Domain representations of spaces derived from dyadic subbases

> Hideki Tsuiki Kyoto University

Tutorial Jaist Workshop; Constructivism and Computability 2015 March 2-6, Kanazawa

Outline of the talk

1. Modified Gray expansion / IM2-machine for real number computation

Generalization to other Hausdorff spaces.

joint works with Yasuyuki Tsukamoto

- 2. Dyadic subbase
- 3. Proper dyadic subbase
- 4. Domain representations derived from proper dyadic subbases
- 5. Strongly proper dyadic subbase

1. Modified Gray expansion and IM2-machine for real number computation

Computation over Topological Spaces

 Stream input/output access over infinite sequences. 0 0 (Type2 machine) 0 0 Z 0 Input Real number computation Type2 Machine via binary expansion into (Stream Programming) infinite sequences. Output 0 Unnatural computation

over R.

Binary expansion

- Coding of the unit interval [0,1] as {0, 1}-sequences.
- The first digit of x is 0 or 1 depending on $x \le 1/2$ or $x \ge 1/2$.
- The rest is the code of d(x) for d the function below.
- *d* is multiple-valued on 1/2, a value is chosen based on the first digit.
- × 3 function not expressible (0010101..(=1/6)×3 = 0111... or 1000...)

Modified Gray expansion

- The first digit of x is 0 or 1 depending on $x \le 1/2$ or $x \ge 1/2$.
- The rest is the code of *t*(*x*) for *t* the tent function.

0.5

- Easily converted from/to Binary Expansion (2-state automaton).
- *t* is single-valued and continuous; not depending on the first digit.
- Leave the first digit as ⊥ (undefined), and consider expansion into
 {0,1,⊥}-sequences.
 Gianantonio 1999], [T 2002]
 1

1.0

1/2

6

Gray expansion

- $\mathbb{T} = \{0, 1, \bot\}.$
- Modified Gray expansion (We simply call it Gray-expansion) assigns a unique \mathbb{T} -sequence to each $x \in [0,1]$.
- \perp appears in expansions of dyadic rationals, and we always have \perp 1000...
- $1 \perp$ -sequences : a \mathbb{T} -sequence with at most one \perp .
- \mathbb{T}_{1}^{ω} : the set of $1 \perp$ -sequences.
- The unit interval I = [0,1] is topologically embedded in \mathbb{T}_{1}^{ω}
 - Topology on \mathbb{T} : {0}, {1}, {0,1, \perp }
 - Topology on \mathbb{T}^{ω} : product topology = Scott topology
 - Topology on \mathbb{T}_{1}^{ω} : subspace topology

How to output Gray expansion?

How to output Gray expansion?

How to input Gray expansion?

- Indeterministic (i.e. nondeterministic) behavior.
- It should input 000.. , not \perp 000.. for the input 000...
- A program should be written so that it can input all the digits to identify a point. $(\perp 1 \text{ is valid, but } \perp 0 \text{ is not})$

Finite/infinite-time state of a tape for usual stream {0,1} -output

• One way access from left to right.

- $\overline{0}$, $\overline{1}$: output of 0 or 1 from the blue head.
- $\perp 0$ unnecessary.
- The set of limit of finite-time observation (ideal completion of finite-time state) subset of \mathbb{T}^{ω_1} .

- Let L(D) be the set of limit (i.e., non-compact) elements.
- Scott domain (algebraic bounded complete dcpo).
- [0,1] is homeomorphic to the set of minimal elements of L(D).
- All the increasing sequences following K(D) are identifying points of [0,1].
- It ensures that an IM2-machine can "input" enough information to identify a point, if an IM2-machine program is written following the structure of K(D).

- [0,1] is a retract of L(D). $(\forall p \in L(D). \exists x \in [0,1], \phi(x) \sqsubseteq p).$
- We have another representation that uses the whole L(D), by considering that 010^{ω} , 110^{ω} , $\pm 10^{\omega}$ are all representing 1/2.
- It corresponds to considering the state 01 not an open interval (1/4, 1/2) but the closed interval [1/4, 1/2], which is more natural for programming.

IM2-machine

- Two-head access to input/output tapes.
- Indeterministic behavior depending on how to input when both input heads have values.
- More generally, defined as an (n +1)-head machine which can access n⊥-sequences.
- Thus, we can compute over n⊥sequences.
- Easily implemented in concurrent logic programming languages.

IM2-machine + Gray-code

Type2-machine + Signed-digit expansion and IM2-machine + Grayexpansion induce the same computability notion on [0,1].

