,1 = (Sn,0)
e and both Sn,0 and Sn,1 are regular open. Hence,

we have (3.1). Next, we show that Sn,i, i < 2, satisfy (3.2). By (3.5), it is enough
to prove that

cl (Sn,i ∩ S(σ)) = clSn,i ∩ clS(σ)

for each σ ∈ n2 and i < 2. We prove only the case i = 0, since the proof for
i = 1 goes quite similarly if one replace Vn by V e

n . We distinguish three cases.
If σ ∈ n2 \ (A ∪B), then by the definition of Sn,0 and Claim 11,

Sn,0 ∩ S(σ) = Vn ∩ S(σ) and

clSn,0 ∩ clS(σ) = clVn ∩ clS(σ).

Hence, it follows from (3.8) that

cl (Sn,0 ∩ S(σ)) = cl (Vn ∩ S(σ))

= clVn ∩ clS(σ) = clSn,0 ∩ clS(σ).

If σ ∈ A, then by the definition of Sn,0 and Claim 11,

Sn,0 ∩ S(σ) = S(σ) \ clG(σ) and

clSn,0 ∩ clS(σ) = clS(σ) \G(σ).

Since G(σ) is regular open and clG(σ) ⊆ S(σ),

cl (Sn,0 ∩ S(σ)) = cl (S(σ) \ clG(σ))

= clS(σ) \G(σ) = clSn,0 ∩ clS(σ).

If σ ∈ B, then by the definition of Sn,0,

Sn,0 ∩ S(σ) = G(σ).

Since Vn ∩S(σ) = ∅, it follows from (3.8) that clVn ∩ clS(σ) = ∅, which implies
that clSn,0 ∩ clS(σ) = clG(σ) by Claim 11. Hence,

cl (Sn,0 ∩ S(σ)) = clG(σ) = clSn,0 ∩ clS(σ).

Consequetly, we have (3.2). Finally, to prove that Sn,i, i < 2, satisfy (3.4), let
x ∈ Un,0 be fixed. If x ∈ S(σ) for some σ ∈ A, then x ∈ S(σ) ⊆ Vn ⊆ Un,1. On
the other hand, if x ̸∈ S(σ) for each σ ∈ A, then

x ∈ Vn \
∪
σ∈A

clG(σ) ⊆ Sn,0. (3.15)

For each σ ∈ B, we now define k(σ) < n and i(σ) < 2 as follows. To do this, let
σ ∈ B be fixed for a while. Since

Vn ∩ (
∩
k<n

clSk,σ(k)) = Vn ∩ clS(σ) = ∅

11



by (3.5), x ̸∈
∩

k<n clSk,σ(k), and hence, x ̸∈ clSk(σ),σ(k(σ)) for some k(σ) < n.
Define i(σ) = 1− σ(k(σ)). Then,

x ∈ Sk(σ),i(σ) and Sk(σ),i(σ) ∩ S(σ) = ∅. (3.16)

Define such k(σ) and i(σ) for each σ ∈ B. Then we have

(∀σ, σ′ ∈ B)(if k(σ) = k(σ′), then i(σ) = i(σ′)),

because x is in exactly one of Sk(σ),0 and Sk(σ),1. Put Γ = {k(σ) : σ ∈ B}, and
define τ ∈ Γ2 by τ(k(σ)) = i(σ) for σ ∈ B. Then, by (3.16),

x ∈
∩
k∈Γ

Sk,τ(k) and
∩
k∈Γ

Sk,τ(k) ∩
∪
σ∈B

S(σ) = ∅. (3.17)

Finally, put Λ = Γ ∪ {n} and define υ ∈ Λ2 by υ|Γ = τ and υ(n) = 0. Then it
follows from (3.15) and (3.17) that

x ∈
∩
k∈Λ

Sk,υ(k) =
∩
k∈Γ

Sk,τ(k) ∩ Sn,0 ⊆ Vn ⊆ Un,1.

