Compact metric spaces as minimal-limit sets in domains of bottomed sequences

Hideki Tsuki

Graduate School of Human and Environmental Studies, Kyoto University

Received 10 November 2003

Every compact metric space $X$ is homeomorphically embedded in an $\omega$-algebraic domain $D$ as the set of minimal limit (i.e., nonfinite) elements. Moreover, $X$ is a retract of the set $L(D)$ of all limit elements of $D$. Such a domain $D$ can be chosen so that it has property M and finite-branching, and the height of $L(D)$ is equal to the small inductive dimension of $X$. We also show that the small inductive dimension of $L(D)$ as a topological space is equal to the height of $L(D)$ for domains with property M. These results give a characterization of the dimension of a space $X$ as the minimal height of $L(D)$ in which $X$ is embedded as the set of minimal elements. The domain in which we embed an $n$-dimensional compact metric space $X$ ($n \leq \infty$) has a concrete structure in that it consists of finite/infinite sequences in $\{0, 1, \bot\}$ with at most $n$ copies of $\bot$.

1. Introduction

When $D$ is an $\omega$-algebraic domain, we can consider the set $L(D)$ of limit (i.e., nonfinite) elements of $D$ as a topological space with the subspace topology of the Scott topology of $D$, and the set $K(D)$ of finite elements of $D$ as its approximation structure. That is, $K(D)$ forms a base of the topology of $L(D)$ through the identification of $d \in K(D)$ with the open set $\uparrow d \cap L(D)$. We can use this domain-theoretic viewpoint for a topological space $X$ when $X$ is embedded in $L(D)$. In this case, $K(D)$ also forms a base of $X$, and each element of $X$ can be identified as the limit of an infinite strictly increasing sequence in $K(D)$.

This viewpoint is particularly effective when $D$ is composed of infinite sequences in $\Sigma_\bot = \{0, 1, \bot\}$. In this case, each cell of a sequence can be considered as representing a boolean information and an infinite strictly increasing sequence in $K(D)$ can be considered as an infinite (possibly uncomputable) process which incrementally outputs 0 or 1 to the cells based on the partial information about the point obtained so far. The order the cells are filled may not be unique, and regulated by the structure of $K(D)$. Some of the cells may be left unfilled even after the infinite time of execution, and in that case, the corresponding cell has the value $\bot$.

Many of the computational notions over topological spaces studied so far are related to this idea of representing a computation as an infinite process with incremental outputs based on partial information. A Type-2 machine (Wei00) can implement this kind of
output because we can encode, as an infinite sequence of characters, an infinite list of pairs composed of the index and the value of a cell. An IM2-machine (Tsu02) can directly manipulate this kind of sequences with bottoms because it has the ability to skip some of the cells with multiple-heads and indeterministic rules. And RealPCF (Esc96) realizes computation over the continuous domain of closed intervals of \( \mathcal{R} \) so that better and better approximations to an interval are obtained as the evaluation proceeds. Embeddings of topological spaces into domains are studied by many authors (WS81; Bla00; Eda97; ES98) with the motivation to use effective structures of domains (Smy77) for the study of computation over topological spaces, and, in particular, the embedding of \( \mathcal{R} \) in an \( \omega \)-algebraic domain is studied in (Gia99).

In order that this programme to embed a space \( X \) in \( L(D) \) for the study of the topological and computational structure of \( X \) works very well, we assume that all the infinite increasing sequences in \( K(D) \) are meaningful, and identifying one point of \( X \). That is, every process whose output at each finite time is valid and which continues to output infinitely should be considered as designating a unique point of \( X \). We first show that, when \( D \) has property \( M \) (which is equivalent to Lawson-compactness because we only consider \( \omega \)-algebraic domains), this condition is equivalent to that \( X \) is a Hausdorff space densely embedded in \( D \) as the set of minimal elements of \( L(D) \) (Section 4). Note that many of the domains studied in computer science such as \( P_{\omega} = \{ u \mid u \subseteq N \} \) and Plotkin's \( T^\omega(\text{Plo78}) \) do not have minimal limit elements. We introduce a condition on \( K(D) \) which guarantees the existence of enough minimal limit elements. That is, \( K(D) \) is a finite-branching poset. A domain with this condition on \( K(D) \) is called a finite-branching domain (fb-domain in short). In any fb-domain, the minimal limit elements form a compact space.

We show that for each compact metric space \( X \), there is a fb-domain \( D \) which contains \( X \) as the set of minimal limit elements of \( D \). Moreover, \( X \) is a retract of \( L(D) \). We first present a fb-domain \( RD \) which has \( \mathcal{I} = [0,1] \) as the set of minimal limit elements (Section 5). \( RD \) is usually defined as the domain corresponding to the signed digit representation of real numbers, and this retract structure has already been investigated in (Gia99). In this paper, based on the Gray-code embedding (Tsu02), we present this domain as a subdomain of \( BD_1 \), which is the set of finite/infinite sequences in \( \{0,1,\perp\} \) with at most one copies of \( \perp \). Then, we define a new product, called the synchronous product, of fb-domains and construct domains corresponding to the \( n \)-dimensional Euclidean cube \( \mathcal{T}^n \ (n = 0,1,2,\ldots) \) and the Hilbert cube \( \mathcal{T}^\omega \) (Section 7). Finally, we prove the existence of such a fb-domain for a compact metric space in general, based on Nöbeling's universal \( n \)-dimensional space (Nöb) for the finite dimensional case, and the universality of the Hilbert cube \( \mathcal{T}^\omega \) for the infinite dimensional case (Section 8).

When \( X \) is \( n \)-dimensional \((n \leq \infty)\), we construct all the fb-domains mentioned above so that they are composed of finite/infinite sequences in \( \{0,1,\perp\} \) with at most \( n \) copies of \( \perp \). In addition, we show that it is necessary to use at least \( n \) copies of \( \perp \) when \( X \) is \( n \)-dimensional and \( D \) has property \( M \). For this purpose, the topological dimension of the set of limit elements of a domain is studied. It is proved that the small inductive dimension of \( L(D) \) is equal to the maximal length of a chain in \( L(D) \) when \( D \) has property \( M \) (Section 5). Thus, we have a characterization of the dimension of a space \( X \) as the
minimal height of \( L(D) \) in which \( X \) is embedded as the set of minimal elements. This is a generalization of the result in (Tsa01a), and the proof is simplified a lot by thinking about the dimension of \( L(D) \) in general.

2. Preliminaries and notations

First, note that we use the word domain for an \( \omega \)-algebraic pointed dcpo in this paper.

Infinite Sequences

In this paper, we fix the character set \( \Sigma \) as \( \{0,1\} \) unless otherwise noted. We write \( \Sigma^* \) for the set of finite sequences of \( \Sigma \), and \( \Sigma^\omega \) for the set of infinite sequences of \( \Sigma \). \( \Sigma^* \) forms a tree (and thus a poset) with respect to the prefix ordering. We sometimes identify an infinite sequence with an infinite tape, and call each place to write a character a cell. A bottomed sequence is an infinite sequence of \( \Sigma_\bot = \Sigma \cup \{\bot\} \), where \( \bot \) means undefinedness. In other words, it is an infinite tape some of whose cells may not be filled by a character in \( \Sigma \). We write \( \Sigma^\omega_\bot \) for the set of bottomed sequences. When \( \alpha \in \Sigma^\omega_\bot \), we write \( \alpha[j] \) (\( j = 0, 1, 2 \ldots \)) for the \( j \)-th component of \( \alpha \). When \( \alpha[j] = \bot \) for \( j \geq n \), we say that \( \alpha \) is a finite bottomed sequence.

Domain Theory

Let \( (P, \leq) \) and \( (Q, \leq) \) be partially ordered sets (posets). When \( d, e \in P \), we write \( d < e \) for \( d \leq e \) and \( d \neq e \), \( \uparrow d \) for the set \( \{d' \in P \mid d' \geq d\} \), and \( \downarrow d \) for the set \( \{d' \in P \mid d' \leq d\} \). We also write \( \uparrow A \) (or \( \downarrow A \)) for the set \( \bigcup_{a \in A} \uparrow a \) (or \( \bigcup_{a \in A} \downarrow a \)) and say that a subset \( A \) is upper-closed (or down-closed) when \( \uparrow A = A \) (or \( \downarrow A = A \)). We say that a pair of elements \( d \) and \( e \) are bounded if \( d \) and \( e \) have an upper bound, and write \( d \uparrow_P e \), or \( d \uparrow e \) when \( P \) is obvious.

A subset \( A \) of a poset \( P \) is directed if it is nonempty and each pair of elements of \( P \) has an upper bound in \( A \). A directed complete partial order (dcpo) is a partial order \( (D, \leq) \) where every directed subset \( A \) has a least upper bound (lub) \( \sqcup A \), also called the supremum of \( A \). A poset \( P \) is pointed if it has a least element. A finite element of a dcpo \( D \) is an element \( d \in D \) such that for every directed subset \( A \), if \( d \leq \sqcup A \) then \( d \leq a \) for some element \( a \in A \). We write \( K(D) \) for the set of finite elements of \( D \). An element of \( D \) is called a limit element when it is not finite. We write \( L(D) \) for the set of limit elements of \( D \). We write \( K_x \) for \( K(D) \cap \downarrow x \). A dcpo \( D \) is algebraic if \( K_x \) is directed and \( \sqcup K_x = x \) for each \( x \in D \), and it is \( \omega \)-algebraic if \( D \) is algebraic and \( K(D) \) is countable. In this paper, we use the word domain for an \( \omega \)-algebraic pointed dcpo. See, for example, (AJ94; Pl681; SLG94) for expositions of the theory of domains.

An ideal of \( D \) is a directed down-closed subset. When \( P \) is a countable poset with least element, \( \text{Idl}(P) \), the set of ideals of \( P \) ordered by set inclusion, becomes a domain called the ideal completion of \( P \), and satisfies \( K(\text{Idl}(P)) \cong P \). On the other hand, when \( D \) is a domain, we have \( \text{Idl}(K(D)) \cong D \). Therefore, \( K(D) \), the set of finite elements of \( D \), determines the structure of \( D \). We say that an ideal of \( K(D) \) is principal (or non-principal) if its supremum is in \( K(D) \) (or \( L(D) \)). When \( D \) is a domain and \( a_1 < a_2 < \ldots \) is an infinite strict increasing sequence in \( K(D) \), it determines a non-principal ideal.
\{x \in K(D) \mid x \leq a_i \text{ for some } i\} \text{ of } K(D) \text{ and thus determines a point of } L(D). \text{ A domain } D \text{ is bounded complete if every bounded pair has a supremum.}

The Scott topology of a dcpo \(P\) is defined so that a subset \(O\) is open iff it is upper-closed and for each directed subset \(S\) of \(P\) with \(\sqcup S \in O\), \(s \in O\) for some \(s \in S\). When \(D\) is an algebraic dcpo, the set \(\{\{d \mid d \in K(D)\}\}\) forms a base of the Scott topology on \(D\).