Generalization of Grayexpansion to other spaces.

2. Dyadic subbase

Generalization of Gray-embedding

X: Hausdorff Topological space

- Disjoint open sets $S_{n,0}$ and $S_{n,1}$.
- In order to identify a point $x \in X$, $S_{n,0}$ and $S_{n,1}$ are used but $S_{n,\delta}$ are not used.
- $\{S_{n,a} \mid n \in N, a \in \{0,1\}\}$ forms a subbase of X.

Dyadic subbase

- Let (*X*, *O*) be a Hausdorff space.
- **Definition 1.** A dyadic subbase of X is a map $S : \omega \times \{0, 1\} \rightarrow O$ such that
 - $\{S_{n,a} \mid n \in N, a \in \{0,1\}\}$ is a subbase of X,
 - $S_{n,0} \cap S_{n,1} = \emptyset$ for all $n \in \mathbb{N}$.
- We define $S_{n,\delta} = X \setminus (S_{n,0} \cup S_{n,1})$.
- A dyadic subbase *S* corresponds to the topological embedding $\varphi_{S}: X \to \mathbb{T}^{\omega}$, $S_{n,0}$, $S_{n,1}$

$$\varphi_{S}(x)(n) = \begin{cases} 0 \ (x \in S_{n,0}) \\ 1 \ (x \in S_{n,1}) \\ \perp \ (x \in S_{n,\delta}) \end{cases}.$$

The domain \mathbb{T}^{ω}

- Order on $\mathbb{T} : \bot \sqsubseteq 0, \bot \sqsubseteq 1$
- \mathbb{T}^{ω} : Scott domain (algebraic bounded complete dcpo.)
- $\mathbb{T}^* = \mathsf{K}(\mathbb{T}^{\omega})$: The set of compact elements of \mathbb{T}^{ω} .
 - Finite number of 0, 1.
 - We write $0 \perp 10$ for $0 \perp 10 \perp \omega$
 - Inner bottoms.
- $L(\mathbb{T}^{\omega})$: The set of limit (i.e., non-compact) elements of \mathbb{T}^{ω} .
 - Infinite number of 0, 1.
- Stratified as in the figure.

S(p) and $\overline{S}(p)$

X

S0,0

 $p=\perp 00$

S_{2,0}

S_{1,0}

• For a dyadic subbase S and $p \in \mathbb{T}^*$, define

$$S(p) = \bigcap_{k \in \text{dom}(p)} S_{k,p(k)},$$

- Here, dom(*p*) ={ $k : p(k) \neq \bot$ }.
- *S*(*p*) : the set of points which satisfy the specification *p*.
- ${S(p) : p \in \mathbb{T}^*}$ forms the base of X generated by S.

$$\bar{S}(p) = \bigcap_{k \in \operatorname{dom}(p)} X \setminus S_{k,1-p(k)} = \bigcap_{k \in \operatorname{dom}(p)} S_{k,p(k)} \cup S_{k,\delta}$$

- $\overline{S}(p)$: the set of points which satisfy the specification p, where p(k) = a means $x \in S_{k,a} \cup S_{k,\delta}$.
- We want $\overline{S}(p)$ to be the closure of S(p).

3. Proper dyadic subbase

Proper Dyadic Subbase

- **Definition 2.** A dyadic subbase *S* of *X* is proper if $\overline{S}(p) = \operatorname{cl} S(p)$ for every $p \in \mathbb{T}^*$.
- Examples of non-proper dyadic subbases.
 Eample 1
 Eample 2

- If S is proper, then $S_{n,0}$ and $S_{n,1}$ are exteriors of each other and $S_{n,\delta}$ is their common boundary.
- If S is proper, then $\varphi_S(X) \subseteq L(D_S)$.
- Proper Boundaries are orthogonal.

S(p) and $\overline{S}(p)$ are order-theoretic

If S is a dyadic subbase of X,

Properness connect this order-theoretic notion with closure, which is a topological notion of X.

Proper Dyadic Subbase

- Theorem 1. Every separable metric space has a proper dyadic subbase. In particular, if X is a separable metric space with dimension n, then X has a proper dyadic subbase of degree n. [Ohta, T, Yamada 2013]
- dimension —- small inductive dimension (= large inductive dimension = covering dimension.)
- degree of S —- the supremum of the number of bottoms appearing in φ_s(x). It is the number of extra heads required to access the space by an IM2-machine.
- Connecting a property of a space (dimension) and a structure of a machine (number of heads).

