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1. Modified Gray expansion
and IM2-machine for real
number computation



Computation over Topological Spaces

- Stream input/output access
over infinite sequences. <0

(Type2 machine)

Input
- Real number computation ! .
: . . . Type2 Machilne
via binary expansion into (Stream Programming)

infinite sequences. output

 Unnatural computation Q e I

over R.



Binary expansion

- Coding of the unit interval [0,1] as {0, 1}-sequences.

- The first digit of x is 0 or 1 dependingonx=1/2orxz 1/2.

- Therest is the code of d(x) for d the function below.

- dis multiple-valued on 1/2, avalue is chosen based on the first digit.

- X 3 function not expressible (0010101..(=1/6 )x 3=0111... or 1000...)
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Modified Gray expansion

- The first digit of xis 0 or 1 dependingonx=1/2orxz 1/2.

- Therest is the code of t(x) for t the tent function.

- Easily converted from/to Binary Expansion (2-state automaton).

- tis single-valued and continuous; not depending on the first digit.
- Leave the first digit as L (undefined), and consider expansion into

10,1, L}-sequences. o [Gianantonio 1999], [T 2002]
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Gray expansion

- T=1{0,1,L}.

. Modified Gray expansion (We simply call it Gray-expansion) assigns a unique
T-sequence to each x € [0,1].

.1 appears in expansions of dyadic rationals, and we always have 1.1000...

-+ 1.1-sequences :a T-sequence with at most one L.

. T, : the set of 1 L-sequences.

- The unitinterval I = [0,1] is topologically embedded in T”;
- TopologyonT : {0},{1},{0,1,1}

- Topology on T": product topology = Scott topology

- Topology on T"”;: subspace topology

Tw,
[0,1]




How to output Gray expansion?
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How to output Gray expansion?
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How to input Gray expansion?
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How to input Gray expansion?
gnoans

/ \
ll1

e \ e \

A A
- Indeterministic (i.e. nondeterministic) behavior.

» It should input 000.. , not 1000.. for the input 000...

- A program should be written so that it can input all the
digits to identify a point. (L1 is valid, but L0 is not)




Finite/infinite-time state of a tape for
usual stream {O,1} -output

- One way access from left to right.

01% 10\‘” Infinite {O,1}-sequences
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Finite/infinte-time state of a tape for the

Subset of T»1|  (Gray expansion.
~

~ 010® 110w
\J_16‘” 111w
\J/ \l/\l/om\\m/m\l/m\l/\l/

\1/\\0//\1/
. \lT/

+ 0, 1:output of 0 or 1 from the blue head.

- 10 unnecessary.

. The set of limit of finite-time observation (ideal
completion of finite-time state) subset of T, .




Domain of [O,1]

010® 110w L(D)
\ / :
110 111 .Homeomorphlc
...................................... s 0 1=[0,1]
\OIO/\/\I/ / \l/\1/\1|0/
OL1 11

\1/\0/ N K(D)

.- Let L(D) be the set of limit (i.e.,, non-compact) elements.

. Scott domain (algebraic bounded complete dcpo).

- [0,1] is homeomorphic to the set of minimal elements of L(D).

. All the increasing sequences following K(D) are identifying
points of [0,1].

. |t ensures that an IM2-machine can “input” enough

information to identify a point, if an IM2-machine program is
written following the structure of K(D).




Domain of [O,1]

SR/

o1o 1100 110 111

\l/\/\l/ /\I/\/\l/
RN ‘/ ™ 0/ \_T
\ IT/

L(D)
.Homeomorphic
to [=[0,1]

K(D)

[0,1]is a retract of L(D). (v p € L(D). 3 x €[0,1], ¢(x) C p).
- We have another representation that uses the whole L(D), by
considering that 010«, 110w, 1. 10« are all representing 1/2.

- It corresponds to considering the state 01 not an open interval
(1/4, 1/2) but the closed interval [1/4, 1/2], which is more natural

for programming.



. Indeterministic behavior

IM2-machine

- Two-head access to input/output
tapes.

depending on how to input
when both input heads have
values.

- More generally, defined as an (n
+1)-head machine which can
access n_L-sequences.

- Thus, we can compute over n_L-
sequences.

- Easily implemented in concurrent
logic programming languages.

T Input

IM2-Machine
(two-heads I/0)

PawA
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IM2-machine + Gray-code

Type2-machine + Signed-digit expansion and IM2-machine + Gray-
expansion induce the same computability notion on [0,1].