When \((D, \leq)\) is a domain, we call \(E \subseteq D\) a subdomain if \((E, \leq)\) is a domain, \(K(E) \subseteq K(D)\), and the embedding of \(E\) in \(D\) preserves the least element and the supremums of directed sets. In this case, the Scott topology of \((E, \leq)\) is the subspace topology of that of \((D, \leq)\).

\textbf{Two Domains of Bottomed Sequences}

The set \(\Sigma^\infty = \Sigma^\omega \cup \Sigma^*\) is a domain with \(K(\Sigma^\infty) = \Sigma^*\) and \(L(\Sigma^\infty) = \Sigma^\omega\). \(\Sigma^\omega\) is called Cantor space and the topology on \(\Sigma^\omega\) induced as the subspace topology of the Scott topology of \(\Sigma^\infty\) is called the Cantor topology. The set of bottomed sequences \((\Sigma^\omega_\perp, \leq)\) also forms a domain with \(x \leq y\) iff \(x[k] \leq y[k]\) for all \(k = 0, 1, \ldots\) Here, the order on \(\Sigma_\perp\) is defined as \(\perp \leq a\) for \(a \in \Sigma\). In \((\Sigma^\omega_\perp, \leq)\), \(d\) is a finite element iff \(d\) is a finite bottomed sequence. Domains which are subdomains of \(\Sigma^\omega_\perp\) and thus composed of bottomed sequences will play an important role in this paper.

\textbf{Topology}

When \(O\) is a subset of a topological space \(X\), we write \(cl_X(O)\) and \(int_X(O)\) for the closure and interior of \(O\) in \(X\), respectively, and \(B_X(O)\) for the boundary of \(O\) in \(X\), that is, \(cl_X(O) - int_X(O)\). We write \(cl(O)\), \(int(O)\), and \(B(O)\) when these are unambiguous. A space \(X\) is said to be a retract of a space \(Y\) if there is a pair \(s: X \to Y, r: Y \to X\) of continuous functions such that \(r \circ s\) is the identity on \(X\). When \(X\) is a subspace of \(Y\), we say that \(X\) is a retract of \(Y\) if \(r\) and the embedding of \(X\) in \(Y\) form a retract. In this paper, we say that a topological space is compact when each open cover has a finite subcover and we do not assume the Hausdorff property. See, for example, (Smy92) and (Eng89) for topological notions.

\textbf{Filter and Filter-base}

A filter in a topological space \(X\) is a non-empty family \(\mathcal{F}\) of subsets of \(X\) which satisfies the following conditions:

1. if \(A \in \mathcal{F}\) and \(A \subseteq B\), then \(B \in \mathcal{F}\),
2. if \(A_1 \in \mathcal{F}\) and \(A_2 \in \mathcal{F}\), then \(A_1 \cap A_2 \in \mathcal{F}\),
3. \(\emptyset \notin \mathcal{F}\).

A filter-base in \(X\) is a non-empty family \(\mathcal{B}\) of subsets of \(X\) which satisfies

1. if \(A_1 \in \mathcal{B}\) and \(A_2 \in \mathcal{B}\), then there exists an \(A_3 \in \mathcal{B}\) such that \(A_3 \subseteq A_1 \cap A_2\),
2. \(\emptyset \notin \mathcal{B}\).

When \(\mathcal{B}\) is a filter-base, the family

\[ \mathcal{F}_\mathcal{B} = \{A \subseteq X \mid \text{there exists a } B \in \mathcal{B} \text{ such that } B \subseteq A\} \]

is a filter. A point \(x\) is called a limit of a filter \(\mathcal{F}\) if every neighbourhood of \(x\) belongs to \(\mathcal{F}\), and \(x\) is called a limit of a filter-base \(\mathcal{B}\) if \(x\) is a limit of \(\mathcal{F}_\mathcal{B}\). When \(x\) is a limit of a filter (or a filter-base) \(\mathcal{F}\), then we say that \(\mathcal{F}\) converges to \(x\). A point \(x\) is called a cluster
point of a filter \( F \) (or a filter base \( B \)) if \( x \) belongs to the closure of every element of \( F \) (or \( B \)). We say that a filter (or a filter-base) \( F_1 \) refines \( F_2 \) if \( F_1 \supseteq F_2 \). We say that a filter (or a filter-base) \( F \) is infinite when \( F \) is an infinite family. See, for example, (Eng89) about filters.

The Real Line
A dyadic number is a rational number of the form \( m \times 2^{-n} \) for integers \( m \) and \( n \). We write \( I \) for the unit closed interval \([0, 1]\).

3. Domains with property M

In this section, we give some fundamental properties of domains with property M.

We use domains to represent topological structures; we embed a topological space \( X \) in \( L(D) \) and consider \( K(D) \) as a topological base of \( X \) through the identification of \( d \in K(D) \) with the subset \( \uparrow d \cap X \) of \( X \). Therefore, when \( \uparrow d \cap L(D) \) is empty, \( d \) does not contribute in defining the topology of \( X \). It is easy to show the following:

**Lemma 3.1.** When \( D \) is a domain, the followings are equivalent.
1) \( \uparrow d \cap L(D) \neq \emptyset \) for all \( d \in K(D) \).
2) \( L(D) \) is dense in \( D \).
3) \( D \) has no maximal finite element.

In the following, we will refer to this property as \( D \) has no maximal finite element. In this paper, we are particularly interested in domains without maximal finite elements. However, most of the theorems hold without this condition and thus we do not assume it in general. We will write \( \hat{D} \) for the domain \( D - \{ d \in K(D) \mid d \neq \bot \text{ and } \uparrow d \cap L(D) = \emptyset \} \).

**Lemma 3.2.** When \( D \) is a domain and \( L(D) \neq \emptyset \), \( \hat{D} \) is a domain without maximal finite elements. When \( D \) is a domain, \( L(D) = L(\hat{D}) \).

The notion of the set of minimal elements appears frequently in this paper.

**Definition 3.3.** Let \( P \) be a poset.
1) \( x \in P \) is a minimal element if \( y \leq x \) implies \( y = x \) for all \( y \in P \). We write \( M_P \) for the set of all minimal elements of \( P \).
2) We say that \( P \) has enough minimal elements if, for all \( y \in P \), there exists \( x \in M_P \) such that \( x \leq y \).

Many of the results of this paper are based on the following completeness condition, which is more general than bounded completeness.

**Definition 3.4.** 1) We say that a poset \( P \) is mub-complete if for every finite subset \( X \subseteq P \), the set of upper bounds of \( X \) has enough minimal elements. That is, when \( y \) is an upper bound of \( X \), there exists a minimal upper bound \( y' \) of \( X \) such that \( y' \leq y \).
2) We say that a domain (i.e. \( \omega \)-algebraic pointed dcpo) \( D \) has property M if \( K(D) \) is mub-complete and each finite subset \( X \subseteq K(D) \) has a finite set of minimal upper bounds.
Property M is equivalent to Lawson-compactness for ω-algebraic domains by the 2/3 SFP Theorem (Plo81), and domains with property M are studied in (Jum89). Though only ω-algebraic domains are considered in this paper, the results of this section and Section 6 can be generalized to Lawson-compact continuous domains, as discussed in Section 9.

**Lemma 3.5.** When D has property M, \( \hat{D} \) also has property M.

**Proposition 3.6.** Suppose that D is a domain with property M.
1) \( \alpha \uparrow \beta \) for \( \alpha, \beta \in D \) iff \( d \uparrow e \) for all \( d \in K_\alpha \) and \( e \in K_\beta \).
2) \( cl_D(\uparrow d) = \{ \alpha \in D \mid d \uparrow \alpha \} \) (\( \downarrow \uparrow d \)) for \( d \in K(D) \).
3) If \( L(D) \) is a \( T_1 \) space, then \( L(D) \) is a Hausdorff space.
4) Suppose also that \( L(D) \) has enough minimal elements. If \( M_{L(D)} \) is a retract of \( L(D) \) then \( M_{L(D)} \) is a Hausdorff space.

**Proof.** 1) If part: let \( \gamma \) be an upper bound of \( \alpha \) and \( \beta \). Then, \( \gamma \) is also an upper bound of \( e \) and \( f \). Only if part: first, note that when \( d \uparrow e \) for \( d, e \in K(D) \), an upper bound of \( d \) and \( e \) exists in \( K(D) \) because if \( \gamma \in L(D) \) is an upper bound of \( d \) and \( e \), then \( K_\gamma \) is directed. Let \( \perp = d_0 < d_1 < \ldots \) and \( \perp = e_0 < e_1 < \ldots \) be strictly increasing sequences in \( K(D) \) with the least upper bounds \( \alpha \) and \( \beta \), respectively. Choose an upper bound \( f_i \in K(D) \) of \( d_i \) and \( e_i \) for every \( i \). Now, we will form an infinite increasing sequence \( g_0 < g_1 < \ldots \) such that \( d_i \leq g_i, e_i \leq g_i \) and the set \( N_k = \{ f_i \mid f_i > g_k, i > k \} \) is infinite for every \( k \). First, take \( g_0 = \perp \). Suppose that \( g_0, \ldots, g_k \) are defined. Consider the set \( G_k = \{ g_k, d_{k+1}, e_{k+1} \} \). Note that \( N_k \) is an infinite set of upper bounds of \( G_k \). Since the set of minimal upper bounds of \( G_k \) is finite, we can choose a minimal upper bound \( g_{k+1} \) of \( G_k \) so that \( N_{k+1} \) is infinite. The least upper bound of such a sequence is greater than both \( \alpha \) and \( \beta \).

2) We need to show \( cl_D(\uparrow d) \ni \alpha \) iff \( d \uparrow \alpha \). \( cl_D(\uparrow d) \ni \alpha \) means that \( \uparrow d \cap U \neq \emptyset \) for all \( e \in K_\alpha \). \( \uparrow d \cap U \neq \emptyset \) iff \( d \uparrow e \), and it is equivalent to \( f \uparrow e \) for all \( f \in K_d \) because \( d \) is finite. Therefore, by applying (1), we have the result.