Independent Subbse

- **Definition 3.** A dyadic subbase *S* of *X* is independent if *S*(*p*) $\neq \emptyset$ for every $p \in \mathbb{T}^*$.
- Proposition 1. An independent subbase is proper.

(Proof) Suppose that $x \in \overline{S}(p)$. Let $q \in \mathbb{T}^*$ has arbitrary small $S(q) \ni x$. Then, p and q are compatible. Since $S(p) \cap S(q) = S(p \sqcup q) \neq \emptyset$, the point x is in the closure of S(p).

• Theorem 3. Every dense in itself separable metric space has an independent subbase. [Ohta, T, Yamada 2010]

Possibility to separate points w.r.t. S.

- Since X is Hausdorff, every pair of points can be separated by a pair of open sets.
- **Proposition2.** If *S* is a proper dyadic subbase of *X*, every pair of points can be separated by one component of a dyadic subbase.
- If S is not proper, it may be the case that

n	0	1	2	3	4	
$\varphi_{S}(x)(n)$	\bot	1	1	0	1	
$\varphi_{S}(y)(n)$	1	\perp	\perp	0	1	

• If S is proper, for $x \neq y$, we always have an index *i* such that

n			i		
$\varphi_{S}(x)(n)$		1	0	0	
$\varphi_{S}(y)(n)$		\bot	1	0	

Retract Structure on the domain

- If S is not proper, it may be the case that $\varphi_S(x) \sqsubseteq p$ and $\varphi_S(y) \sqsubseteq p$ for $x \neq y$.
- **Proposition 3.** If *S* is proper, for each $p \in \uparrow \varphi_S(X)$, there is a unique point $x \in X$ such that $\varphi_S(x) \sqsubseteq p$.
- We denote this x by $\rho(p)$.
- **Proposition 4.** *X* is regular iff the map ρ is continuous. In this case, $\rho:\uparrow \varphi_s(X) \rightarrow X$ is a retraction.

Increasing Sequences in T^{ω}

- Every increasing sequence in $K(\mathbb{T}^{\omega})$ identifies an element of $L(\mathbb{T}^{\omega})$.
- Only interested in sequences identifying $\varphi_{S}(X)$.
- Consider a subset of K(T^ω) so that the set of limit is more close to φ_S(X), just as the case of Gray-expansion.

4. Proper dyadic subbase and domain representations [T, Tsukamoto]

Restricting the set of finite states

- $p|_m = p_0 p_1 \dots p_{m-1} \perp \omega$
- $K_S = \{p|_m : p \in \varphi_S(X), m \in \mathbb{N}\}.$
- D_s: Ideal completion of K_s.
- $\phi(X) \subseteq L(D_S).$

Properties of X and properties of the corresponding embeddings.

Let S be any proper d. s. of X.

- Theorem 4. If X is strongly nonadhesive, L(D_S) has the set of minimal elements.
- Theorem 5. If X is regular, then $X \subseteq \min(L(D_S))$.
- Theorem 6. If X is compact, $X = \min(L(D_S))$.

Strongly nonadhesive space

- Definition. (1) We say that a Hausdorff space X is adhesive if X has at least two points and closures of any pair of non-empty open sets have non-empty intersection.
- (2) We say that X is nonadhesive if it is not adhesive.
- (3) We say that X is strongly nonadhesive if every open subspace is nonadhesive.
- A space is called Urysohn (or completely Hausdorff) if any two distinct points can be separated by closed neighbourhoods. A regular space is always Urysohn.
- **Proposition 2.** Every Urysohn space is strongly nonadhesive.
- **Proposition 3.** There exists an adhesive Hausdorff space.

Example of an adhesive Hausdorff space

- Let P be the set of dyadic irrational numbers in [0,1].
- $X = P \cup \mathbb{N}$ for $\mathbb{N} = \{1, 2, 3...\}$.
- Neighbourhood base of $x \in P$ is $U \cap P$ for U a nhd. of x in [0,1].
- Neighbourhood base of $n \in \mathbb{N}$ is $\{n\} \cup (U \cap P)$ for U a nhd. of $\{k/2^n : 0 < k < 2^n, k \text{ is odd}\}$ in [0,1].

Proof of Theorem 4.