Hence, we have (3.4). �

Remark 1. Consider the subspace X = (−∞,−1] ∪ [0,+∞) of the real line
with the usual topology, and define regular open sets U and S in X by

U = (−∞,−1] ∪
∪
n<ω

(1/(4n+ 3), 1/(4n+ 2)) and

S =
∪
n<ω

(1/(4n+ 4), 1/(4n+ 1)).

Then it is easily checked that U ≫ S and cl (Ue ∩ Se) = cl (Ue) ∩ cl (Se) but
cl (U ∩ Se) ̸= clU ∩ cl (Se). Hence, U ≫ S does not imply S ≫ U , in general.

4. Proof of Lemma 10

We prove Lemma 10 used in the proof of Theorem 1. LetX be the same space
as in the preceding section, and fix a metric on X which induces the topology
of X. For a point x ∈ X and ε > 0, B(x, ε) denotes the ε-neighborhood of x in
X.

Lemma 12. Let S be a non-empty open set in X. Let K be a non-empty closed
set such that K ⊆ bdS, and let G be an open set with K ⊆ G. Then there exist
open sets P and Q such that

(1) P ∪Q ⊆ S ∩G, clP ∪ clQ ⊆ G,

(2) clP ∩ clQ ∩ S = ∅, and
(3) clP ∩ bdS = clQ ∩ bdS = K.

12



Proof. Take open sets Gi, i < ω, such that

G ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gi ⊇ Gi+1 ⊇ · · · ⊇ K

and
∩

i<ω clGi = K. We only prove the case that K is infinite, since the finite
case can be proved similarly. LetD be a countable dense set ofK and enumerate
the points of D as D = {xk : k < ω}, where xk ̸= xl whenever k ̸= l. By
induction on k < ω and i < ω, we can define a collection {H(k, i) : k < ω, i < ω}
of non-empty open sets such that

clH(k, i) ⊆ S ∩Gk+i ∩B(xk, 2
−i), (4.1)

for each k < ω and i < ω, and

clH(k, i) ∩ clH(l, j) = ∅, whenever (k, i) ̸= (l, j). (4.2)

Indeed, for each k < ω, we can define a sequence {H(k, i) : i < ω} of non-empty
open sets satisfying (4.1) and such that clH(k, i)∩clH(k, j) = ∅ whenever i ̸= j
by induction on i. Then

∪
i<ω clH(k, i) ∪ {xk} is closed in X and contains no

points of D \ {xk}. Hence, by induction on k, we can define such sequence for
each k < ω so as to satisfy (4.2). Since each X \ clGj intersects only finitely
many H(k, i)’s, the collection {H(k, i) : k < ω, i < ω} is discrete at each point
of X \ K. For each k < ω and i < ω, take non-empty open sets P (k, i) and
Q(k, i) such that P (k, i) ∪Q(k, i) ⊆ H(k, i) and clP (k, i) ∩ clQ(k, i) = ∅. Put

P =
∪
k<ω

∪
i<ω

P (k, i) and Q =
∪
k<ω

∪
i<ω

Q(k, i).

Then P and Q satisfy (1) by their definitions. Since D ⊆ clP and D is dense
in K, K ⊆ clP , and K ⊆ clQ similarly. Hence, (2) and (3) follow from the fact
that {P (k, i), Q(k, i) : k < ω, i < ω} is discrete at each point of X \K. �

Lemma 13. Let V and S be open sets in X such that V ≫ S. If we put
W = int (clV ), then W ≫ S.

Proof. Since V ≫ S, cl (V ∩ S) = clV ∩ clS and cl (V e ∩ S) = cl (V e) ∩ clS.
Since V ∩ S is dense in W ∩ S and clV = clW ,

cl (W ∩ S) = cl (V ∩ S) = clV ∩ clS = clW ∩ clS.

On the other hand, since V e = W e,

cl (W e ∩ S) = cl (V e ∩ S) = cl (V e) ∩ clS = cl (W e) ∩ clS.