3) First, consider the case that \( D \) has no maximal finite elements. If \( L(D) \) is a \( T_1 \) space and \( x, y \in L(D) \) are different elements, then \( x \) and \( y \) do not have an upper bound in \( L(D) \), and therefore they do not have an upper bound in \( D \) because if a finite element is an upper bound, there is also an upper bound which is a limit element. Therefore, from (1), for some \( d, e \in K(D) \) such that \( d < x \) and \( e < y \), \( d \) and \( e \) do not have an upper bound in \( D \). This means that \( \uparrow d \) and \( \uparrow e \) do not intersect.

For the case that \( D \) has a maximal finite element and \( L(D) \neq \emptyset \), \( x \) and \( y \) may have an upper bound in \( D \) even when \( L(D) \) is a \( T_1 \) space, as Figure 2 shows. Therefore, we consider \( \hat{D} \) instead of \( D \). \( \hat{D} \) comes to be a domain with property M and with no maximal finite element, and we have \( L(D) = L(\hat{D}) \) by Lemma 3.5 and 3.2.

4) As in (3), we only need to show this theorem for the case \( D \) has no maximal finite elements. Let \( r \) be the retract map from \( L(D) \) to \( M_{L(D)} \). Since \( r \) is monotonic and \( L(D) \) has enough minimal elements, we have \( r^{-1}(x) = \uparrow x \). This means that every pair of different elements of \( M_{L(D)} \) do not have an upper bound in \( L(D) \), and neither in \( D \).
Therefore, they are separated by open sets in $D$ by (1), and thus they are separated by open sets in $M_{L(D)}$.

\[ \square \]

**Example 3.7.** A counterexample to Proposition 3.6 (1) and (2), when $D$ does not have property M is given in Figure 1. Note that there is no order relation between $d_i$ ($i = 0, 1, \ldots$).

**Example 3.8.** As a counterexample to Proposition 3.6 (3) and (4), one can add, to each $d_i$ in Figure 1, a strictly increasing sequence $d_i = e_{i,0} \prec e_{i,1} < \ldots$ and its limit $p_i$ ($i = 0, 1, \ldots$). Then, $L(D) = \{ x, y, p_0, p_1, \ldots \}$ is flat in that whenever $t, u \in L(D)$ and $t \leq u$, we have $t = u$. Thus $L(D)$ is a $T_1$ space. However, $L(D)$ is not Hausdorff because every open neighbourhood of $x$ (and also $y$) contains all $p_n$ ($n \geq k$) for some $k$.

Note that Proposition 3.6 (1) can also be stated as $x$ and $y$ are separated by open sets iff $x \not\prec y$. In addition, when $D$ has no maximal finite element, we can take an upper bound of $x$ and $y$ in $L(D)$. Therefore, in this case, we can restate (1) in the following form, connecting the order structures of $L(D)$ and $K(D)$.

**Proposition 3.9.** Suppose that $D$ is a domain with property M and with no maximal finite element. $x \uparrow_{L(D)} y$ iff $d \uparrow_{K(D)} e$ for all $d \in K_x$ and $e \in K_y$.

Figure 2 shows a counterexample when $D$ has a maximal finite element.

## 4. Embeddings in minimal-limit sets of domains

When $D$ is a domain, we can consider $L(D)$ as a topological space and $K(D)$ as its approximation structure. That is, through the identification of $d \in K(D)$ with the open
set \( \uparrow d \cap L(D) \), \( K(D) \) forms a base of the topology of \( L(D) \), which is the subspace topology of the Scott topology of \( D \). Through this identification, each \( y \in L(D) \), viewed as the ideal \( K_y \subseteq K(D) \), defines a filter-base \( \mathcal{F}(K_y) = \{ \uparrow d \cap L(D) \mid d \in K_y \} \) of \( L(D) \) which converges as follows.

**Proposition 4.1.** The set of limits of \( \mathcal{F}(K_y) \) is \( \downarrow y \cap L(D) \).

**Proof.** A point \( x \) is a limit of \( \mathcal{F}(K_y) \) iff, for every \( d \in K_x \), there exists \( e \in K_y \) such that \( \uparrow d \cap L(D) \supseteq \uparrow e \cap L(D) \), which is equivalent to \( d \leq e \). Therefore, \( x \) is a limit of \( \mathcal{F}(K_y) \) iff \( x \leq y \). \( \square \)

When \( X \) is a subspace of \( L(D) \), \( K(D) \) also forms a base of the topology of \( X \), through the identification of \( d \in K(D) \) with the open set \( \uparrow d \cap X \). Through this identification, each \( y \in L(D) \), viewed as the ideal \( K_y \subseteq K(D) \), defines a family \( \mathcal{F}_X(K_y) = \{ \uparrow d \cap X \mid d \in K_y \} \) of subsets of \( L(D) \). It is easy to show that \( \mathcal{F}_X(K_y) \) becomes a filter-base for all \( y \in L(D) \) iff \( X \) is dense in \( D \); \( X \) is dense in \( D \) iff \( \uparrow d \cap X \) is not empty for each \( d \in K(D) \) and the first condition of the definition of a filter-base holds because \( K_y \) is an ideal.

Now, suppose that \( X \) is dense in \( D \), and consider the condition that for each \( y \in L(D) \), the filter-base \( \mathcal{F}_X(K_y) \) converges to a unique point of \( X \). When this holds, each infinite strictly increasing sequence in \( K(D) \), which identifies an element of \( L(D) \) and determines a non-principal ideal of \( K(D) \), specifies an element of \( X \) as the limit of the corresponding filter-base. The uniqueness of such a point, if it exists, is guaranteed when \( X \) is a Hausdorff space because each filter-base converges to at most one point in a Hausdorff space. The converse is also true when \( D \) has property M.

**Proposition 4.2.** Suppose that \( D \) is a domain with property M and \( X \) is a dense subset of \( L(D) \). All the filter-bases of the form \( \mathcal{F}_X(K_y) (y \in L(D)) \) have at most one limit point iff \( X \) is Hausdorff.

**Proof.** We only need to show this for domains with no maximal finite element because, in the domains \( D \) and \( D' \), the sets of limit elements are the same and the filter-bases of the forms \( \mathcal{F}_X(K_y) \) are the same. If part: as mentioned above. Only if part: Suppose that \( X \) is not Hausdorff. Then, there are two points \( x \) and \( y \) which are not separated by open sets. That is, for all pairs of finite elements \( d < x \) and \( e < y \), \( \uparrow d \) and \( \uparrow e \) intersect in \( X \) and thus \( d \) and \( e \) have an upper bound in \( K(D) \). Therefore, from Proposition 3.9, \( x \) and \( y \) have an upper bound \( z \) in \( L(D) \). Then, \( \mathcal{F}_X(K_z) \) converges to both \( x \) and \( y \). \( \square \)

For the existence of such a limit, if \( \downarrow y \cap X \neq \emptyset \), then \( \mathcal{F}_X(K_y) \) converges to every point of \( \downarrow y \cap X \). However, when \( \downarrow y \cap X \) is empty, there may be no limit of \( \mathcal{F}_X(K_y) \).

**Example 4.3.** Consider the domain \( D \) in Figure 3. Let \( Y \) be the subset \( \{ y, z \} \) of \( L(D) \). Then, the filter-base \( \mathcal{F}_Y(K_x) \) does not converge to a point.

When \( \downarrow y \cap X \) is empty, there are also cases in which a limit of \( \mathcal{F}_X(K_y) \) exists but is not a limit of \( \mathcal{F}(K_y) \).
Example 4.4. In Example 4.3, consider the set $Y = \{y\}$ and the filter-base $\mathcal{F}_Y(K_x)$. It converges to $y$ whereas $\mathcal{F}(K_x)$ converges only to $x$.

In order to exclude these cases, we consider the condition that $\mathcal{F}_X(K_y)$ (y $\in$ $L(D)$) converges to a unique point which is among the limits of $\mathcal{F}(K_y)$. It is immediate that under this condition, $D$ has enough minimal limit elements and $X$ is the minimal-limit set of $D$ defined as follows:

Definition 4.5. Let $D$ be a domain. $x \in L(D)$ is a minimal limit element of $D$ if it is a minimal element in $L(D)$. We say that $D$ has enough minimal limit elements if $L(D)$ has enough minimal elements (Definition 3.4). In this case, $M_{L(D)}$ is called the minimal-limit set of $L(D)$.

On the other hand, these conditions on $D$ and $X$ are sufficient for the above condition:

Proposition 4.6. Suppose that $D$ is a domain which has enough minimal limit elements and that $X = M_{L(D)}$ is a Hausdorff dense subspace of $D$.

1) $X$ is a retract of $L(D)$.

Let $y \in L(D)$.

2) The filter-base $\mathcal{F}_X(K_y)$ converges to a unique point $r(y)$ for $r$ the retract map from $L(D)$ to $X$.

3) $\cap \mathcal{F}_X(K_y) = \{y\}$ if $y \in X$.

4) $\cap \mathcal{F}_X(K_y) = \emptyset$ if $y \notin X$.

5) $\cap \{r(s) | s \in \mathcal{F}_X(K_y)\} = \{r(y)\}$. That is, $r(y)$ is the unique cluster point of $\mathcal{F}_X(K_y)$.

Proof. 1) From the minimality, for every $y \in L(D)$, there is an element $x$ in $X$ such that $x \leq y$. Suppose that there is another element $z \neq x$ in $X$ such that $z \leq y$. Since $X$ is Hausdorff, we have $c \in K_x$ and $d \in K_z$ such that $\uparrow c \cap \uparrow d \cap X = \emptyset$. Since $\uparrow c \cap \uparrow d$ includes $y$ and thus is non-empty, from the density of $X$ in $D$, we have $u \in X$ which is in this
set, and thus contradicts. Therefore, there is only one element $x$ in $X$ such that $x \leq y$. We define this element as $r(y)$. $r$ is a continuous function from $L(D)$ to $X$; $r^{-1}(x) \models x$ for each $x \in X$, and $r^{-1}(\uparrow d \cap X) = \uparrow d \cap L(D)$ for each $d \in K(D)$. Thus, $X$ is a retract of $L(D)$.

2) Since $r(y) \leq y$ and thus $d \in K_y$ for all $d \in K_{r(y)}$, every neighbourhood $\uparrow d \cap X$ of $r(y)$ is a member of $\mathcal{F}_X(K_y)$. Uniqueness of the limit is guaranteed by the Hausdorff property of $X$.