- **Theorem 4.** If *X* is strongly nonadhesive, L(D_S) has the set of minimal elements.
 - Since X is nonadhesive, only finite number of elements of K_S has one digit (0 or 1).
 (If S(p) and S(q) do not intersect in their closures, there is no point x such that φ_S(x) = ⊥ⁿ... for n the maximal length of p and q.)
 - We can show that K_s is finite-branching by applying this to the subspace S(e) with the dyadic subbase restriction of S to S(e),
 - As the limit of a finite-branching poset, L(D_s) has a set of minimal elements.

Exact version of S

- We consider $\{0,1,\delta\}^{\omega}$, instead of $\mathbb{T}^{\omega} = \{0,1,\bot\}^{\omega}$.
- δ : exactly on the boundary.
- We define $S_{k,\delta}$ as the common boundary of $S_{k,0}$ and $S_{k,\delta}$.
- For $p \in \{0,1,\delta\}^{\omega}$, we define S(p) as

$$S(p) = \bigcap_{k < len(p)} S_{k,p(k)}$$

- For a sequence $p \in \{0,1,\perp\}^*$, we denote by $p^{\delta} \in \{0,1,\delta\}^*$ the sequence obtained by replacing inner bottoms with δ .
- For example, for $p = 01 \perp 1 \perp \omega$, $p^{\delta} = 01\delta 1$.
- $K_S = \{ p \in \mathbb{T}^{\omega} \mid S(p^{\delta}) \neq \emptyset \}.$

Proof of Theorem 5.

- Theorem 5. Suppose that X is regular. If $p \in L(D)$ and p is compatible with $\varphi(x)$ in \mathbb{T}^{ω} , then $\varphi(x) \sqsubseteq p$. In particular, $\varphi(X) \subseteq \min(L(D))$.
 - (proof) Assume that $\varphi(x)(m) = 0$, and prove that p(m) = 0.
 - Since X is regular and S is proper, $\overline{S}(\varphi(x)|_n) \subseteq S_{m,0}$ for some n > m.
 - Since $p \in L(D)$, $p|_n \in K(D)$. Therefore, $S(p|_n^{\delta})$ is not empty. Let $y \in S(p|_n^{\delta})$. Since $p|_n$ is compatible with $\varphi(x)|_n$, $y \in \overline{S}(\varphi(x)|_n)$.
 - Therefore, $\varphi(y)(m) = 0$. Thus, p(m) = 0.

Proof of Theorem 6.

- Theorem 6. If X is compact, then X =min(L(D_S)).
 - (proof) compactness of min(L(D_s)).
- If X is compact, the poset K_S determine the space X.
- all incr. seq. in K(D_s) identify a point of X through the retraction from L(D_s) to min(L(D_s)).

D_s is not bounded complete

- Even if S is proper and X is compact, D_S may not be bounded complete. Therefore, <u>1</u> D_S may not be a Scott domain.
- Example: [0,1] with the Gray code, with identification 1/4=3/4.

\hat{D}_{S}: bounded complete modification. • $K_{S} = \{p|_{m}: p \in \varphi_{S}(X), m \in \mathbb{N}\}.$

- D_s is not bounded complete, in general.
- $\hat{\mathsf{K}}_{S} = \{p|_{m} : p \in \uparrow \varphi_{S}(X), m \in \mathbb{N}\}.$
- \hat{D}_{S} : Ideal completion of \hat{K}_{S} .
- Theorem. D̂_s is bounded complete (and therefore is a Scott domain).
- D̂_s also satisfies Theorem 4 to 6.

Exact version of S and \overline{S}

- We consider $\{0,1,\delta\}^{\omega}$, instead of $\mathbb{T}^{\omega} = \{0,1,\bot\}^{\omega}$.
- δ : exactly on the boundary.
- We define $S_{k,\delta}$ as the common boundary of $S_{k,0}$ and $S_{k,\delta}$.
- For $p \in \{0,1,\delta\}^{\omega}$, we define S(p) as

$$S(p) = \bigcap_{\substack{k < len(p)}} S_{k,p(k)}$$

$$\bar{S}(p) = \bigcap_{\substack{k < len(p)}} \operatorname{cl} S_{k,p(k)} = \bigcap_{\substack{k < len(p)}} (S_{k,p(k)} \cup S_{k,\delta})$$

- For a sequence $p \in \{0,1,\perp\}^*$, we denote by $p^{\delta} \in \{0,1,\delta\}^*$ the sequence obtained by replacing inner bottoms with δ .
- For example, for $p = 01 \perp 1 \perp^{\omega}$, $p^{\delta} = 01\delta 1 \perp^{\omega}$.
- $K_S = \{ p \in \mathbb{T}^{\omega} \mid S(p^{\delta}) \neq \emptyset \}$. $\hat{K}_S = \{ p \in \mathbb{T}^{\omega} \mid \overline{S}(p^{\delta}) \neq \emptyset \}$.