Hence, W ≫ S. �

Proof (Proof of Lemma 10). Take an open set U with F ⊆ U ⊆ clU ⊆ G.
For each i ∈ I, we put Ki = bdU ∩ bdSi, and define open sets Pi and Qi as
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follows. If Ki = ∅, put Pi = Qi = ∅. If Ki ̸= ∅, then by Lemma 12 there exist
open sets Pi and Qi such that

Pi ∪Qi ⊆ Si ∩ (G \ F ), clPi ∪ clQi ⊆ G \ F, (4.3)

clPi ∩ clQi ∩ Si = ∅, and (4.4)

clPi ∩ bdSi = clQi ∩ bdSi = Ki. (4.5)

Put P =
∪

i∈I Pi, Q =
∪

i∈I Qi and T = X \
∪

i∈I Si. Then, by (4.5),

clP ∩ T = clQ ∩ T =
∪
i∈I

Ki ⊆ clU \ U. (4.6)

Define V = (U ∪ P ) \ clQ. Then V is an open set and F ⊆ V ⊆ clV ⊆ G by
(4.3). If we prove that V ≫ Si for each i ∈ I, then W = int (clV ) is a required
regular open set by Lemma 13. To this end, we need the following claims:

Claim 14. V ∩ T = U ∩ T and clV ∩ T = clU ∩ T .

Proof. First, observe that P ∩T = ∅ by (4.3), and (clQ∩T )∩U = ∅ by (4.6).
Hence, we have

V ∩ T = ((U ∪ P ) \ clQ) ∩ T

= ((U ∩ T ) ∪ (P ∩ T )) \ (clQ ∩ T )

= (U ∩ T ) \ (clQ ∩ T ) = U ∩ T.

Since clP ∩ T ⊆ clU by (4.6), we have

clV ∩ T ⊆ cl (U ∪ P ) ∩ T

= (clU ∩ T ) ∪ (clP ∩ T ) = clU ∩ T.

Conversely, since clQ ∩ T = clP ∩ T by (4.6), we have

clU ∩ T ⊆ cl ((U \ clQ) ∪ clQ) ∩ T

⊆ (clV ∩ T ) ∪ (clQ ∩ T )

= (clV ∩ T ) ∪ (clP ∩ T ) = clV ∩ T.

Hence, clV ∩ T = clU ∩ T . �

Claim 15. bdV ∩ T ⊆ bdU and bd (V e) ∩ T ⊆ bdU .

Proof. The first inclusion is an immediate consequence of Claim 14, and the
second follows from the first since bdV e ⊆ bdV . �

Fix i ∈ I. To show that V ≫ Si, observe that

clV ∩ clSi = (clV ∩ Si) ∪ (V ∩ clSi) ∪ (bdV ∩ bdSi).
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Since V and Si are open,

(clV ∩ Si) ∪ (V ∩ clSi) ⊆ cl (V ∩ Si).

By Claim 15 and (4.5), bdV ∩ bdSi ⊆ bdU ∩ bdSi = Ki ⊆ clPi. Since
Pi ⊆ V ∩Si, bdV ∩bdSi ⊆ cl (V ∩Si). Hence, we have cl (V ∩Si) = clV ∩clSi.
Similarly, since V e and Si are open, (cl (V e) ∩ Si) ∪ (V e ∩ clSi) ⊆ cl (V e ∩ Si).
By Claim 15, bd (V e) ∩ bdSi ⊆ bdU ∩ bdSi = Ki. Since Ki ⊆ clQi and
Qi ⊆ V e ∩ Si, bd (V

e) ∩ bdSi ⊆ cl (V e ∩ Si). Hence, we have cl (V e ∩ Si) =
cl (V e) ∩ clSi, which completes the proof. �

5. Proofs of Theorem 3 and Corollary 4

For a collection A of subsets of a metric space, meshA denotes the least
upper bound of the diameters of all members of A. Morita [4] proved that if
a metric space X satisfies dim X ≤ m, then X has a base B =

∪
n<ω Bn such

that each Bn is locally finite and ord{bdB : B ∈ B} ≤ m − 1. First, we show
that if X is dense in itself, then the collections Bn, n < ω, in his theorem can
be defined so as to satisfy

Bn ∩ Bn′ = ∅, whenever n ̸= n′, (5.1)

and, moreover, we can make Bn a locally finite cover, consisting of regular open
sets, of X with meshBn ≤ 2−n for each n < ω. To show this, we need the
following lemma, which is the essence of Morita’s theorem.