{0,1,1}w
[0, 1]
- [O,1]

I admissible \_/

representation

(0,1}v IM2 machine

- A machine is operating directly on points.
- “Extensional” representation.
Computation which reflect the structure
of the space.

Type2-machine |



Generalization of Gray-
expansion to other spaces.

2. Dyadic subbase



Generalization of Gray-embedding
finite (not bounded) |
=2-heads {0,1,1}w lol l I l l
IM2 =~
. G
EEREN

X: Hausdorff Topological space

0. 0.5 1.



finite (not bounded)

2=-heads {0,1,1}w I : l
IM2 =~
machine

Generalization of Gray-code
|
|
|

X: Hausdorff Topological space

Disjoint open sets Sp0 and Sy, 1.
In order to identify a point x
e X, Snoand Sp,,; are used but
Sns are not used.

+ {Sna|neN,ae{0,1}} forms a :
subbase of X . 0. 0.5 1.




Dyadic subbase

- Let (X, O) be a Hausdorff space.

- Definition 1. A dyadic subbase of Xisamap S:w x{0, 1} =
O such that

. {Sna|neN,aec{0,1}}is a subbase of X,
.+ SphonSni1=@ forallneN.

. We deﬁne Sn,(S — X\(Sn,O U 5n,7 ).
- A dyadic subbase S corresponds to the topological

embedding @s: X — T¢, T
(0 (x e Sn,O)
@s(x)(n) = {1 (x € Sp,1) St
L (xeSne) .
S0,1
0.0 0.5

1.0



The domain Tw

),
OrderonT:1C O, LC 1 Cantor Set {0,1}

Tw : Scott domain (algebraic Tw=L(T®)uK(Tw) /
bounded complete dcpo.) T, 4’ ’
T" = K(T) : The set of | L(T®):
compact elements of Tw.

Finite number of 0, 1. X

- We write 010 for
0L10L%

. Inner bottom:s.

L(T®) : The set of limit (i.e.,

non-compact) elements

of Tw,

Infinite number of O, 1.
Stratified as in the figure.




S(p) and S(p) ’

e Foradyadic subbase Sand p €T, define

N

e Here, dom(p) ={k:p(k) = L}. p=_100
e S(p):the set of points which satisfy the specification p.

o {S(p):p e T} forms the base of Xgenerated by S.

S(p) — ﬂ X\ Sk,l—p(k) — ﬂ Sk,p(k) U Sk,

kedom(p) k€dom(p)

* S(p):the set of points which satisfy the specification p,
where p(k) = a means x € Skq U Sks.

e We want S(p) to be the closure of S(p).



3. Proper dyadic subbase



Proper Dyadic Subbase

- Definition 2. A dyadic subbase S of X'is proper if

S(p) = cl S(p) for every p € T*.
. Examples of non-proper dyadic subbases.

S(01
Eample 1 Eample 2 01)

o 6@

- If Sis proper, then Sno and Sy,1 are exteriors of each other

and Snsis their common boundary.

. If Sis proper, then @s(X) € L(Ds) .
. Proper —- Boundaries are orthogonal.



S(p) and S(p) are order-theoretic

If S is a dyadic subbase of X,

.embedding

S

S(p) =TpNes(X)

S(p) =L tpNes(X)

- -

p

Properness connect this order-theoretic notion with
closure, which is a topological notionof X.

L(T®):

K(T®):



Proper Dyadic Subbase

- Theorem 1. Every separable metric space has a proper

dyadic subbase. In particular, if X is a separable metric
space with dimension n, then X has a proper dyadic
subbase of degree n. [Ohta, T, Yamada 2013]

. dimension —- small inductive dimension (= large inductive

dimension = covering dimension.)

. degree of S —- the supremum of the number of bottoms

appearing in @s(x). It is the number of extra heads required
to access the space by an IM2-machine.

. Connecting a property of a space (dimension) and a

structure of a machine (humber of heads).



Independent Subbse

Definition 3. A dyadic subbase S of Xis independent if S(p)
= @ forevery p € T*.

Proposition 1. An independent subbase is proper.

(Proof)

Suppose that x € S(p).

Let g € T* has arbitrary small

S(g) > x.
Then, p and g are compatible. Since

S(p) n S(q) =S(p U q) #2, the point x
is in the closure of S(p).

B 4

pP=101%w

.- Theorem 3. Every dense in itself separable metric space
has an independent subbase. [Ohta, T, Yamada 2010]

28



Possibility to separate points w.r.t. S.

Since Xis Hausdorff, every pair of points can be separated by a
pair of open sets.