Extending the retraction to \hat{D}_S

 $L(D_S)$

 $K(D_S)$

01

⊥1

- If X is compact, all incr. seq. in $K(\hat{D}_{s})$ identify a point of X through 10° 010° the retraction ρ from $L(\hat{D}_{s})$ to 10° 10° 10° $min(L(\hat{D}_{s}))$.
- The retraction ρ is continuous.
 Can we extend it to a continuous function from D̂_s to D̂_s?

n	0	1	2	3	4	
Input	0	1		1	0	
Output	0	1		1		

- ρ can be extended to a map from D̂_s to D̂_s as ρ(p) = glb({q | q ⊊ p s.t. there is no element between q and p}.
- This map is computable if K_S is decidable as a subset of {0,1,⊥}*.

Application to computation

• To write a program f from X to Y with an IM2machine, one can define a function F, instead.

5. Strongly proper dyadic subbase [Tsukamoto, T]

Strongly proper dyadic subbase

- We consider $\{0,1,\delta,\perp\}^{\omega}$, instead of $\mathbb{T}^{\omega} = \{0,1,\perp\}^{\omega}$.
- For $p \in \{0,1,\delta, \bot\}^{\omega}$, we define S(p) and $\overline{S}(p)$ as

$$S(p) = \bigcap_{k \in \text{dom}(p)} S_{k,p(k)},$$

$$\bar{S}(p) = \bigcap_{k \in \text{dom}(p)} \text{cl} S_{k,p(k)}$$

- **Definition.** A dyadic subbase S is strongly proper if $\overline{S}(p) = cl S(p)$.
- Recall that S is proper if $\overline{S}(p) = cl S(p)$ for $p \in \{0, 1, \bot\}^{\omega}$.

Properness and approximation.

- Let X be a Hausdorff space and S be a dyadic subbase of X.
- Proposition. S is proper if and only if $\hat{\uparrow} \varphi_S(x) \cap 2^{\omega} \subseteq D_S$ for $\forall x \in X$. That is, $\overline{S}(p) \neq \emptyset$ implies $S(p) \neq \emptyset$ for $p \in \{0,1\}^*$.
- Ex. $\phi_S(x) = \bot \bot p$ for $p \in \{0,1\}^{\omega}$, then 00p, 01p, 10p, 11p $\in D_S$.

Strongly Properness and approx.

- Let X be a Hausdorff space and S be a dyadic subbase of X.
- Theorem. S is strongly proper if and only if $D_S = \hat{D}_S$. That is, $\overline{S}(p) \neq \emptyset$ implies $S(p) \neq \emptyset$ for $p \in \{0,1,\delta\}^*$.
- Ex. $\phi_S(x) = \bot \bot p$, then 00p, 01p, 10p, 11p, $0 \bot p$, $1 \bot p$, $\bot 0p$,

Example of a not strongly proper dyadic subbase.

Example of a not strongly proper dyadic subbase.

Bounded complete Domain.

- For a proper dyadic subbase S, D_s is not bounded complete in general. (Therefore we defined a bounded complete domain D̂_s. in addition to D_s.)
- For a strongly proper dyadic subbase S, D_S is bounded complete. (Because $D_S = \hat{D}_S$.)
- Moreover, D_S is bounded complete not depending on the ordering of the components of S. (Because strongly properness is independent on it.)
- We also have the converse.
- **Theorem.** Let S be a proper dyadic subbase of a Hausdorff space X. S is strongly proper if and only if for all permutations $\pi: \omega \rightarrow \omega$, $D_{S\pi}$ is bounded complete.

Characterization of Regularity via strongly properness.

- Theorem 5. Suppose that S is a proper dyadic subbase. If X is regular, then p î $\varphi(x)$ in \mathbb{T}^{ω} implies $\varphi(x) \sqsubseteq p$ for $p \in L(D)$.
- The converse also holds for a strongly proper dyadic subbase.
- **Theorem**. Suppose that S is a proper dyadic subbase of X. X is regular if and only if $p \uparrow \phi(x)$ in \mathbb{T}^{ω} implies $\phi(x) \sqsubseteq p$ for $p \in L(D)$.

Strongly independent dyadic subbase [Tsukamoto, T]

- Is there a space X and a dyadic subbase S for which min(L(D_S)) does not exist?
- More strongly, is there (X, S) for which $D_S = \mathbb{T}^{\omega}$?