Lemma 16 (Lemma 4.2.1 in [1]). If a normal space X satisfies the inequal-
ity dim X ≤ m ≥ 0, then for every σ-locally finite family {Us : s ∈ S} of open
sets in X and every family {Fs : s ∈ S} of closed sets in X such that Fs ⊆ Us

for each s ∈ S, there exists a family {Vs : s ∈ S} of open sets in X such that
Fs ⊆ Vs ⊆ clVs ⊆ Us for each s ∈ S and ord{bdVs : s ∈ S} ≤ m− 1.

For covers U and V of X, we write U ▹ V if U is a refinement of V and
V ̸⊆ U for every U ∈ U and V ∈ V.

Lemma 17. If X is a dense in itself, paracompact space, then for every locally
finite cover V of X consisting of nonempty open sets, there exists a locally finite
open cover U of X such that U ▹ V.

Proof. Let V be a locally finite cover of X consisting of nonempty open sets.
Then the set Vx = {V ∈ V : x ∈ clV } is finite for each x ∈ X. Since X is dense
in itself, we can pick a point y(x, V ) ∈ V with y(x, V ) ̸= x for each V ∈ Vx. For
each x ∈ X, fix V (x) ∈ V with x ∈ V (x), and put

U(x) = V (x) \
(∪

{clV : V ∈ V \ Vx} ∪ {y(x, V ) : V ∈ Vx}
)
.

Then U(x) is an open set and V ̸⊆ U(x) for each V ∈ V. Hence, every locally
finite open refinement U of {U(x) : x ∈ X} is a required cover of X. �
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Now, let X be a dense in itself, metric space with dim X ≤ m. By Lemma
17, we can define inductively locally finite open covers Un = {Un,s : s ∈ Sn}
and Vn = {Vn,s : s ∈ Sn} of X for each n < ω such that

∅ ̸= Vn,s ⊆ clVn,s ⊆ Un,s for each s ∈ Sn,

meshUn < 2−n and Un+1 ▹ Vn.

By Lemma 16, there exists a family B =
∪

n<ω Bn, where Bn = {Bn,s : s ∈ Sn}
for n < ω, of open sets in X such that

clVn,s ⊆ Bn,s ⊆ clBn,s ⊆ Un,s for each s ∈ Sn and n < ω, and

ord{bdB : B ∈ B} ≤ m− 1.

Then B is a base for X satisfying all requirements of Morita’s theorem stated
above. Observe that each Bn is a locally finite open cover of X with meshBn <
2−n. Moreover, we can assume that all members of B are regular open by
replacing B ∈ B by int (clB) if necessary. Finally, we show that the covers
Bn, n < ω, satisfy (5.1). Suppose not; then there exist n < n′ < ω such that
Bn,s = Bn′,s′ for some s ∈ Sn and s′ ∈ Sn′ . Since Bn′,s′ ⊆ Un′,s′ ∈ Un′ and
Un′ is a refinement of Un+1, there exists U ∈ Un+1 such that Bn′,s′ ⊆ U . Thus,
Vn,s ⊆ Bn,s = Bn′,s′ ⊆ U , which contradicts the fact that Un+1 ▹ Vn. Hence,
we have (5.1). Now, we are ready to prove Theorem 3.