Proposition2. If S is a proper dyadic subbase of X, every pair of
points can be separated by one component of a dyadic subbase.

If S is not proper, it may be the case that

n 0 1 2 3 4
Ps(x)(n) 1 1 1 0 1
@s(y)(n) 1 1 1 0 1

@s(x)(n) 1 0 0
@s(y)(n) 1 1 0




Retract Structure on the domain

If S is not proper, it may be the

case that (ps(X) C p and (ps(y) L p embedding/SﬁS
forx=y. °
Proposition 3. If S is proper, for m (1)
each p € Tos(X), there is a unique | (T2
point xe X such that @s(x) C p.
We denote this x by p(p).
Proposition 4. X is regular iff the

K(T®):

map p is continuous. In this case,
0:Tos(X) = Xis a retraction.



Increasing Sequences in ¢

e Every increasing sequence in
K(T®) identifies an element of
L(T®) .

e Only interested in sequences
identifying @s(X).

e (Consider a subset of K(T») so
that the set of limit is more
close to s(X), just as the

case of Gray-expansion.




4. Proper dyadic subbase
and domain

representations
[T, Tsukamoto]



Restricting the set of finite states

\ﬂ\ ‘ 5210“00) S .7/ L(Ds)
CL(T*)

p|m= pop1...p0m-1L¥

Ks ={p|m: p € @s(X), m € N}.
Ds : ldeal completion of Ks.

@(X) CL(Ds).




Properties of X and properties of
the corresponding embeddings.

Let S be any proper d. s. of X.
e Theorem 4. If Xis strongly L(Ds)
nonadhesive, L(Ds) has the b

set of minimal elements.

e Theorem 5. If Xis reqular,
then X Cmin(L(Ds)).

e Theorem 6. If X is compact,
X =min(L(Ds)) .



Strongly nonadhesive space

Definition. (1) We say that a Hausdorff space X is adhesive if X
has at least two points and closures of any pair of non-empty
open sets have non-empty intersection.

- (2) We say that X is nonadhesive if it is not adhesive.

- (3) We say that X is strongly nonadhesive if every open
subspace is nonadhesive.

- A space is called Urysohn (or completely Hausdorff) if any
two distinct points can be separated by closed
neighbourhoods. A reqular space is always Urysohn.

- Proposition 2. Every Urysohn space is strongly nonadhesive.
- Proposition 3. There exists an adhesive Hausdorff space.

S S S e

Hausdorff nonadhesive Str. nonadhesive Urysohn regular



Example of an adhesive
Hausdorff space

e LetP bethe set of dyadicirrational numbers in [0,1].

e X=PuNforN={1,23...}.
e Neighbourhood base of x e Pis U n P for U a nhd. of xin [0,1].

®* Neighbourhood base of n € Nis{n} u (Un P) for U a nhd. of {k/2"
:0<k<2n kisodd}in[0,1]. 5
3

1

1/8 1/4 3/8 1/2 5/8 3/4 7/8

e

Hausdorff nonadhesive Str. nonadhesive  Urysohn reqular



Theorem 4. min(L(Ds))

exists If X Is strongly
nonadhesive.

Th. 4

Hausdorff Str. nonadhesive  Urysohn

regular

Compact

K(Ds)



Proof of Theorem 4.

e Theorem 4. If Xis strongly nonadhesive, L(Ds) has the
set of minimal elements.

e Since X is nonadhesive, only finite number of elements of Ks has
one digit (O or 1).

(If S(p) and S(g) do not intersect in their closures, there is no point x
such that @s(x) = Ln... for n the maximal length of pand q.)

e We can show that K is finite-branching by applying this to the
subspace S(e) with the dyadic subbase restriction of S to S(e),

e Asthe limit of a finite-branching poset, L(Ds) has a set of
minimal elements.

0 10 110 1110




\SVAVESR v/

e Theorem 5. Suppose that Xis

regular.If pe L(D) and p is
compatible with ¢(x) in T,
then @(x) C p. In particular,
¢(X) € min(L(D)).

Hausdorff Str. nonadhesive

Urysohn

Th. 5

regular Compact

K(Ds)



Exact version of S

We consider {0,1,6}v, instead of T@={0,1, 1},

O : exactly on the boundary.

We define Sks as the common boundary of Sko and Sks.
For p € {0,1,6}*, we define S(p) as

k<len(p)

For a sequence p € {0,1, L}, we denote by p° € {0,1,6}" the
sequence obtained by replacing inner bottoms with 0.