3) $\cap \mathcal{F}_X(K_y)$ is a subset of the set of limits of $\mathcal{F}_X(K_y)$. Thus, we have $\cap \mathcal{F}_X(K_y) \subseteq \{ r(y) \}$. Since each element of $\mathcal{F}_X(K_y)$ contains $y = r(y)$ when $y \in X$, we have $\cap \mathcal{F}_X(K_y) \supseteq \{ y \}$.

4) $y \not\in X$ means that $y > r(y)$ and therefore, there is an element $d \in K_y$ such that $\uparrow d$ does not contain $r(y)$.

5) Let $d \in K_y$. For all $e \in K_{r(y)}$, $y$ is an upper bound of $d$ and $e$. Therefore, an upper bound $f \in K(D)$ of $d$ and $e$ exists and since $X$ is dense, $\uparrow f \cap X$ is not empty. Therefore, $(\uparrow e \cap X) \cap (\uparrow d \cap X) = \uparrow e \cap \uparrow d \cap X \subseteq \uparrow f \cap X$ is not empty. Therefore, $r(y) \in cl(\uparrow f \cap X)$. On the other hand, when $x \in X$ and $x \neq r(y)$, since $X$ is Hausdorff, there exists $f \in K_x$ and $e \in K_{r(y)}$ such that $\uparrow f \cap \uparrow e \cap X$ is empty. Therefore, $x \not\in cl(\uparrow e \cap X)$ for $e \in K_y$.

**Example 4.7.** A counterexample to Proposition 4.6 (1) for the non-dense case is given in Figure 4. In this example, $M_{L(D)}$ is a Hausdorff subspace of $D$, but is not a retract of $D$.

As we have noted, our idea is to consider an infinite increasing sequence in $K(D)$ as giving a code for a point of $X$. This proposition suggests two interpretations of such sequences when $D$ and $X$ satisfy the conditions of this proposition. One is to consider that $d \in K(D)$ has the information that the point is in $cl(\uparrow d \cap X)$, and consider a strictly increasing sequence $\mathcal{I} = d_0 < d_1 < \ldots$ as specifying the point $\cap \mathcal{I} \cap (\uparrow d \cap X)$, which is actually the only limit of the filter-base $\mathcal{F}_X(K_y)$, and is equal to the unique cluster point of $\mathcal{F}_X(K_y)$, where $K_y$ is the ideal corresponding to $I$. In this case, all the infinite increasing sequences have meaning as a unique point of $X$. However, the representation is not unique in that when $x \in X$, all the ideals $K_y$ with $y \in \uparrow x$ specify the same point $x$. This kind of interpretation is used in (Gia99) and many other calculi of real numbers. The other one is to consider that $d \in K(D)$ has the information that the point is in $\uparrow d \cap X$, and that $\mathcal{I} = d_0 < d_1 < \ldots$ is specifying the point $\cap \mathcal{I} \cap \uparrow d_i$. In this case, only those infinite increasing sequences with the limits in $X$ have meanings. However, the representation becomes unique in that the ideal representing a point is unique. This kind of interpretation is used in (Tsa02). In this paper, we do not care which interpretation is used, and find, for each Hausdorff space $X$, a domain $D$ with enough minimal limit elements such that $X$ is homeomorphically and densely embed in $D$ as the minimal-limit set.

Many of the domains studied in computer science do not have enough minimal limit elements. For instance, $P_\leq = \{ u \mid u \subseteq N \}$ and $\Sigma_\leq$ do not have minimal limit elements. We consider a condition on a domain (Definition 4.11 below) which guarantees the existence of enough minimal limit elements.
Definition 4.8. When $P$ is a poset, we define the level of $d \in P$ as the maximal length of a chain $\bot P = a_0 < a_1 < \ldots < a_n = d$, when it exists. A poset $P$ is stratified if each $e \in P$ has a level. When $P$ is a stratified poset, we write $K_n(P)$ for the set of level-$n$ elements of $P$. A domain $D$ is stratified if $K(D)$ is a stratified poset. We write $K_n(D)$ for the set $K_n(K(D))$ of level-$n$ finite elements of $D$. We call $K_n(D) \cap K_x$ the set of level-$n$ approximations of $x$.

Thus, when $D$ is a stratified domain, $K(D)$ is stratified as $K(D) = K_0(D) \cup K_1(D) \cup \ldots$ and $K_0(D) = \{ \bot_D \}$.

Example 4.9. All the domains $P_\omega$, $\Sigma^\omega_\bot$, $\Sigma^\infty$, and Figure 1, 3, 4 are stratified domains, whereas Figure 2 is not.

Lemma 4.10. When $D$ is a stratified domain,
1 every subset of $K(D)$ has enough minimal elements,
2 no finite element is bigger than a limit element. In particular, it has no maximal finite element if $L(D) \not= \emptyset$.

In a poset $P$, when $d < d'$ and there is no element $e$ such that $d < e < d'$, we say that $d'$ is an immediate successor of $d$ and call the pair $(d, d')$ a successor pair or an edge from $d$ to $d'$. We write $\text{succ}(d)$ for the set of immediate successors of $d$.

Definition 4.11. A stratified poset $P$ is finite-branching if $\text{succ}(d) \subseteq K_{n+1}(P)$ and $\text{succ}(d)$ is finite for every $d \in K_n(P)$. A finite-branching domain (fb-domain in short) is a domain $D$ such that $K(D)$ is a finite-branching poset.

Each element of $L(D)$ may have infinite number of immediate successors for a fb-domain $D$. An example is the fb-domain $RD^\infty$ in Proposition 7.7 corresponding to the Hilbert cube. When $D$ is a fb-domain, $K_n(D)$ is a finite set for each $n$.

Proposition 4.12. When $D$ is a fb-domain, $L(D)$ is compact.

Proof. Suppose that $\{ \uparrow d \mid d \in S \}$ forms an open cover of $L(D)$ for $S \subseteq K(D)$. The set $S$ has enough minimal elements by Lemma 4.10 (1), and define $T = M_S$. Then, $T = \{ \uparrow d \cap L(D) \mid d \in T \}$ is an open subcovering of $L(D)$. Suppose that $T$ is an infinite set. Let $J = \{ j \in K(D) \mid \uparrow j \cap T$ is infinite $\}$. We have $\bot \in J$, and when $j \in J$, at least one member of $\text{succ}(j)$ is also in $J$. Therefore, we have an infinite strictly increasing sequence $\bot = j_0 < j_1 < \ldots$ in $J$. Let $x \in L(D)$ be the limit of this sequence. Since $J$ is down-closed by definition, we have $K_x \subseteq J$. Since $T$ is a covering, we have $x > d$ for some $d \in T$. Then $d \in K_x$, and $d \not\in J$ because $\uparrow d \cap T = \{ d \}$ by the minimality of $T$, which is a contradiction. □

From the compactness of a space $Y$, we can show the existence of enough minimal elements of $Y$ with respect to the specialization order (NIW98; KW). We will show the proof for the case $Y = L(D)$.

Proposition 4.13. When $L(D)$ is compact, 
1) $L(D)$ has enough minimal limit elements, 
2) $M_{L(D)}$ is compact.
Proof. (1) Let $y \in L(D)$. By Zorn’s lemma, we have a maximal co-directed set $A \subseteq L(D)$ containing $y$. Then, $\{ \downarrow a \cap L(D) \mid a \in A \}$ is a family of closed sets in $L(D)$ with the finite intersection property. Since $L(D)$ is compact, this family has non-empty intersection, and let $x$ be in this intersection. Since $A$ is maximal, $x \in A$. Therefore, $x$ is the least element of $A$, which is minimal in $L(D)$ because $A$ is maximal. Thus, we have a minimal limit element less than or equal to $y$.

(2) Since $L(D)$ is compact and every open covering of $M_{L(D)}$ also covers $L(D)$, this result is immediate. \hfill $\blacksquare$

From Proposition 4.12 and 4.13, we have a condition for the existence of enough minimal limit elements.

**Theorem 4.14.** (1) A fb-domain $D$ has enough minimal limit elements.
(2) $M_{L(D)}$ is compact.

Thus, finite-branchingness is a sufficient condition for the existence of enough minimal limit elements. In addition, in this case, the set $M_{L(D)}$ is a compact set. Therefore, in the sequel, we restrict our attention to the case $X$ is compact, and we find, for each compact metric space $X$, a finite-branching domain $D$ such that $X = M_{L(D)}$ and $M_{L(D)}$ is dense in $D$.

Note that $M_{L(D)}$ may not be dense in $D$ even when $D$ is finite-branching. For example, the fb-domain in Example 4.3 has $\{x\}$ as the minimal-limit set, which is not dense in $D$. However, we can have a subdomain which contains $M_{L(D)}$ as a dense subset by simply taking the closure of $M_{L(D)}$. Therefore, we will consider the construction of a fb-domain $D$ such that $M_{L(D)}$ contains $X$ in the following sections, and then obtain the desired fb-domain by taking the closure of $X$ (Theorem 8.5 and Theorem 8.8).

### 5. fb-domains composed of bottonned sequences

In this section, we give examples of fb-domains composed of bottonned sequences.

**Definition 5.1.** A domain $D$ is a domain of bottonned sequences if it is a subdomain of $\Sigma \_\_^\omega$ and the embedding of $D$ in $\Sigma \_\_^\omega$ preserves the level.

In this case, each element of $K_n(D)$ has $n$ filled cells and an edge corresponds to filling one unfilled cell with a character in $\Sigma$.

When $D$ is a domain of bottonned sequences, we introduce a labelling of edges of $D$ by the character set $\Gamma = \{ a^{(i)} \mid a \in \{0, 1\}, i \in \{0, 1, \ldots\}\}$ so that the label $a^{(i)}$ is assigned to an edge filling the $i$-th (counting from 0) unfilled cell with $a$. For example, the edge from $\bot^\omega$ to $\bot 1 1 1^\omega$ is labeled with $1^{(1)}$, and the edges from $\bot 1 1 1^\omega$ to $\bot 0 1 0 0^\omega$ and from $\bot 0 1 0 0^\omega$ to $0 1 0^\omega$ are labeled with $0^{(1)}$ and $0^{(0)}$, respectively. Let $\Gamma^{(n)}$ be the finite set $\{ a^{(i)} \mid a \in \{0, 1\}, i \in \{0, 1, \ldots, n\}\}$. When $D$ is a fb-domain of bottonned sequences, $K_n(D)$ is a finite set for all $n = 0, 1, 2, \ldots$. Therefore, there is a number $l$ such that all the edges from level-$n$ finite elements are labeled with $\Gamma^{(l)}$ ($n = 0, 1, \ldots$).