Proof (Proof of Theorem 3). Let X be a non-empty, dense in itself, sepa-
rable, metrizable space with dim X ≤ m, and fix a metric d on X which induces
the topology of X. We show that X has an independent subbase of dimension
m. Using the above observation about Morita’s theorem and a bijection be-
tween ω × ω and ω, we have a collection B =

∪
n<ω

∪
i<ω Bn,i, where each Bn,i

is a locally finite cover of X consisting of regular open sets, such that

inf{meshBn,i : i < ω} = 0 for each n < ω, (5.2)

ord{bdB : B ∈ B} ≤ m− 1, and (5.3)

Bn,i ∩ Bn′,i′ = ∅, whenever (n, i) ̸= (n′, i′). (5.4)

For each n < ω, put Bn =
∪

i<ω Bn,i. Then Bn is a base for X by (5.2), and

Bn ∩ Bn′ = ∅, whenever n ̸= n′ (5.5)

by (5.4). Now, we trace the proof of Theorem 1 and define Sn,0 and Sn,1 more
carefully. In the first step of the proof, we may assume that

d(clUn,0, X \ Un,1) > 0 for each n < ω. (5.6)

Further, we may assume that U0,0 ∈ B0, which implies that bdS0,0 = bdB for
some B ∈ B0. For n ≥ 1, we show that the regular open set Vn can be chosen
so as to satisfy

bdVn ⊆
∪

{bdB : B ∈ Bn}. (5.7)
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To show this, let n ≥ 1 be fixed, and look at the proof of Lemma 10. By (5.6),
we can assume that d(F,X \G) > 0 in the proof of Lemma 10. Thus, by (5.2),
we can take the set U as the union of members of Bn,i for some i < ω. Then we
have

bdU ⊆
∪

{bdB : B ∈ Bn,i}, (5.8)

because Bn,i is locally finite. Moreover, in the proof of Lemma 12, we can
take all the sets P (k, i) and Q(k, i) from Bn. Remember that the collection
{P (k, i), Q(k, i) : k < ω, i < ω} was discrete at each point of X \K in the proof
of Lemma 12. Hence, by (4.6) and (5.8), we then have

bdP ∪ bdQ ⊆
∪

{bdB : B ∈ Bn} (5.9)

in the proof of Lemma 10. Let us also remember that the set Vn above was
defined by Vn = int (clV ), where V = (U ∪ P ) \ clQ. Hence, it follows from
(5.8) and (5.9) that Vn satisfies (5.7). Now, we back to the definition of Sn,0 in
proof of Theorem 1. We can take all the sets G(σ), σ ∈ A ∪B, from Bn. Then
we have

bdSn,0 ⊆
∪

{bdB : B ∈ Bn}. (5.10)

Hence, it follows from (5.3), (5.5) and (5.10) that ord{bdSn,0 : n < ω} ≤ m−1,
which means that the resulting independent subbase S = {Sn,i : n < ω, i < 2}
is of dimension m. �

Finally, Corollary 4 follows from Theorem 3, Corollary 2 and the following
lemma.

Lemma 18. If a separable metrizable space X has a subbase S = {Sn,i : n <
ω, i < 2} such that Sn,0 ∩ Sn,1 = ∅ for each n < ω and ord{X \ (Sn,0 ∪ Sn,1) :
n < ω} ≤ m− 1, then dimX ≤ m.

This lemma seems to be known and can also be derived from the fact that Tω
m

ism-dimensional [7, 9], because φS is an embedding in Tω
m under the assumption

of this lemma. We give a direct proof here for reader’s convenience.

Proof (Proof of Lemma 18). Note that some Sn,i may be a empty set. We
prove this by induction on m < ω. If m = 0, then our assumption implies
that each X \ (Sn,0 ∪ Sn,1) is empty, and hence, all members of S are open
and closed. This implies that dim X ≤ 0. Now, we assume that the statement
holds for all l < m, and let X be a separable metrizable space with a subbase
S = {Sn,i : n < ω, i < 2} such that Sn,0 ∩ Sn,1 = ∅ for each n < ω and
ord{X \ (Sn,0 ∪ Sn,1) : n < ω} ≤ m − 1. Put Tn = X \ (Sn,0 ∪ Sn,1) for each
n < ω. Then, dim Tn ≤ m− 1 for each n < ω by inductive hypothesis, because
ord{Tk∩Tn : k < ω and k ̸= n} < m−2 and {Sk,i∩Tn : k < ω, k ̸= n and i < 2}
is a subbase of Tn. Observe that, for every finitely many members Sn(j),i(j),
j < k, of S if we put B =