For example, forp=01_L11%, p°=0101.
Ks={peTw|S(p°) = 2}.



Proof of Theorem 5.

e Theorem 5. Suppose that Xisreqular.If p e L(D)and p is

compatible with ¢(x) in T®, then @(x) E p.In particular,
¢(X) € min(L(D)).

e (proof) Assume that ¢(x)(m) =0, and prove that p(m) = 0.

® Since Xis regular and S is proper, S(@(X)|n) € Smo for some n > m.

e Since pe L(D), p|ne K(D).Therefore, S(p|n°) is not empty. Lety
eS(p|n®) . Since p|nis compatlble with @(X)|n, ¥y € S(@(X)]n).

e Therefore, (y)(m)=0.Thus, p(m)=0.



e Theorem 6. If X is compact,
then X =min(L(Ds)) .

K(Ds)

Hausdorff Str. nonadhesive  Urysohn

regular

Compact



Proof of Theorem 6.

e Theorem 6. If X is compact, then X

:min(I—(DS)) . 0110 010¢
e (proof) compactness of  oN\foe
min(L(Ds)) . :

o |f Xis compact, the poset Ks
determine the space X.

e allincr.seq.in K(Ds) identify a point
of X through the retraction from
L(Ds) to min(L(Ds)).




Ds is not bounded complete

e EvenifSis properand X is

compact, Ds may not be urr A
bounded complete. Therefore, | | # N

Ds may not be a Scott domain.

e Example: [0,1] with the Gray
code, with identification
1/4=3/4. K

111 011 10

11 111



Ds: bounded complete modification.
® Ks={p|m:p e ps(X), me N}

®* Dsis not bounded complete,

in general. “ ”v v: LB
¢ KS :{p‘m:p c T(PS(X)I m e N}°

e Ds:ldeal completion of Ks.

e Theorem. Dsis bounded
complete (and therefore is a
Scott domain).

e D. also satisfies Theorem 4
to 6.



Exact version of S and S

We consider {0,1,6}v, instead of T@={0,1, 1},

O : exactly on the boundary.

We define Sks as the common boundary of Sko and Sks.
For p € {0,1,6}*, we define S(p) as

k<len(p)
S(p) = ﬂ cl Sk,p(k) — ﬂ (Sk,p(k) U Sk,s)
k<len(p) k<len(p)

For a sequence p € {0,1, L}, we denote by p° € {0,1,6}" the
sequence obtained by replacing inner bottoms with 0.

For example, forp =01L1.1%, p°=01061_Lw.

Ks={peTw|S(p°) = 2}. ng{pe']l‘w|§(p5)¢®}.



Example: Ds is bounded complete

® |n Ds, we have the following
elements above 1L 110w,

0010® 0110@ 1010® 1110w

NN S

0110w 1110w
\ / 111
1110

1

1

| 11000...

o1

1

|1

g
o4
s
' o aiak
O T




Extending the retraction to Ds

e If Xiscompact, allincr.seq.in
K(Ds) identify a point of X throughi: o1

the retraction p from L(Ds) to

. R L(Ds)
min(L(Dy)).
e The retraction p is continuous.
Can we extend it to a continuous
function from Ds to Ds? K(Ds)

Input 0

Output | O




The domain Dg (= D¢) of [0,1]
0010*0110% 010“110¢
0@ o% 0 110% 11107 10¢

\ /M}i{\i ' l&%“/\wvl o*/}o{

® pcan be extended to a map from Ds to Ds as o(p) = glb({q |
g £ p s.t. there is no element between g and p}.

e This map is computable if Ks is decidable as a subset of
{0,1, L}




Application to computation

e To write a program f from X to Y with an IM2-
machine, one can define a function F, instead.

& — &
VRVAVAVAV.. vV Vv VRVAVAVAv..

F O




5. Strongly proper dyadic

subbase
[Tsukamoto, T]



Strongly proper dyadic subbase

e \We consider {0,1,0, L}v, instead of Tw={0,1,_}w.

* Forpe{0,1,0, L}*, we define S(p) and S(p) as

S(p) — q Sk,p(k)v
(p)

kedom

Sp)= (] Sk

kedom(p)

® Definition. A dyadic subbase S is strongly proper if S(p) =
cl S(p).

® Recall thatSis properif S(p) =cl S(p) forp € {0,1,L}w.



Properness and approximation.

Let X be a Hausdorff space and S be a dyadic subbase of X.

Proposition. S is proper if and only if Tgs(x) n 2@ € Ds for
vx e X. Thatis, S(p) # @ implies S(p) = @ for p € {0,1}*.