Strongly independent subbase

- **Definition 3.** A dyadic subbase *S* of *X* is independent if *S*(*p*) $\neq \emptyset$ for every $p \in \mathbb{T}^*$.
- **Definition 3.** A dyadic subbase *S* of *X* is strongly independent if $S(p) \neq \emptyset$ for every $p \in \{0, 1, \delta, \bot\}^*$.
- A space X with a strongly independent subbase is adhesive.
 - (For p, q $\in \{0, 1, \bot\}^*$, let k = max(len(p), len(q)). S($\delta^k 0$) $\neq \emptyset$ and any x $\in S(\delta^k 0)$ is in $\overline{S}(p) \cap \overline{S}(q)$.)
- A proper dyadic subbase S on a space X is strongly independent if and only if (1) S is independent, (2) S is strongly proper, and (3) X is adhesive.
- $D_S = \mathbb{T}^{\omega}$ for a strongly independent subbase.
- Question. Is there a Hausdorff space with a strongly independent subbase?

Prime integer topology

- We construct such a space as a modification of the prime integer topology \mathcal{P} on $\mathbb{N} = \{1, 2, 3, ...\}$. [Steen, Seebach 1995]
- The prime integer topology ${\mathcal P}$ is generated by

 $\{U(p,r) \mid p : \text{prime number}, \ 0 < r < p\}.$

 $U(p,r) := \{ n \in \mathbb{N} \mid n \equiv r \pmod{p} \}.$

 It is Hausdorff and adhesive (i.e., every pair of nonempty open sets intersect in their closure) (by Chinese Reminder Theorem).

Weakened Prime integer topology

- Let $(p_n) = (3,5,7,11,...)$ be the sequence of odd prime numbers.
- We define a topology \mathcal{P}_2 on \mathbb{N} generated by

 $S_{n,0} = \{m \mid m \equiv r \pmod{p_n}, 0 < r < p_n/2\}$ $S_{n,1} = \{m \mid m \equiv r \pmod{p_n}, p_n/2 < r < p_n \}$

• $\{S_{n,0}, S_{n,1} \mid n = 0, 1, 2, ...\}$ is a strongly independent dyadic subbase.

• Theorem. (N, \mathcal{P}_2) is Hausdorff. (Use a theorem by Sylvester 1912, Schur 1929, Erdös 1934)

• Even increment function is not continuous on (N, \mathcal{P}_2).

mod 5
(=
$$p_1$$
) 1 or 2 3 or 4
(0) (1) (1) (1)

If $n \ge m$, then there exists a number containing a prime dvisor greater than m in the sequence $n+1, n+2, \ldots, n+m$. [Erdös 1934]

References

- Blanck, J., Domain Representations of Topological Spaces, Theoretical Computer Science, vol. 247, p.229–255, Elsevier Science, 2000.
- Erdős, P., A Theorem of Sylvester and Schur, Journal of London Mathematical Society, vol. 9, p.282–288, 1934.
- Gianantonio, P.D., An abstract data type for real numbers, Theoretical Computer Science, vol. **221**, p.295–326, 1999.
- Ohta, H., Tsuiki, H., Yamada, S., Independent subbases and non-redundant codings of separable metrizable spaces, Topology and its Applications, vol. 158, p.1–14, Elsevier Science, 2011.
- Ohta, H., Tsuiki, H., Yamada, K., Every second-countable regular space has a proper dyadic subbase, arXiv:1305.3393, 2013.
- Steen, L. A., Seebach, J. A., Counterexamples in Topology, Dover, 1995.
- Tsuiki, H., Real number computation through Gray Code Embedding, Theoretical Computer Science, vol. **284**/2, p.467–485, 2002.
- Tsuiki, H., Compact Metric Spaces as Minimal-limit Sets in Domains of Bottomed Sequences, Mathematical Structures in Computer Science, 14(6), p.853–878, 2004.
- Tsuiki, H., Dyadic subbases and efficiency properties of the induced $\{0, 1, \bot\}^{\omega}$ -representations, Topology Proceedings, vol. **28**(2), p.673–687, 2004.
- Tsuiki, H., Tsukamoto, Y., *Domain representations induced by dyadic subbases*, Logical Methods in Computer Science, to appear. (available in arXiv:1401.1393, 2014.)
- Tsukamoto, Y., Tsuiki, H., Properties of domain representations of spaces through dyadic subbases, submitted for publication.