∩
j<k Sn(j),i(j), then bdB ⊆

∪
j<k Tn(j), and hence,

dim bdB ≤ m − 1. This means that X has a countable base B such that
dim bdB ≤ m− 1 for each B ∈ B. Hence, dim X ≤ m. �
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6. Canonically representing subbase and weakly canonically repre-
senting subbase

In this section, we consider the case X is a Hausdorff space. In [10], in
addition to independent subbase, two more properties which are expressing
non-redundancy of a proper dyadic subbase are introduced. They are full-
representing subbase and canonically representing subbase. In this section, we
introduce yet another one called weakly canonically representing subbase, and
investigate relations among them.

Proposition 19 (Proposition 3.8 and 3.10 of [10]). Suppose that S = {Sn,i :
n < ω, i < 2} is a proper dyadic subbase of a Hausdorff space X.

(1) If x ̸= y ∈ X, then x and y are separated by Sn,i and Sn,1−i for some n
and i, and therefore φS(x) ̸ ↑φS(y).

(2) If x ∈ X and σ ≽ φS(x), then S̄(σ) = {x}.
(3) If τ ∈ 2ω, then S̄(τ) is either a one-point set {x} for some x ∈ X or the

empty set.

Proof. (1) Suppose that x ̸= y ∈ X. Since X is Hausdorff, there exists
σ ∈ K(Tω) such that x ∈ S(σ) and y ∈ X \ clS(σ). Since S is proper,

clS(σ) = S̄(σ) =
∩

n∈dom(σ)

clSn,σ(n).

Therefore, for some n, x ∈ Sn,σ(n) and y ̸∈ clSn,σ(n), and thus y ∈ Sn,1−σ(n).
(2) From (1) and Lemma 5(2), S̄(φS(x)) = {y : φS(y) ↑ φS(x)} = {x}.

Since S̄ is antimonotonic, we only need to show x ∈ S̄(σ) for σ ≽ φS(x). It is
immediate because φS(x) ↑ σ and Lemma 5(2).

(3) ¿From (2), S̄(τ) is a one-point set if τ ≽ φS(x) for some x ∈ X. Since
τ ∈ 2ω, ↓τ =↓↑τ . Thus, by Lemma 5(2), S̄(τ) = φ−1

S (↓τ). Therefore, it is an
empty set if τ � φS(x) for every x ∈ X. �

¿From Proposition 19(3), when S is a proper dyadic subbase of a Hausdorff
space X, there is a surjective partial function ρS from 2ω to X, which assigns
to τ ∈ 2ω the unique element of S̄(τ) when it is non-empty. Therefore, a proper
dyadic subbase S induces a representation ρS of X.

Definition 6 ([10]). A full-representing subbase of a Hausdorff space X is a
proper dyadic subbase S such that ρS is a total function.

Definition 7 ([10]). A canonically representing subbase of a Hausdorff space
X is a proper dyadic subbase S such that, for every σ ∈ Tω and x ∈ X,
S̄(σ) = {x} if and only if σ ≽ φS(x).

That is, a canonically representing subbase is a proper dyadic subbase for
which the converse of Proposition 19(2) also holds. It is proved in [10] that
full-representing implies canonically representing and canonically representing
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implies independent, and these three are equivalent when the space is compact.
We show in the next proposition some properties equivalent to canonically rep-
resenting. The domain of a representation ρS of X is denoted by dom(ρS). For
σ ∈ Tω and n ∈ dom(σ), inv(σ, n) denotes the sequence obtained by inverting
the value of the n-th element of σ, and erase(σ, n) denotes the sequence obtained
by replacing the n-th element of σ with ⊥. We write s ≺ t for s, t ∈ T if s ≼ t
and s ̸= t, and σ ≺ τ for σ, τ ∈ Tω if σ ≼ τ and σ ̸= τ .