We write $\Sigma \_\_, \_\_^\omega$ for the set of infinite bottonned sequences in which at most $n$ undefined cells are allowed to exist. Therefore, for example, $\Sigma \_\_, \_\_^\omega = \Sigma \_\_^\omega$ and $\Sigma \_\_, \_\_^\omega = \Sigma \_\_^\omega \cup \Sigma \_\_ \Sigma \_\_^\omega$. 
We write $\Sigma^*_\perp,n$ for the sets of finite bottomed sequences in which at most $n$ undefined cells are allowed to exist. More precisely, $\Sigma^*_\perp,n$ is a subset of $\Sigma^\omega_\perp$ such that all the cells are $\perp$ after the $(n+1)$-th $\perp$ cell.

**Definition 5.2.**
1) Let $P$ be a poset and $d \in P$. The co-level of $d$ is the maximal length $n$ of a chain (i.e., strictly increasing sequence) $d = a_0 < a_1 < \ldots < a_n$ in $P$. If there is an arbitrary long chain starting with $d$, then we define the co-level of $d$ is $\infty$.

2) The upper-$n$ subset of $P$ is the set of elements whose co-level is not greater than $n$.

The upper-$n$ subset of $\Sigma_\perp^\omega$ is $\Sigma_\perp,n^\omega$. Now, we define $BD_n = \Sigma^*_\perp,n \cup \Sigma^\omega_\perp,n$ ($n = 0, 1, \ldots$). It is obviously a subdomain of $\Sigma^\omega_\perp$ with $K(BD_n) = \Sigma^*_\perp,n$ and $L(BD_n) = \Sigma^\omega_\perp,n$. $BD_n$ are obviously bounded-complete fib-domains of bottomed sequences. As a special case, $BD_0$ is the domain $\Sigma^\infty$.

We study more carefully the structures of $BD_n$. In $BD_1$, the least element of $\Sigma^*_\perp,1$, which is the empty string, has 4 successors: $\perp 0$, $\perp 1$, $\perp \perp 0$, and $\perp \perp 1$. It is also the case for other elements; every finite element has 4 outgoing edges labeled with $0'(0), 1'(0), 0'(1)$, and $1'(1)$. Therefore, $BD_1$ is the subdomain of $\Sigma^\omega_\perp$ in which the edges are restricted to $\Gamma(1)$. In the same way, each finite element of $BD_n$ has $2n$ successors. Figure 5 shows the order structure of $BD_1$ for the case $\Sigma = \{1\}$. Note that the open sets $\uparrow d$ ($d \in K(D)$) are all isomorphic to each other.

**Definition 5.3.** A fib-domain $D$ is homogeneous if $\uparrow d$ is isomorphic to $D$ for each $d \in K(D)$.

**Proposition 5.4.** $BD_n$ is homogeneous.

**Proof.** Let $d \in K(D)$, $K = \{k \mid d[k] \in \Sigma\}$, and $e \in \uparrow d$. Since all the bottom cells of $e$ have an index not in $K$, the number of bottoms in $e$ does not change if we omit the cells with index in $K$. Therefore, by deleting $K$ from the index set $\omega$ and re-indexing, we can make an isomorphism between $\uparrow d$ and $BD_n$. 

As for the limit elements, $\Sigma^*_\perp,1$ has 2 levels of elements. The upper level is isomorphic to $\Sigma^\omega$, and the lower level, which is the minimal-limit set of $\Sigma^*_\perp,1$, consists of infinite...
sequences with one bottom. Each lower level element is smaller than two upper level elements obtained by specifying the value of the bottom cell as 0 or 1, and each upper level element is bigger than countably many lower level elements obtained by substituting the value of each cell with $\perp$. Similarly, $\Sigma_{\perp,n}^\omega$ has $(n+1)$-level structures ($n = 0, 1, \ldots$).

**Proposition 5.5.** $M_{L(BD_n)}$ is not Hausdorff when $n \geq 1$.

**Proof.** If it is Hausdorff, then it is a retract of $L(BD_n)$ by Proposition 4.6 (1). This means that for each maximal element $x \in L(BD_n)$, there is only one $y \in M_{L(BD_n)}$ such that $y \leq x$. It contradicts with the structure of $\Sigma_{\perp,n}^\omega$ mentioned above. \[\square\]

Next, we consider a more important example of a domain of bottomed sequences whose minimal-limit set is Hausdorff and homeomorphic to $I = [0, 1]$. The Gray code embedding $G$ ([Tsu02], Definition 5.6 below) is an embedding of $I = [0, 1]$ in the set $\Sigma_{\perp,1}^\omega$. It is based on the Gray code expansion, which is another expansion of real numbers. Figure 6 shows the usual binary expansion and the Gray-code expansion of $I$. Here, a horizontal line means that the corresponding bit has value 1 on the line and value 0 otherwise. In the usual binary expansion of $x$, the head $h$ of the expansion indicates whether $x$ is in $[0, 1/2]$ or $[1/2, 1]$, and the tail is the expansion of $f(x, h)$ for $f$ the following function:

$$f(x, h) = \begin{cases} 2x & (h = 0) \\ 2x - 1 & (h = 1) \end{cases}$$

Note that the value of $f$ depends not only on $x$ but also on the choice of $h$ when $x = 1/2$.

On the other hand, the head of the Gray-code expansion is the same as that of the binary expansion, whereas the tail is the expansion of $t(x)$ for $t$ the so-called tent function. Note that $t$ is continuous at $1/2$.

$$t(x) = \begin{cases} 2x & (0 < x \leq 1/2) \\ 2(1 - x) & (1/2 < x \leq 1) \end{cases}$$

As is the case for the usual binary expansion, we have two expansions for dyadic numbers. For example, we have two Gray code expansions $111000\ldots$ and $101000\ldots$ for
3/4, corresponding to the two binary expansions 11000... and 10111.... However, the two expansions differ only at one digit (in this case the second digit). This means that the second digit does not contribute to the fact that this number is 3/4. Therefore, it is natural not to select a \{0, 1\} value for such a digit, but instead to leave it unspecified as \(\perp\). In this way, we define the Gray code embedding \(G\) as follows.

**Definition 5.6.** Let \(P : \mathcal{I} \to \Sigma_{\perp}^\omega\) be the map

\[
P(x) = \begin{cases} 
0 & (x < 1/2) \\
\perp & (x = 1/2) \\
1 & (x > 1/2) 
\end{cases}
\]

and \(t : \mathcal{I} \to \mathcal{I}\) be the tent function defined above. The Gray code embedding \(G\) is a function from \(\mathcal{I} = [0, 1]\) to \(\Sigma_{\perp,1}^\omega\) defined as \(G(x)[n] = P(t^n(x))\).

Note that \(G\) is an injective function from \(\mathcal{I}\) to \(\Sigma_{\perp,1}^\omega\) with the image \(\text{im}(G) = \Sigma^\omega \cup \Sigma^* \perp 10\omega = \Sigma^* \Sigma 10^\omega\). Next, we consider a fb-domain \(RD\) of bottomed sequences which corresponds to \(\text{im}(G)\). Let \(L(RD)\) be the set \(\Sigma^\omega \cup \Sigma^* \perp 10\omega\) and \(K(RD)\) be the set \(\Sigma^* \cup \Sigma^* \perp 10^*\). Then, \(RD = L(RD) \cup K(RD)\) is a bounded complete fb-domain with \(K(RD)\) and \(L(RD)\) the sets of finite and limit elements, respectively. The structure of \(RD\) is represented in Figure 7. \(RD\) was introduced in (Gia99) as a domain corresponding to the signed digit representation of \(\mathcal{I}\), and as a fb-domain of bottomed sequences in (Tsu02). This domain corresponds to the way an IM2-machine manipulates Gray-code; \(K(RD)\) represents finite-time states of the input/output tapes of an IM2-machine (Tsu02). Comparing \(\text{im}(G)\) with \(L(RD)\), one can see that \(G\) is a bijection to \(M_{L(RD)}\).

We consider how the function \(G\) interacts with the topological structure. For each finite element \(d\) of \(RD\), \(G^{-1}(\downarrow d)\) has the form \((m/2^k, (m+1)/2^k)\) or \(((2m-1)/2^k, (2m+1)/2^k)\) depending on whether \(d\) belongs to \(\Sigma^*\) or \(\Sigma^* \perp 10^*\), with the exception that \(G^{-1}(\uparrow c) = [0, 1], G^{-1}(\uparrow 0^k) = [0, 1/2^k],\) and \(G^{-1}(\uparrow 0^k) = ((2^k - 1)/2^k, 1]\) \((k = 1, 2, \ldots)\). Since these intervals form a base of \(\mathcal{I}\), \(G\) gives a correspondence between bases of \(\mathcal{I}\) and \(RD\). Therefore, \(G\) is a topological embedding of \(\mathcal{I}\) in \(RD\). Since the set of real numbers \(\mathcal{R}\) is homeomorphic to \((0, 1)\), \(\mathcal{R}\) can also be embedded in \(M_{L(RD)}\).
Proposition 5.7. 1) \( \mathcal{I} \) is homeomorphic to \( M_{L(RD)} \), and \( M_{L(RD)} \) is dense in \( L(RD) \).
2) \( \mathcal{I} \) is a retract of \( L(RD) \).
3) \( \mathcal{R} \) can be embedded in \( M_{L(RD)} \).

As we have said in Section 4, we have two interpretations of finite elements of \( RD \) as information about a point in \( \mathcal{I} \). One is to interpret \( d \in K(RD) \) as \( G^{-1}(d) \) and \( x \in M_{L(RD)} \) as expressing \( G^{-1}(x) \). Thus, for example, \( 0, 1, \perp 1 \) are expressing the open intervals \([0, 1/2), (1/2, 1], \) and \((1/4, 3/4), \) and only \( \perp 1000 . . \) represents \( 1/2 \). The other one is to interpret \( d \) as \( \text{cl}(G^{-1}(d)) \), and \( x \in L(RD) \) as expressing \( G^{-1}(r(x)) \). Thus, \( 0, 1, \perp 1 \) are expressing the closed intervals \([0, 1/2], [1/2, 1], \) and \([1/4, 3/4], \) and the three sequences \( \perp 1000 . . \), \( 11000 . . \), \( 01000 . . \) are representing \( 1/2 \).