Ex. @s(x) = L Lp for p € {0,1}*, then 00p, 01p, 10p, 11p € Ds.

S




Strongly Properness and approx.
e Let X be aHausdorff space and S be a dyadic subbase of X.

e Theorem.S is strongly proper if and only if Ds = Ds . That is,
S(p) = @ implies S(p) = @ for p € {0,1, &}*.
e EX. @s(x)=_L_Lp, then00p,01p, 10p, 11p,0Lp, 1 Lp, LOp,

Recall that Ks={p € Tw | S(p®) = @}
. Rs={peTw|S(p®) = 1.



Example of a not strongly proper
dyadic subbase.

1,0

>/ :
\




Example of a not strongly proper
dyadic subbase.

1,0
1110

/ 11
\ 10

Ds is bounded complete.
Ds is not bounded complete.




Bounded complete Domain.

For a proper dyadic subbase S, Ds is not bounded complete
in general. (Therefore we defined a bounded complete

domain Ds. in addition to Ds.)
For a strongly proper dyadic subbase S, Ds is bounded
complete. (Because Ds=Ds .)

Moreover, Dsis bounded complete not depending on the
ordering of the components of S. ( Because strongly
properness is independent oniit. )

We also have the converse.

Theorem. Let S be a proper dyadic subbase of a Hausdorff
space X. S is strongly proper if and only if for all

permutations m: w = w, Ds; is bounded complete.



Characterization of Regularity via
strongly properness.

e Theorem 5. Suppose that Sis a proper D 2 :: f ﬂﬂ

dyadic subbase. If X is reqular, thenp T
¢(x) in T implies ¢(x) C p forp € L(D).

e The converse also holds for a strongly
proper dyadic subbase.

e Theorem . Suppose that Sis a proper
dyadic subbase of X. Xis regular if and

onlyif p T @(x) in T@ implies ¢(x) C p for
p € L(D).



Strongly independent
dyadic subbase

[Tsukamoto, T]



w L(Ds)

Theorem 4. min(L(Ds)) exists

for a strongly adhesive space
X.

Example of a Hausdorff Adhesive space. K(Ds)

/ For this example, min(L(Ds)) exists.

l | Th. 4 l l
Compact

Hausdorff Str. nonadhesive  Urysohn regular Hausdorff

- Is there a space X and a dyadic subbase S for which
min(L(Ds)) does not exist?
- More strongly, is there (X, S) for which Ds=T®?



Strongly independent subbase

- Definition 3. A dyadic subbase S of Xis independent if S(p)

= @ foreveryp e T*.

- Definition 3. A dyadic subbase S of X'is strongly
independent if S(p) = @ for every p € {0,1,0, L}*.

- A space X with a strongly independent subbase is adhesive.
.+ (Forp,ge{0,1, L}, let k=max(len(p), len(q)). S(6k 0) =

@ and any x € 5(60)isin S(p) n S(q) .)

- A proper dyadic subbase S on a space X is strongly
independent if and only if (1) Sisindependent, (2) Sis
strongly proper, and (3) X is adhesive.

+ Ds=T% for a strongly independent subbase.

- Question. Is there a Hausdorff space with a strongly
independent subbase?



Prime integer topology

- We construct such a space as a modification of the prime integer
topology P on N ={1,2,3,...}.  [Steen, Seebach 1995]
+ The prime integer topology P is generated by

{U(p,r) | p: prime number, 0 < r < p}.
U(p,r):={neN|n=r (modp)}.

- It is Hausdorff and adhesive (i.e., every pair of nonempty open
sets intersect in their closure) (by Chinese Reminder Theorem).

FJ open
*//Z//
o qs | 12134




Weakened Prime integer topology

. Let (pn) =(3,5,7,11,...) be the sequence of odd prime numbers.

- We define a topology P,on N generated by

Sn,O — {m
Sn,1 — {m

m = r (mod pn), 0 <r < pn/2}
m =r (mod pn), pn/2 <1 < pn}

« {Sn0 Sn,1|n=0,1,2,...}is a strongly independent dyadic subbase.

- Theorem. (N, P,) is Hausdorff.
(Use a theorem by Sylvester 1912, Schur 1929, Erdos 1934)

- Even increment function is not continuous on (NN, P»).

mod5 [ ] or 2|3 or 4

(=p) (0)

0 ©

If n > m, then there exists a

number containing a prime dvi-
sor greater than m in the sequence
n+1,n+2,...,n+m.

[ErdOs 1934]
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