Proposition 20. Suppose that S is a proper dyadic subbase of a Hausdorff
space X. The following are equivalent.

(1) S is a canonically representing subbase.

(2) If σ ↑ φS(x) and σ ̸≽ φS(x) for x ∈ X and σ ∈ Tω, then S̄(σ) contains at
least one point other than x.

(3) If τ ∈ dom(ρS) for τ ∈ 2ω, then inv(τ, n) ∈ dom(ρS) for every n < ω.

Proof. (1) → (2) : If σ ↑ φS(x), then x ∈ S̄(σ) by Lemma 5(2). If σ � φS(x),
then S̄(σ) ̸= {x} by (1). Hence, we have (2).

(2) → (3) : Let x = ρS(τ), i.e., S̄(τ) = {x}. If n ̸∈ dom(φS(x)), then
ρS(inv(τ, n)) = x, and hence, inv(τ, n) ∈ dom(ρS). Suppose that n ∈ dom(φS(x)).
Let σ = erase(τ, n). Then we have σ ≺ τ and therefore σ ↑ φS(x), because
τ ≽ φS(x). Since n ∈ dom(φS(x)) and σ(n) = ⊥, we have σ � φS(x). There-
fore, S̄(σ) contains at least one point other than x by (2). Since τ ∈ 2ω,
↑σ = {σ, τ, inv(τ, n)}. Hence, we have

S̄(σ) = φ−1
S (↓↑σ) = φ−1

S (↓τ∪ ↓inv(τ, n))
= φ−1

S (↓τ) ∪ φ−1
S (↓inv(τ, n))

= S̄(τ) ∪ S̄(inv(τ, n)) = {x} ∪ S̄(inv(τ, n)).

Therefore, S̄(inv(τ, n)) is not empty, and thus, ρS(inv(τ, n)) exists, which means
that inv(τ, n) ∈ dom(ρS).

(3) → (1) : We fix σ ∈ Tω and x ∈ X. By Proposition 19(2), it suffices to
show that S̄(σ) = {x} implies σ ≽ φS(x). Now, suppose on the contrary that
S̄(σ) = {x} but σ � φS(x). Then σ ↑ φS(x) by Lemma 5(2), and σ(n) = ⊥ ≺
φS(x)(n) for some n < ω. Thus, we can choose τ ∈ 2ω such that σ ≼ τ and
φS(x) ≼ τ . Put σ′ = erase(τ, n). Since σ ≼ σ′, we have

S̄(σ) ⊇ S̄(σ′) = φ−1
S (↓↑σ′) = φ−1

S (↓τ∪ ↓inv(τ, n)) = {x, ρS(inv(τ, n))}.

Here, ρS(inv(τ, n)) exists by (3), and it differs from x since τ(n) = φS(x)(n) ≻
⊥. This contradicts the fact that S̄(σ) = {x}. �

The intuitive meaning of Proposition 20(3) is that if τ ∈ 2ω is a ρS-code of
x ∈ X, then every digit of τ is either meaningless (i.e., if we invert its value,
then the result is also a code of x), or indispensable in identifying x (i.e., if we
invert its value, then the result is a code of another point).

In this article, we define yet another property of a proper dyadic subbase.
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Definition 8. A weakly canonically representing subbase of a Hausdorff space
X is a proper dyadic subbase S such that, if σ ≺ φS(x) for x ∈ X and σ ∈ Tω,
then S̄(σ) contains at least one point other than x.

Since S̄ is antimonotonic, we only need to consider the case σ is maximal
among those bottomed sequences strictly smaller than φS(x). Therefore, we
can also restate as follows.