Since the embeddings of \( RD \) in \( BD_1 \) and \( BD_1 \) in \( \Sigma_{\perp}^\omega \) are topological ones, \( G \) can be considered as topological embeddings also in \( BD_1 \) and in \( \Sigma_{\perp}^\omega \).

6. The dimension of \( L(D) \)

Dimension is one of the most important invariants of topological spaces, which is useful in proving, for instance, the non-existence of an embedding of a space into another space. In this section, we calculate the dimension of \( L(D) \) for the case \( D \) has property M, and induce a requirement for the existence of an embedding of \( X \) in \( L(D) \).

There are three major definitions of the dimension of a topological space \( X \), the small (or weak) inductive dimension \( \text{ind} \ X \), the large (or strong) inductive dimension \( \text{Ind} \ X \), and the covering dimension \( \text{dim} \ X \). The three dimension functions coincide and have good properties in the class of separable metric spaces. However, they diverge in \( T_0 \) spaces in general. Actually, \( \text{ind} \Sigma_{\perp,1}^\omega = 1 \) as we will show whereas one can calculate \( \text{dim} \Sigma_{\perp,1}^\omega = \infty \).

In this paper, we will consider the small inductive dimension, since it has good properties even for such a general class of spaces.

Definition 6.1. The small inductive dimension \( \text{ind} \ X \) of a topological space \( X \) is defined to be
i) \( \text{ind} \ X = -1 \) if \( X = \emptyset \),
ii) \( \text{ind} \ X \leq n \) if for every neighbourhood \( U \) of a point \( p \in X \) there exists an open set \( V \) such that \( x \in V \subseteq U \) and \( \text{ind} B(V) \leq n - 1 \), where \( B(V) \) is the boundary of \( V \), see Section 2.

If \( \text{ind} X \leq n \) and \( \text{ind} X \leq n - 1 \), then we define \( \text{ind} X = n \). If \( \text{ind} X \leq n \) for every \( n \), then \( \text{ind} X = \infty \).

The following proposition is straightforward and we use this in calculating the dimension.

Proposition 6.2. If \( X \) has a base \( \mathcal{O} \) such that every element \( U \in \mathcal{O} \) satisfies \( \text{ind} B(U) \leq n - 1 \), then \( \text{ind} X \leq n \).

Proposition 6.3 (heredity property of \( \text{ind} \)). 1) If \( \text{ind} X \leq n \) and \( Y \) is a subspace of \( X \), then \( \text{ind} Y \leq n \).
2) When \( \text{ind} X < \text{ind} Y \), \( Y \) has no topological embedding in \( X \).
Compact metric spaces as minimal-limit sets in domains of bottomed sequences

Proof. 1) By induction on $n$. It is trivial for the case $n = -1$. Assume it for $n - 1$. Since \( \text{ind } X \leq n \) for all $x \in Y$ and $O \ni x$, there exists $x \in O' \subseteq O$ such that \( \text{ind } B(O') \leq n - 1 \). Since $B_Y(O' \cap Y) \subseteq B(O')$, by induction hypothesis, we have \( \text{ind } B_Y(O' \cap Y) \leq n - 1 \).

2) Immediate from (1).

This heredity property does not hold for $T_0$ spaces in general when we consider the covering dimension or the large inductive dimension. See Appendix of (HW48) for details. Below by dimension we mean small inductive dimension.

**Definition 6.4.** The height of a poset $P$ (denoted by height $P$) is the maximal length of a chain in $P$. If $P$ is empty, then we define height $P = -1$.

**Proposition 6.5.** 1) height \( \{a_0 < a_1 < \ldots < a_n\} = n \).
2) height \( \Sigma^\omega = 0 \).
3) height \( \Sigma^\omega_{\downarrow,n} = n \).
4) height \( \Sigma^\omega_{\downarrow} = \infty \).

**Proposition 6.6.** For a poset $P$, the height of $P$ and the dimension of $P$ with the Alexandroff topology coincide. Here, the Alexandroff topology of $P$ has as open sets the upper-closed subsets of $P$.

However, when $P$ is a subspace of a domain, with the subspace topology of the Scott topology, the height of $P$ and the dimension of $P$ does not coincide. For example, the image of the Gray code embedding \( \text{im}(G) \subseteq \Sigma^\omega_{\downarrow,1} \) has height 0 because there is no order relation among elements of \( \text{im}(G) \), whereas it has dimension 1 because it is homeomorphic to $\mathcal{I}$.

**Proposition 6.7.** When $P$ is a subspace of a domain $D$ with the subspace topology of the Scott topology of $D$, \( \text{ind } P \geq \text{height } P \).

**Proof.** Let $n = \text{height } P$. A chain of length $n$ has dimension $n$ by Proposition 6.5 (1), and is embedded in $P$ as a subspace. By heredity (Proposition 6.3), we have the result.

**Lemma 6.8.** 1) If $D$ is a domain and $A$ is a closed subset of $D$, then $A$ is also a domain such that \( K(A) = A \cap K(D) \).
2) In addition, when $D$ has property M, $A$ also has property M.

**Proposition 6.9.** Let $D$ be a domain with property M and with no maximal finite element. Let \( d \in K(D) \).
1) \( d_{L(D)}(\uparrow d \cap L(D)) = d_{L(D)}(\uparrow d) \cap L(D) \).
2) \( B_D(\uparrow d) = \{ \alpha \in D \mid d \uparrow \alpha \text{ and } d \alpha \} \), and $B_D(\uparrow d)$ is a domain with property M such that \( L(B_D(\uparrow d)) = L(B_{L(D)}(\uparrow d \cap L(D))) \).
3) When \( L(D) \) is not empty, height \( \text{height } L(B_D(\uparrow d)) \leq \text{height } L(D) - 1 \).

**Proof.** 1) Since the right hand side is a closed subset of $L(D)$ including $\uparrow d \cap L(D)$, we have the $\subseteq$ direction. Let $x \in d_{L(D)}(\uparrow d \cap L(D))$. Since $D$ has no maximal finite element, $d$ and $x$ have an upper bound $z \in L(D)$ by Proposition 3.6 and 3.9. Therefore, $z \in d_{L(D)}(\uparrow d \cap L(D))$ and, since this set is down-closed, $x$ must also belong to this set.
2) By Lemma 6.8, $B_D(\uparrow d)$ is a domain with property M such that \( L(B_D(\uparrow d)) = B_D(\uparrow d) \).
d) \cap L(D). On the other hand, from (1), \( B_{L(D)}(\uparrow d \cap L(D)) = d_{L(D)}(\uparrow d \cap L(D)) = \uparrow d \cap L(D) = d_D(\uparrow d) \cap L(D) = \uparrow d \cap L(D) = (cD(\uparrow d) \cap L(D) = B_D(\uparrow d) \cap L(D).

3) Let \( a_0 < a_1 < \ldots < a_n \) be a chain in \( L(B_D(\uparrow d)). \) Then, by (2), \( a_n \uparrow d. \) So there exists \( z \) with \( a_n \leq z \geq d. \) As \( D \) has no maximal finite element, we can assume \( z \in L(D). \) Also, by (2), \( z \notin B_D(\uparrow d). \) So \( a_n < z. \) Therefore, \( a_0 < a_1 < \ldots < a_n < z \) is a chain in \( L(D). \)

**Proposition 6.10**. When \( D \) is a domain with property \( M, \) \( \text{ind} \ L(D) \leq \text{height} \ L(D). \)

**Proof.** Induction on height \( L(D). \) It is obvious when \( L(D) \) is empty. Suppose that height \( L(D) = n \geq 0. \) Then, consider the domain \( \hat{D}. \) Since \( L(\hat{D}) = L(D), L(\hat{D}) \) also has height \( n. \) From Proposition 6.9 (3), we have height \( L(B_{\hat{D}}(\uparrow d)) = n - 1 \) for any finite element \( d \) of \( \hat{D}. \) We apply the induction hypothesis to the domain \( B_{\hat{D}}(\uparrow d) \) to have \( \text{ind} \ L(B_{\hat{D}}(\uparrow d)) \leq n - 1. \) Therefore, by Proposition 6.2, we have \( \text{ind} \ L(D) \leq n. \) Therefore, \( \text{ind} \ L(D) \leq n. \)

From Proposition 6.7 and 6.10, we have our result.

**Theorem 6.11**. When \( D \) is a domain with property \( M, \) \( \text{ind} \ L(D) = \text{height} \ L(D). \)

Since we view a domain \( D \) as the space \( L(D) \) with the approximation structure given by \( K(D), \) we refer to the dimension of \( L(D) \) also as the *dimension* of the domain \( D, \) and write \( \text{ind} \ D \) for it.

This theorem, with the heredity property, derives the main result of (Tsu01a):

**Corollary 6.12**. 1) \( \text{ind} \ \Sigma^\omega_{\bot,n} = n. \)

2) There are no embeddings of \( n \)-dimensional topological spaces in \( \Sigma^\omega_{\bot,m} \) when \( n > m. \) In particular, there are no embeddings of \( \mathcal{I}^n \) in \( \Sigma^\omega_{\bot,m-1} \) for any character set \( \Sigma \) of countable cardinality.

3) There are no embeddings of infinite-dimensional topological spaces in \( \Sigma^\omega_{\bot,n} \) for any \( n. \)

**Proof.** 1) From Proposition 6.5 (3).

2) \( \text{ind} \ \mathcal{I}^n = n. \) See (Eng78).

The domain in Example 3.8, which does not have property \( M, \) satisfies \( \text{ind} \ L(D) = 1 \) whereas \( \text{height} \ L(D) = 0. \) Therefore, it gives a counterexample to Theorem 6.11 when \( D \) does not have property \( M. \)

7. The synchronous product of stratified domains

We have shown that \( \mathcal{I} \) is homeomorphic to \( M_{L(RD)} \) and the real line \( \mathcal{R} \) can be embedded in \( M_{L(RD)} \). To consider corresponding results for higher dimensional spaces like the \( n \)-dimensional Euclidean cube \( \mathcal{I}^n (n = 0, 1, 2, \ldots) \) and the Hilbert cube \( \mathcal{I}^\omega, \) we define a new product of stratified domains. When we use the usual product, we have \( \text{ind} \ D_1 \times D_2 = \infty \) if \( \text{ind} \ D_1 \geq 0 \) and \( \text{ind} \ D_2 \geq 0, \) because any pair of a finite element and an infinite element is an infinite element of \( D_1 \times D_2. \) Therefore, we use the following definition.
**Definition 7.1.** Let $D_1$ and $D_2$ be stratified domains. The *synchronous product* $D_1 \times_s D_2$ of $D_1$ and $D_2$ is the stratified domain defined by the following set of finite elements

$$K_n(D_1 \times_s D_2) = \{(a, b) \mid a \in K_n(D_1), b \in K_n(D_2)\} \ (n = 0, 1, \ldots),$$

with the pointwise order.