Proposition 21. A proper dyadic subbase S is weakly canonically representing
if and only if, for all x ∈ X and n ∈ dom(φS(x)), we have S̄(erase(φS(x), n)) ̸=
{x}.

It means that all the digits of φS(x) are indispensable in identifying x, and
if we erase one of them and replace it with ⊥, then it becomes ambiguous and
denotes more than one elements with respect to S̄.

If S is a full-representing subbase, then ρS is a total function and therefore
S is canonically representing by Proposition 20(3). If σ ≺ φS(x), we have
σ ↑ φS(x) and σ ̸≽ φS(x). Therefore, a canonically representing subbase is
weakly canonically representing. The proof of Proposition 4.7 in [10], which says
that a canonically representing subbase S of a non-empty space is independent,
only uses the fact that S is weakly canonically representing, and therefore,
a weakly canonically representing subbase is independent if the space is non-
empty.

In [10], it is written without a proof that weakly canonically representing is
equivalent to canonically representing. However, it is not correct and weakly
canonically representing is strictly weaker. We show an example of a proper
dyadic subbase which is weakly canonically representing but not canonically
representing. Let H = Iω be the Hilbert cube. We consider the dyadic subbase
H obtained as the infinite product of the Gray-subbase G of I, through some
encoding of Tω×ω in Tω. Then H is a full-representing subbase. Let z0 =
(1/2, 1/2, . . .) ∈ H and τ0 ∈ 2ω be the infinite sequence obtained by filling all
the ⊥ in φH(z0) with 0. Consider the subset

Y = {y ∈ 2ω : y and τ0 differ at infinitely many coordinates}

of the Cantor space 2ω. Let C be the dyadic subbase of Y obtained as the
restriction of the obvious one on 2ω. That is, we have φC(σ) = σ for σ ∈ Y .
C is canonically representing by Proposition 20(3) and thus weakly canonically
representing. We define our space as the topological sum X = Y ⊕ H. We
consider the dyadic subbase S defined as S0,0 = Y , S0,1 = H, and Sn+1,i =
Cn,i ∪Hn,i (n ≥ 0, i = 0, 1). S is a proper dyadic subbase of X.

Proposition 22. The dyadic subbase S defined above is weakly canonically rep-
resenting.

Proof. Since H and C are weakly canonically representing, we only need to
consider in Proposition 21 the cases φS(x) = 1µ and n = 0, and φS(x) = 0µ
and n = 0, and show that S̄(inv(φS(x), n)) ̸= ∅.
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First, consider the case φS(x) = 1µ and n = 0. We have µ = φH(y) for some
y ∈ H. Let σ be the element in 2ω obtained by filling all the bottoms of µ with
1. If infinitely many coordinates of y are different from 1/2, σ is different from
τ0 at infinitely many coordinates. If finitely many coordinates of y are different
from 1/2, µ contains infinitely many ⊥ and therefore σ is different from τ0 at
infinitely many coordinates. Therefore, σ is in Y in both cases. Therefore,
0σ ∈ φS(X) and 0σ ↑ 0µ. Thus, S̄(0µ) ̸= ∅.

Next, consider the case φS(x) = 0µ and n = 0. Since µ ∈ 2ω and H is
full-representing, there is an element y ∈ H such that φH(y) ≼ µ. We have
1φH(y) ∈ φS(X) and 1φH(y) ↑ 1µ. Therefore, S̄(1µ) ̸= ∅. �

Proposition 23. The dyadic subbase S is not canonically representing.

Proof. For z0 ∈ H and τ0 ∈ 2ω in the definition of X, we have ρS(1τ0) = z0.
Since τ0 ̸∈ Y , S̄(0τ0) = ∅. Therefore, from Proposition 20(3), we have the result.

�

It is an interesting problem to determine a space which has a subbase dis-
cussed in this section. By the definition, a separable metrizable space X is dense
in itself and compact if and only if X has a full-representing subbase. However,
the authors do not know such characterizations for a canonically representing
subbase and for a weakly canonically representing subbase.
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