**Proposition 7.2.** Let $D_1$ and $D_2$ be stratified domains.

1) $D_1 \times_s D_2$ is a subdomain of $D_1 \times D_2$ such that $L(D_1 \times_s D_2)$ is homeomorphic to $L(D_1) \times L(D_2)$.

2) When $D_1$ and $D_2$ are finite-branching, $D_1 \times_s D_2$ is also finite-branching.

3) $M_{L(D_1 \times_s D_2)}$ is homeomorphic to $M_{L(D_1)} \times M_{L(D_2)}$.

4) When $D_1$ and $D_2$ have property $M$, $D_1 \times_s D_2$ also has property $M$ and $\text{ind } D_1 \times_s D_2 = \text{ind } D_1 + \text{ind } D_2$.

*Proof.* 1) $D_1 \times_s D_2$ is obviously a subdomain of $D_1 \times D_2$; the embedding maps a finite element of $D_1 \times_s D_2$ to a finite element of $D_1 \times D_2$.

Let $p_1$ and $p_2$ be projection functions from $D_1 \times_s D_2$ to $D_1$ and $D_2$, respectively, defined in the obvious way for finite elements and continuously extended to limit elements. Let $I$ be an ideal of $D_1 \times_s D_2$. Then, $p_1I$ and $p_2I$ are obviously ideals of $D_1$ and $D_2$. Let $x_1$ and $x_2$ be the limits of $p_1I$ and $p_2I$, respectively. Let $a_1 \in K_{x_1}$ and $a_2 \in K_{x_2}$ such that $a_1$ and $a_2$ have the same level. Then, for some $b_1$ and $b_2$, we have $\langle a_1, b_2 \rangle \in I$ and $\langle b_1, a_2 \rangle \in I$. Since $I$ is directed, we have $\langle c_1, c_2 \rangle$ such that $c_i \geq a_i$ and $c_i \geq b_i$ for $i = 1, 2$.

Since $I$ is lower closed, we have $\langle a_1, a_2 \rangle \in I$. Therefore, each non-principal ideal $I$ has the following form for some $x \in L(D_1)$ and $y \in L(D_2)$

$$I = \{\langle a, b \rangle \mid a \in K_x, b \in K_y, a \text{ and } b \text{ have the same level} \}.$$ 

Thus, there is a one-to-one correspondence between $L(D_1) \times L(D_2)$ and the set of non-principal ideals of $D_1 \times_s D_2$. It is obviously a homeomorphism.

2) We have $\text{succ}(\langle a, b \rangle) = \text{succ}(a) \times \text{succ}(b)$.

3) Immediate from (1), because $M_{L(D_1)} \times M_{L(D_2)}$ is the set of minimal elements of $L(D_1) \times L(D_2)$.

4) Let $N = \{(a_1, b_1), \ldots, (a_i, b_i)\}$ be a finite subset of $K(D_1 \times_s D_2)$ and $S_1$ and $S_2$ be the sets of minimal upper bounds of $\{a_1, \ldots, a_i\}$ and $\{b_1, \ldots, b_i\}$, respectively. Let $n$ be the maximal level of the elements of $S_1 \cup S_2$. Define $T_i = \uparrow S_i \cap K_n(D_i)$ for $i = 1, 2$. $T_1 \times T_2$ is a finite subset of $K(D_1 \times_s D_2)$, which is the set of minimal elements of $\{d \in K(D_1 \times_s D_2) \mid \text{level}(d) \geq n, d \text{ is an upper bound of } N \}$. Therefore, take $T = T_1 \times T_2 \cup \{d \in K(D_1 \times_s D_2) \mid \text{level}(d) < n, d \text{ is an upper bound of } N \}$. Since $T$ is a finite set, the set of minimal elements of $T$ is also finite and is the set of minimal upper bounds of $N$. Thus, $D_1 \times_s D_2$ has property $M$.

The height of $L(D_1 \times_s D_2)$ is equal to the height of $L(D_1) \times L(D_2)$ by (1), and is equal to the sum of the heights of $L(D_1)$ and $L(D_2)$.

The domain $D_1 \times_s D_2$ can be extended to a domain of bottomed sequences when $D_1$ and $D_2$ are themselves domains of bottomed sequences. Let $\text{in} : \Sigma_1^* \times \Sigma_2^* \to \Sigma_1^*$ be the
interleaving function defined as
\[
\begin{align*}
\hat{m}(a, b)[2n] &= a[n], \\
\hat{m}(a, b)[2n + 1] &= b[n].
\end{align*}
\]

Through \(\hat{m}\), \(\Sigma^\omega_1 \times \Sigma^\omega_1\) and \(\Sigma^\omega_2\) become order-isomorphic. Thus, \(D_1 \times^s D_2\) becomes a subdomain of \(\Sigma^\omega_1\) by Proposition 7.2(1). Since this embedding is not level-preserving, we add to the set of finite elements of \(D_1 \times^s D_2\) the following sets
\[
K_n^*(D_1 \times^s D_2) = \{(a, b) \mid a \in K_{n+1}(D_1), b \in K_n(D_2)\} \ (n = 0, 1, \ldots)
\]
so that \(K_n(D_1 \times^s D_2)\) and \(K_n^*(D_1 \times^s D_2)\) become the set of 2n-level and \((2n + 1)\)-level finite elements, respectively. We write \(D_1 \times^s_1 D_2\) for the domain thus constructed embedded in \(\Sigma^\omega_1\) by \(\hat{m}\). This insertion of intermediate finite elements does not change the structure of the space of limit elements:

**Proposition 7.3.** When \(D_1\) and \(D_2\) are domains of bottomed sequences, \(D_1 \times^s_1 D_2\) is a domain of bottomed sequences such that \(L(D_1 \times^s_1 D_2)\) is homeomorphic to \(L(D_1 \times^s D_2)\).

**Proof.** When \(I\) is an ideal of \(K(D_1 \times^s D_2)\), \(I \cap K(D_1 \times^s D_2)\) is also a directed set of \(K(D_1 \times^s_1 D_2)\) with the same limit. To see this, it is enough to show that when \(e < f\) in \(K(D_1 \times^s_1 D_2)\), there is \(g \in K(D_1 \times^s D_2)\) such that \(e \leq g \leq f\).

We can also define the synchronous product \(\times^s_1\) of arity \(n\), by adding \(n - 1\) levels of intermediate finite elements between \(K_n\) and \(K_{n+1}\), and using the interleaving function of arity \(n\). We write \(D^n\) for the \(n\)-arity synchronous product \(D \times^s_1 D \times^s_1 \ldots \times^s_1 D\) of \(n\) copies of \(D\).

**Corollary 7.4.** 1) \(RD^n\) is an \(n\)-dimensional finite-branching domain of bottomed sequences with property M.
2) \(L(RD^n)\) is an upper-closed subset of \(\Sigma^\omega_{n,k}\).
3) \(T^n\) is homeomorphic to \(M_{L(RD^n)}\).
4) \(T^n\) is a retract of \(L(RD^n)\).
5) \(R^n\) can be embedded in \(M_{L(RD^n)}\).

We write \(G^n\) for the homeomorphism from \(T^n\) to \(M_{L(RD^n)}\).

Next, we consider infinite products.

**Definition 7.5.** Let \(D_i \ (i = 1, 2, \ldots)\) be stratified domains. We can define a stratified domain \(\prod_{i=1}^\infty D_i\) as the ideal completion of the following stratified poset.

\[
K_n(\prod_{i=1}^\infty D_i) = \{(a_1, a_2, \ldots, a_n) \mid a_k \in K_{n-k+1}(D_k) \ (k = 1, \ldots, n)\},
\]
with the order \((a_1, a_2, \ldots, a_n) \leq (b_1, b_2, \ldots, b_m)\) if \(n \leq m\) and \(a_k \leq b_k\) in \(K(D_k)\) \((k = 1, 2, \ldots, n)\).

**Proposition 7.6.** Let \(D_i \ (i = 1, 2, \ldots)\) be stratified domains.
1) \(\prod_{i=1}^\infty D_i\) is a subdomain of \(\prod_{i=1}^\infty D_i\) such that \(L(\prod_{i=1}^\infty D_i)\) is homeomorphic to
\[ \prod_{i=1}^{\infty} L(D_i). \]

2) When \( D_i \) \((i = 1, 2, \ldots)\) are finite-branching, \( \prod_{i=1}^{\infty} D_i \) is also finite-branching.

3) \( M_L(\prod_{i=1}^{\infty} D_i) \) is homeomorphic to \( \prod_{i=1}^{\infty} M_L(D_i) \).

4) When \( D_i \) \((i = 1, 2, \ldots)\) have property M, \( \prod_{i=1}^{\infty} D_i \) also has property M and \( \text{ind} (\prod_{i=1}^{\infty} D_i) = \sum_{i=1}^{\infty} \text{ind} (D_i). \)

**Proof.** Similar to Proposition 7.2.

\( \prod_{i=1}^{\infty} D_i \) can also be extended to a domain of bottomed sequences when \( D_i \) \((i = 1, 2, \ldots)\) are. Let \( in^\infty : \prod_{i=1}^{\infty} \Sigma_1^* \to \Sigma_1^\infty \) be the isomorphism defined as

\[ in^\infty (a_1, a_2, \ldots)[(n, k)] = a_k [n] \]

for \((n, k) = (n + k - 1)(n + k)/2 + k - 1 \) with \( n = 0, 1, \ldots \) and \( k = 1, 2, \ldots \). Through \( in^\infty \), \( \prod_{i=1}^{\infty} D_i \) becomes a subdomain of \( \Sigma_1^\infty \) by Proposition 7.6(1). Since this embedding is not level-preserving, we add \( n \) levels of finite elements between \( K_n \) and \( K_{n+1} \):

\[ K_n^t (\prod_{i=1}^{\infty} D_i) = \left\{ (a_1, a_2, \ldots, a_n) \mid \begin{array}{l}
    a_k \in K_{n-k+2}(D_k) (1 \leq k \leq t) \\
    a_k \in K_{n-k+1}(D_k) (t < k \leq n) 
\end{array} \right\} \quad (t = 1, 2, \ldots, n). \]

We define the domain \( \prod_{i=1}^{\infty} D_i \) of bottomed sequences as the ideal completion of this domain embedded in \( \Sigma_1^\infty \) by \( in^\infty \), and we denote by \( D^\infty \) the synchronous product \( \prod_{i=1}^{\infty} D_i \).

**Corollary 7.7.** 1) \( RD^\infty \) is an \( \infty \)-dimensional finite-branching domain of bottomed sequences with property M.

2) \( L(RD^\infty) \) is an upper-closed subset of \( \Sigma_1^\infty \).

3) The Hilbert cube \( I^\omega \) is homeomorphic to \( M_L(RD^\infty) \).

4) \( I^\omega \) is a retract of \( L(RD^\infty) \).

5) \( R^\infty \) can be embedded in \( M_L(RD^\infty) \).

**8. Embeddings of compact metric spaces**

Now, we consider embeddings of separable metric spaces. For finite-dimensional cases, our construction is based on the universality of Nöbeling’s universal \( n \)-dimensional space.

**Definition 8.1.** We define a subspace \( N^n_k \) of \( I^n \) as follows.

\[ N^n_k = \{(x_1, \ldots, x_n) \in I^n \mid \text{at most } k \text{ of } x_1, \ldots, x_n \text{ are dyadic}\}. \]

It is known that \( N^n_k \) has dimension \( k \) (Eng78). The space \( N^n_{2n+1} \) is essentially the same as Nöbeling’s universal \( n \)-dimensional space, and it has the following universality.

**Proposition 8.2.** For any \( n \)-dimensional separable metric space \( X \), there is a topological embedding of \( X \) in \( N^n_{2n+1} \).

**Proof.** See (Eng78), for example. \( \square \)

Consider the embedding \( G^m \) of \( T^m \) in \( M_L(RD^m) \subseteq \Sigma_1^\omega \). Since it is an interleaving of the Gray code, the number of \( \bot \) which appear in \( G^m(x) \) is equal to the number of dyadic
coordinates \( x \in T^m \) has. Therefore,
\[
G^m(N^m_n) \subseteq \Sigma^\omega_{1,n} \cap M_{L(RD^m)}.
\]

**Theorem 8.3.** Let \( n \) be a finite number. When \( X \) is an \( n \)-dimensional separable metric space, \( X \) has an embedding in \( M_{L(RD^{2n+1})} \). The image is in the upper-\( n \) subspace of \( RD^m \).

**Proof.** From Proposition 8.2. \( \Box \)

Next, we consider the case that \( X \) is compact.

**Lemma 8.4.** When \( D \) is a \( \delta \)-domain with property \( M \) and \( Y \) is a closed subset of \( M_{L(D)} \), \( cl_D(Y) \) is a \( \delta \)-domain with property \( M \) such that \( M_{L(d_D(Y))} = Y \).

**Proof.** Being a closed subset, \( Y = E \cap M_{L(D)} \) for some closed subset \( E \) of \( D \). Since \( cl_D(Y) \subseteq E \), we have \( Y = cl_D(Y) \cap M_{L(D)} \). From Lemma 6.8, \( cl_D(Y) \) is a domain with property \( M \), which is also finite-branching because \( d_D(Y) \) is down-closed. \( \Box \)

**Theorem 8.5.** Let \( n \) be a finite number. For each \( n \)-dimensional compact metric space \( X \), there is an \( n \)-dimensional \( \delta \)-domain \( D \) of bottomed sequences with property \( M \) such that
1) \( M_{L(D)} \) is homeomorphic to \( X \) and \( M_{L(D)} \) is dense in \( D \).
2) \( X \) is a retract of \( L(D) \).
3) \( D \) is a subdomain of \( BD_n \).

**Proof.** 1) It is known that a compact metric space is separable. Therefore, \( X \) has an embedding in \( N_n^{2n+1} \), and then in \( M_{L(RD^{2n+1})} \) by Theorem 8.3. Let \( Y \) be the image of the embedding. \( Y \subseteq \Sigma^\omega_{1,n} \cap M_{L(RD^{2n+1})} \). Since \( M_{L(RD^{2n+1})} \) is Hausdorff, \( Y \) is a closed subset of \( M_{L(RD^{2n+1})} \). Therefore, by Lemma 8.4, \( d_{RD^{2n+1}}(Y) \) is a \( \delta \)-domain with property \( M \) which we denote by \( D \). Since \( M_{L(D)} = Y \) and \( Y \subseteq \Sigma^\omega_{1,n} \), \( L(D) \subseteq \Sigma^\omega_{1,n} \) and therefore \( L(D) \) is \( n \)-dimensional. Since \( D \) is the closure of \( M_{L(D)} \), \( M_{L(D)} \) is dense in \( D \).
2) from (1) and Proposition 4.6.
3) Obvious from the construction. \( \Box \)

For the infinite-dimensional case, we can use the universality of the Hilbert cube.

**Proposition 8.6.** Every separable metric space \( X \) can be embedded in the Hilbert cube \( T^\omega \).

**Proof.** See (Eng78), for example. \( \Box \)

**Theorem 8.7.** Every separable metric space \( X \) can be embedded in \( M_{L(RD^{\infty})} \).

**Proof.** From Proposition 8.6 and Corollary 7.7. \( \Box \)

Also from Lemma 8.4 and Theorem 8.7, we have

**Theorem 8.8.** Theorem 8.5 ((1) and (2)) holds also for the case of \( n = \infty \).

As a corollary to Theorem 6.11, 8.5, and 8.8, we have
Theorem 8.9. The dimension of a compact metric space \( X \) is equal to the minimal height of \( L(D) \) such that \( D \) is a domain with property \( M \) and \( X \) is homeomorphic to \( M_{L(D)} \).

9. Concluding remarks

In Theorem 6.11, we showed that the dimension of \( L(D) \) is equal to the height of \( L(D) \) when \( D \) is an \( \omega \)-algebraic domain with property \( M \). It is not hard to show that this theorem is true also for Lawson-compact continuous domains in general. Proposition 3.6(2) can be proved for Lawson-compact continuous domains, and from which algebraic-domain case of Theorem 6.11 is derived. Since the height of \( L(D) \) is always \( \infty \) for non-algebraic continuous domains, this theorem trivially holds for the non-algebraic case.

We have shown that every \( n \)-dimensional compact metric space can be realized as the minimal-limit set of an \( n \)-dimensional \( \Omega \)-domain of bottomed sequences. This means that we can view every compact metric space as a kind of space of infinite sequences. The minimality of the subspace elements means that, through this embedding, each strictly increasing sequence in \( K(D) \), which can be realized as a process of filling a tape infinitely, can be interpreted as a point of \( X \). In addition, because \( D \) is finite-branching, we have only finite number of candidates to fill at every finite stage. When \( X \) is \( n \)-dimensional, \( D \) can be constructed as a subdomain of \( BD_n \), and thus the candidates for the next cell are the first \( n+1 \) unfilled cells.

In (Tsu02), the author presented the notion of an IM2-machine, which has, on each input/output tape, \( n+1 \) heads that move so that they are always located at the first \( n+1 \) undefined cells, and thus can input/output sequences in \( BD_n \). Therefore, an IM2-machine can be used to input/output representations of \( n \)-dimensional spaces. As a special case, when the Gray-code embedding is used to represent \( I \) in \( RD \), some algorithms like addition are expressed with an IM2-machine (Tsu02), and it is shown that the rules of an IM2-machine can easily be translated into a parallel logic programming language GHC, and executed on many platforms(Tsu01b).

In this paper, we proved the existence of a domain \( D \) representing an \( n \)-dimensional separable metric space \( X \) via a classical theorem in dimension theory. In order to apply IM2-machines to give algorithms on a space \( X \), we need to select a concrete structure of \( D \) and an embedding of \( X \) in \( D \) as we did for \( I \). It is an interesting open problem how to define such a concrete structure when some effective structure of \( X \) is given.

When \( X \) is embedded in the space \( L(D) \) of limit elements of a domain \( D \), \( K(D) \) gives a base of the topology of \( X \). To conclude this paper, we will express properties of this base in topological terms. When \( B \) is a base of \( X \), we denote by \( F(B) \) the set of infinite filter-bases which are composed of elements of \( B \). We can consider \( F(B) \) as a poset by defining \( F_1 \leq F_2 \) iff \( F_2 \) refines \( F_1 \). When we combine Theorem 8.5, 8.8 and Proposition 4.6, we have the following.

Theorem 9.1. When \( X \) is a compact metric space of dimension \( n \) \((n \leq \infty)\), there is a base \( B \) of \( X \) such that
1) The poset \( (B, \supseteq) \) is finite-branching.
The structure of infinite filters-bases converging to $(1/2,1/2)$ on $I^2$. (a) is the lower level element (unique), (a) + (b) is a middle level element (4 of this kind exist), (a) + 2 copies of type (b) + (c) is the upper level element (4 of this kind exist). Only the first one contains the point $(1/2,1/2)$.

2) Every infinite filter-base $\mathcal{F} \in \mathbf{F}(B)$ converges to a unique point of $X$ (denoted by $\lim \mathcal{F}$).

3) $\lim \mathcal{F}$ is the unique cluster point of $\mathcal{F}$.

4) $\mathbf{F}(B)$ is a poset of height $n$.

5) If $\mathcal{F}$ is a minimal element of $\mathbf{F}(B)$, then $\cap \mathcal{F} = \{ \lim \mathcal{F} \}$.

6) If $\mathcal{F}$ is not a minimal element of $\mathbf{F}(B)$, then $\cap \mathcal{F} = \emptyset$.

Such a base is given by the Gray-code expansion for the case of $I$, by the synchronized product of the base of $I$ for $I^n$ ($n = 0, 1, 2, \ldots, \infty$), and as a subspace of $I^{2n+1}$ (or $I^\infty$ when $n = \infty$) for general cases. Figure 8 depicts the structure of the filters-bases in $\mathbf{F}(B)$ which are converging to $(1/2,1/2)$, for the case of $I^2$.

**Acknowledgement**

The author thanks Alex Simpson, Martín Escardó, Achim Jung, Andreas Knobel and Izumi Takeuti for many illuminating discussions.

**References**


Compact metric spaces as minimal-limit sets in domains of bottomed sequences


